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1. Introduction.

Surfaces with constant mean curvature in Minkowski 3-space L3 have been studied in a
lot of fields. For example, there are researches in relational to harmonic mappings between
hyperbolic 2-spaces (cf. [1], [2], [5]) and affine differential geometry (cf. [7]).

In this paper we study surfaces of revolution and spacelike helicoidal surfaces in L3.

A surface in L3 is called a spacelike surface if the induced metric on the surface is a
positive definite Riemannian metric. Moreover, a timelike surface in L3 is a surface which
inherits a non-degenerate indefinite metric from the standard metric in L3.

It is well-known that C. Delaunay [6] solved the differential equation of surfaces of rev-
olution under constancy of the mean curvature and gave a method of geometric constructions
for such surfaces. For the proof, he first obtained a parametrization of an evolute of the gener-
ating curve. By making use of this parametrization, he found a representation formula for the
generating curve. Therefore these solutions hold only on some intervals on which the evolute
can be defined. More generally, K. Kenmotsu [11] gave a representation formula for surfaces
of revolution with prescribed mean curvature in Euclidean 3-space.

Spacelike maximal surfaces of revolution in L3 were studied by O. Kobayashi [12] and
L. McNertney [15]. On the other hand, timelike minimal surfaces of revolution in L3 were
classified by L. McNertney (cf. [20]). Furthermore McNertney gave one parameter deforma-
tions for various catenoids and helicoids. Moreover, the timelike minimal surfaces have been
a subject of several wide interests [14], [16], [17], [18] and [21].

J. Hano and K. Nomizu [9] classified the spacelike surfaces of revolution in L3 that
have constant mean curvature and proved that the profile curve of a surface of revolution with
nonzero constant mean curvature in L> can be described as the locus of focus when a quadratic
curve is rolled along the axis of revolution. However, they did not give a representation
formula for spacelike surfaces in L3.
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T. Ishihara and F. Hara [10] studied Minkowski versions of the work of K. Kenmotsu.
They gave a representation formula for surfaces of revolution with prescribed mean curvature
in L3. However, there were some mistakes in their paper. In particular, there were not a case
of timelike surface of revolution with spacelike axis in L3. Thus they have not been finished
the classification.

About helicoidal surfaces in Euclidean 3-space, M. P. do Carmo and M. Dajczer [8]
proved that, by using a result of E. Bour [4], there exists a two-parameter family of helicoidal
surfaces isometric to a given helicoidal surface. By making use of this parametrization, they
found a representation formula for helicoidal surfaces with constant mean curvature. Further-
more they proved that the associated family of Delaunay surfaces is made up by helicoidal
surfaces of constant mean curvature.

Moreover, helicoidal surfaces were treated by T. Sasai [19]. He gave another parametriza-
tion for helicoidal surfaces. By using his parametrization, he studied limiting surfaces of
helicoidal surfaces.

The purpose of this note is to restudy surfaces of revolution in L3 to complete a repre-
sentation formula and consider spacelike helicoidal surfaces with constant mean curvature H
in L3,

More precisely we shall solve the differential equation which describes the mean curva-
ture by an elementary method. Solutions are represented explicitly by generalized integrals
which involve the mean curvature. Therefore, for a given continuous function A and constant
Hy, we can construct surfaces of revolution admitting H as the mean curvature and spacelike
helicoidal surfaces admitting Ho as the mean curvature.

The author would like to express his gratitude to Professor Koichi Ogiue for helpful
comments and encouragements and to the referee for valuable suggestions.

2. Preliminaries.

We begin with fixing our terminology and notation (cf. [3], [13]). Let L3 = (R3, )
denote Minkowski 3-space with flat Lorentzian metric g of signature (4, +, —). In terms of
canonical coordinates (x, y, z) of R3, the metric g, denoted also by (-, -), can be expressed as
§ = dx? + dy* — dz2. Let M? be a connected smooth 2-manifold, and X : M2 — L3 be a
smooth nondegenerate immersion. Then M2 or X is said to be spacelike (resp. timelike) if the
pulled back metric ¢ = Xs*g of the Lorentzian metric g via X; is a positive definite metric
(resp. an indefinite metric) on M 2,

It will sometimes be expedient to use the notation Ma2 or X5, 8 = £1, to denote a
nondegenerate surface in L3, where § = 1 (resp. § = —1) means that M32 is a spacelike (resp.
timelike) surface or X is a spacelike (resp. timelike).

Let us denote D and V the Levi-Civita connection of L and Mg respectively. Then the
Gauss-Weingarten formulas are given as follows:

DxY =VxY +h(X,Y)N, DxN=-—-AX
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for all vector fields X, ¥ on M. Here is N is a unit normal vector field to Mg such that
(N, N) = —8, h is the second fundamental form of Ma2 in L? and A is shape operator of M52
relative to N. The Gaussian curvature K of M52 is given by

K = —4detA.

The mean curvature H of M‘S2 is defined by
8
H=-—-—trA.
2

We shall define a local Lorentzian frame field (ej, e, e3) adapted to Mg in L3 in the
following manner. Let (e;, e2) be an orthonormal tangent frame field on M52 compatible to
the orientation of Mg. Then we define e3 by e3 = e; X e3. Here the exterior product v x w of
two vectors v = (v, v2, v3), w = (w1, wa, w3) € L3 is defined by

v X w=—(vzwy — vws3, Vw3 — v3wi, v{W3 — vawi).

With respect to a Lorentian frame field adapted to Mg in L3, the second fundamental
with respect to the unit normal N = e3 is expressed by the matrix (h;;)1<;, j<2:

hij = —8(D¢;ej, e3).
The Gaussian curvature and the mean curvature of M‘s2 are given in terms of 4;; as follows

K = hiohy1 — h11haa, H = (6h1 +h22)/2.

3. Surfaces of revolution in L3.

A surface in L3 is called a surface of revolution with axis [ if it is invariant under the
action of the group of motions in L3 which fix each point of the line /.

If the axis is timelike (resp. spacelike), we may assume without loss of generality that
the axis is z-axis (resp. y-axis), since every timelike (resp. spacelike) unit vector can be trans-
formed to (0, 0, 1) (resp. (0, 1, 0)) by a Lorentzian transformation. Then the surface is ex-
pressed as follows:

cosf -—sinf O f(s)
X(s,60) = |sinf@ cos6é O 0
0 0 1 g(s)

= (f(s)cos@, f(s)sinb, g(s))
if the axis is timelike, and

cosh8 O sinh6 0
X(s,0) = 0 1 0 g(s)
sinh® O cosh@ f(s)

= (f(s)sinh 8, g(s), f(s) coshb) or



480 NAOSHI SASAHARA

cosh@ O sinh6 f(s)
X(s,0) = 0 1 0 g(s)
sinh@ O coshé 0

= (f(s)cosh@, g(s), f(s)sinhH)

if the axis is spacelike.
If the axis is lightlike, we may assume without loss of generality that itis R - (1,0, 1).
Note that the subgroup of the Lorentzian group which fixes (1, 0, 1) is

2 2
t t
1—— 1t —
2 2
—t 1 t ;teR
12 12
— t 1 —
2 + 2
Hence, the surface can be written as
1- b3 ! D) h(s) +s
X(@s,t) = —t 1 t 0
2 2 h(s) —s
—_—— t 1 —
2 + 2

= (h(s) +s — 2s, —2st, h(s) —s — £2s).

Let (f(s), g(s)), s € I, be any C2-curve which is parametrized by the arc length and 1
is an open interval of real numbers including zero.

It will be expedient to use the notation (-, -); (resp. (-, -)s or (-, -);) for formulas where
(-, )¢ (resp. (-, )s or (-, -);) means that the axis of surfaces is timelike (resp. spacelike or
lightlike).

We deal with a surface M; of revolution in L3 with non lightlike axis ! and profile curve
in Minkowski plane defined by

(3.1); X5(s,0) = (f(s)cos@, f(s)sinb, g(s)), selI, 0<6 <2m,
where

(3.2); fl&)?—g's) =3, or

(3.1); Xs5(s,0) = (f(s)sinh @, g(s), f(s)coshf), sel, 0 €R,
where

(3.2)s g'©? - fl()P =8,

according as the axis [ is timelike or spacelike.
We set e3 = X x (Xg/f) then the first and the second fundamental forms of M are

8ds® + f(5)°d6® and 8{f'(s)g"(s) — f"(s)g'(s)}ds? + 8f(s)g'(s)d6%,  or
8ds® + f(5)’d6® and 8{f'(s)g"(s) — f"(s)g’(s)}ds® — 8f (s)g'(s)d6?,



SPACELIKE HELICOIDAL SURFACES 481

respectively. By the regularity of the surface we may assume f(s) > 0 on I. The mean

curvature H (s), by definition, satisfies

(3.3): 2H(s)f(s) = 89'(s) = (f'(9)9"(s) — f"()g'(sNf(s) =0, sel, or

(3.3)s 2H(s) f(s) +89'(s) — (f'()g"(s) — f"(5)g' (5N f(s) =0, sel.
Multiplying (3.3) by ¢’(s) and making use of (3.2), we get

(3.4); 2H(S)f(9)g'(s) = 8(f () f () +1=0, or

(3.4)s 2H(s) f()g'(s) +8(f () f'(s)) +1=0.
Similarly we have

(3.5): 2H(s) f(s)f'(s) —8(f(5)g'(s)) =0, or

(3.5)s 2H(s) f(s)f'(s) +8(f(s)g'(s)) = 0.

Combining (3.4) and (3.5), we obtain the first order linear differential equations

3.6) 8Zi(s) —2H()Z1(s) =1 =0, sel
o 8Z(s) +2H(s)Z2(s) —1=0, sel,

(3.6) 8Z1(s) +2H(s)Z1(s)+1=0, sel
o 8Z5(s) —2H(s)Z2(s) +1 =0, sel,

where we put

3.7) {21 () =S (s)+g'(s))

Zs(s) = f()(f'(s) — g’ ().

They can easily be solved. General solutions of (3.6) are

rzl(s) = exp (28 /s H(s)ds) [8[ exp( 26/ H(s)ds) ds + C1]
(3-8) 1 5o s 51 s
t Zz(s) = exp (—28f H(s)ds) [ f exp (28/ H(s)ds) ds + Cz} or
50 51

: Zl(s) = exp ( —26 H(s)ds) {—8 /s exp (28/ H(s)ds) ds + Cl}
(3.8)s 1 51 o

Z>(s) = exp (28/ H(s)ds) [—-6 /S exp( 28/ H(s)ds) ds + C2]
51

where C; and C, are constants. It is convenient to introduce the following functions:

F(s) = /s exp( 26f H(s)ds) ds
(3.9 s
G(s) =f exp (28/ H(s)ds) ds.
51

Then (3.8) is represented by
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.10, [zl(s) = G'(s)(3F(s) + C1)
Z>(s) = F'(s)(6G(s) + C2), or
Z1(s) = F'(s)(—=8G(s) + C1)
G10 [Zz(S) = G'(s)(—=8F(s) + C2) .
By (3.2) and (3.7), we obtain
(3.11); f($)2 =8Z1(5)Zx(s), or
(3.11) f(s)? = —8Z1(s)Zx(s).
From (3.9) it follows that
(3.12), f(5)? =8(@F(s) + C1)(8G(s) + C2) , or
(3.12); f(s)2 = —8(—8G(s) + C1)(—8F(s) + C2).
Noting that
(3.13), 8F(s)G(s) + C2F(s) + C1G(s) + 8C1C2 >0, sel, or
(3.13); —8F(s)G(s) + C1F(s) + C2G(s) —8C1C2, >0, sel,

we see that the function f(s) can be written as
(3.14), f(s) = BF(s)G(s) + C2F(s) + C1G(s) + 8C1C)V2, sel, or
(3.14) f(s) = (=8F(s)G(s) + C1F(s) + C2G(s) — 8C1C2)1/2, sel.

On the other hand, since we have Z1(s) — Z2(s) = 2f(s)g’(s), we obtain g'(s) =
(Z1(s) — Z2(5))/(2f (s)). Hence,
(3.15), 9(s) = fs G'(s)8F(s) + C1) — F'(s)(6G(s) + CZ)ds,

52 2f(s)

(3.15), 9(s) = f" F'(s)(=8G(s) + C1) — G'(s)(—=8F(s) +C2)ds.
52 2f(s)

Next we deal with a timelike surface of revolution in L3 with spacelike axis and profile
curve in Euclidean plane defined by

or

(3.16) X(s,0) = (f(s)cosh@, g(s), f(s)sinh@), sel, 0€R,
where
(3.17) g6+ fls)P=1.

We set e3 = X X (Xg/f) then the first and the second fundamental forms are
ds® — f(s)*d6* and (f"(s)g'(s) — f'(s)g"(s))ds* — f(s)g'(s)d6>.

By the regularity of the surface we may assume f(s) > 0 on /. The mean curvature
H (s), satisfies

(3.18) 2H($) f() = g'() = (f(9)g" () = f'()g' (N f(s) =0, sel.
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Multiplying (3.18) by ¢’(s) and making use of (3.17), we get

(3.19) 2H($)f($)9' () + (f() f'(s))' =1 =0.
Similarly we have
(3.20) 2H(S) () f'(s) = (f(s)g'(s)) = 0.

‘ Combining (3.19) and (3.20), we obtain the first ordere complex linear differential equa-
tions
- (3.21) Zi(s) —2iH(s)Z(s)—1=0, sel,
where we put
Z(s) = fO)(Sf'() +ig'(5)).

They can easily be solved. The general solution of (3.21) is

Z(s) = exp (2i /s H(s)ds) [fs exp (—21’ fs H(s)ds) ds + C} .
0 0 0

where C is a complex constant. Introducing the following functions:

| F(s) = fs sin (2 fs H(s)ds)ds
(3.22) s Os

G(s) =f cos (Zf H(s)ds)ds.
0

0
Then the general solution (3.21) is represented by

(3.23) Z(s) = {(F(s) — c1) +i(G(s) + c)}(F'(s) —iG'(s)),
where we put iC = —c; + icy. Since we have |Z ()]? = f(s)?, we obtain for some constant
C, :
F(©)? = (F(s) —c1)® +(G(s) +2)?, sel.
Noting that
(3.24) (F(s) —c)* +(G(s) +c2)? >0, sel,

we see that the function f(s) can be written as
(3.25) f6) ={(FG) —c1)? +(G(s) + )}/, sel.
Combining (3.23), (3.25) and Z(s) — Z(s) = 2if(s)g’(s), we get

/(s) _ (G(s) + C2)F/(S) - (F(S) -— CI)G/(S)
I - {(F(s) — c1)2 + (G(s) + c2)2}1/2

Hence, we obtain

S (G(s) + ) F'(s) — (F(s) — c1)G'(s)
3.26 =
(320 9 (F(s) — eD? + (G(s) + )12
where c1, ¢z and c3 are any integral constants.

ds +c3,
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Finally if the axis / is lightlike, we deal with a surface M; of revolution with axis / in L3
defined by
(3.27) X5(s,t) = (h(s) +s —t%s, =2st, h(s) —s —1t%s), sel, teR,
where
8h'(s) > 0.

We set e3 = (1/(2+4/8h")) X x (1/(2s))X; then the first and the second fundamental
forms of My are

h" (s) 2s
4h'(s)ds* + 4s%dt> and -6 ds* — dtz},
()™ ds7di™ an ) R

respectively. The mean curvature H (s), satisfies
(3.28) 85 H (s)h'(s)v/8h'(s) + 8(h"(s)s — 2 (s)) = 0.
Multiplying (3.28) by —(2h’(s)+/8R’(s)) !, it becomes
—4sH(s) + 8(s//8h'(s)) = 0.
Hence, if we assume H(s) =0, s € I, then we get
(3.29) h(s) =8(as>+b), a>0.

If we assume H (s) # O, then we get

2
Fen ds
h(s) = 5([;() 4sH(s)ds> ‘

Thus the function A(s) can be written as

2
$ ds
(3.30) h(S) = 8‘/;1 (W) ds,

where H(s) # 0.
Therefore we have proved the following.

THEOREM 3.1 (surfaces of revolution in L3). (1) If the axis | is timelike (resp. space-
like), let (f(s), g(s)), s € I, be the generating curve, parametrized by the arc length, of a
surface of revolution whose mean curvature at the point (f(s), 0, g(s)) (resp. (0, g(s), f(s)))
is given by H (s). Then for some constants C1 and C, we have (f (s), g(s)) satisfying (3.14)
and (3.15). Conversely for any given continuous function H(s), s € I, we take Cy and C, in
such a way that they satisfy (3.13). Then we can construct a surface of revolution by (3.1) and
the initial data are given by (3.9), (3.14) and (3.15).

(i1) If the axis l is spacelike, let (f(s), g(s)), s € I, be the generating curve, paramet-
rized by the arc length, of a timelike surface of revolution whose mean curvature at the point
(f(s), g(s),0) is given by H(s). Then for some constants c1, c; and c3 we have (f(s), g(s))
satisfying (3.25) and (3.26). Conversely for any given continuous function H(s), s € I, we



SPACELIKE HELICOIDAL SURFACES 485

take c1, c3 and c3 in such a way that they satisfy (3.24). Then we can construct a surface of
_revolution by (3.17) and the initial data are given by (3.22), (3.25) and (3.26).

(iii) If the axis | is lightlike, let (h(s) + s, h(s) — s), s € I, be the generating curve of
a surface of revolution whose mean curvature at the point (h(s) + s, 0, h(s) — s) is given by
H(s). We assume that H (s) # 0, then we can construct a surface of revolution by (3.27) and
the initial data are given by (3.30). If H = 0, then we can construct a surface of revolution
by (3.27) and the initial data are given by (3.29).

4. Surfaces of revolution with constant mean curvature in L3.

We assume that the mean curvature H (s) is a constant function.
- If the constant H is zero, by Theorem 3.1 (i), then we have F(s) = s and G(s) = s
where so = 0 and s; = 0, which gives

[ f(s) = {852 +2As + 8(A + B)(A — B)}'/2
@D |96 =[(B/f(s))ds, o
[ f(s) = {—2-8s2 +2As — 8(A + B)(A — B)}\/2
@.1), {g(s) _ [S(B/f(s))ds,
5

where A and B are any constants.
Therefore we get the following.

EXAMPLE 4.1 (Maximal surface with timelike axis). Setd = 1, s = 0, A = 0 and
B = 0in (3.1); and (4.1),. Then we have f(s) = s and g(s) = 0. Hence,

X(s,0) = (scosf, ssinb,0).

This surface is (x, y)-plane, i.e., a spacelike plane.

EXAMPLE 4.2 (Maximal surface with timelike axis). Setd =1,s0 =a >0,A =0
and B = a in (3.1); and (4.1);. Then we have f(s) = +/s2 —a? and g(s) = a cosh_l(s/a) —
loga. Hence,

1 1 .
X(s,6) = (a sinh (M) cos6, asinh (&Eﬂ) siné, g(s)) .

a
This surface can be written as

1

x2 + y2 — a? sinh? (Mﬁ) —0,
a
which shows that the surface is catenoid of the 1st kind (cf. Figure 1).

EXAMPLE 4.3 (Maximal surface with spacelike axis). Setd = 1,5, =0, A = 0 and
B = a in (3.1); and (4.1);. Then we have f(s) = va? — s2 and g(s) = asin"!(s/a). Put
g(s) = —aa(s), then we have f(s) = —a cos(a(s)). Hence,
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xl[a_)[s_,t_ ):={a Sqrt{s*2 - a*2] Cos{t}],
a Sqrt(s”2 - a”~2] 8in([t],a ArcCosh[s/a] - Logla]l)
ParametricPlot3D([x1[1]([s,t]//Evaluate,{s,1,4},
{t,- Pi,Pi},PlotPoints->{24,24},
ViewPoint->{-0.026,-3.299,0.751},
Boxed->False,Axes->Nonel

-Graphics3D-

FIGURE 1.

x2[a_1[s_,t_]:={a Sqrt[a”2 - s*2] Sinh[t],
a ArcSin[s/a],a 8qrt[a*2 - 8*2] Cosh[t]}
ParametricPlot3D([x2[1][s,t]//Evaluate,{s,-1,1},
{t,-1,1},PlotPoints->{24,24},
ViewPoint->{1.731,-2.775,0.867},
Boxed->False,Axes->Nonel

-Graphics3D-

FIGURE 2.

X (s, 0) = (acos(a(s)) sinh@, —awa(s), acos(x(s))coshf).
This surface is catenoid of the 2nd kind (cf. Figure 2).

EXAMPLE 4.4 (Timelike minimal surface with timelike axis). Seté = —1,s2 = 0,
A =0and B =a > 0in (3.1); and (4.1);. Then we have f(s) = va? —s? and g(s) =
a sin"!(s/a). Hence,

X(s,0) = (Va2 — s2cos8, Va2 — s2sin6, asin!(s/a)).
This surface can be written as
x? 4+ y? - a?cos?(z/a) =0.
This surface is catenoid of the 3rd kind (cf. Figure 3).

EXAMPLE 4.5 (Timelike minimal surface with spacelike axis). Seté = —1, 5o = 0,
A =0and B =0in (3.1); and (4.1);. Then we have f(s) = s and g(s) = 0. Hence,

X(s,0) = (ssinh 8, 0, s cosh8) .
This surface is a timelike plane.

EXAMPLE 4.6 (Timelike minimal surface with spacelike axis). Seté = —1,s2 =a >
0,A =0and B = a > 0in (3.1); and (4.1);. Then we have F(s) = s, G(s) = s,
f(s) = /52— a2 and g(s) = acosh—l(s/a) — loga. Hence,

X(s,0) = (a sinh (Q(s)‘:ﬂ) sinh @, g(s), asinh (g_(&-ia;lig_a) cosh9) .



SPACELIKE HELICOIDAL SURFACES 487

x3[a_][s_,t l:={Sqrt[a*2 - s*2] Cos[t],
Sqrt[a*2 - g*2] Sin{t],a ArcSin([s/a]}}

ParametricPlot3D([x3([1][s,t]//Evaluate,
{s,-1,1},{t,- Pi,Pi},PlotPoints->{24 24},
ViewPoint->{1.731,-2.775,0.867},
Boxed->False,Axes->None]

-Graphics3D-

FIGURE 3.

x4{a_l[s_,t_]:={a Sqrt{s*2 - a*2] Sinh[t],
a ArcCosh[s/a] - Logl[a],a Sqrt[s*2 - a*2]Cosh|t])}
ParametricPlot3D([x4([1](s,t]//Evaluate, :
{s,1,4},{(t,~1,1},PlotPoints->{24,24},
ViewPoint->{2.136,-2.623,-0,080},
Boxed->False,Axes->Nonel

~-Graphics3D-

FIGURE 4.

This surface can be written as
1
x2 — 7% + a? sinh? (&_og_a) =0.
a
This surface is catenoid of the 4th kind (cf. Figure 4).

If the constant is non-zero, by Theorem 3.1 (i), then we have F(s) = (exp(—2H&s) —
1)/(—2H4é) and G(s) = (exp(2H&8s) — 1)/(2HS) where H(s) = H # 0,50 = 0and s1 =0,
which gives

[ f(s) = {8(sinh(H85)/H)* — B cosh(2H3s)/(H8)
4.2) J +Asinh(QH&s)/(HS8) — A/(2HS8) + 8(A + B)(A — B)}1/2
e s 2sinh?(Hé8s)/H + 2A sinh(2H8s) + 2B cosh(2H 8s)
g(s) = f ds, or
L 52 2f(s)
[ £(s) = {—8(sinh(H8s)/H)? — Acosh(2H8s)/(HS)
@.2) { +B sinh(2H8s)/(H8) — A/(2H8) — 8(A + B)(A — B)}\/2
B S 2 sinh?(H8s)/H — 2A sinh(2H8s) + 2B cosh(2H5s)
o(s) = f ds,
. 52 2f(S)
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where A and B are any constants.
Therefore we get the following.

EXAMPLE 4.7 (Spacelike surface with timelike axis). Setd = 1,52 = 0, A = 0
and B = 0in (3.1); and (4.2),. Then we have f(s) = (sinh Hs)/|H| and g(s) = (-1 +
cosh Hs)/H. Hence,

1 1 1
X(s,0) = (—— sinh Hs cos @, —— sinh Hs sin@, ﬁ(_l +coshHs)) .

|H | |H |
This surface can be written as
1\? 1 |H|
2 2 _ R g —0z >0
Ay (Z+H) H® H =

which shows that the surface is a connected component of hyperbolid of two sheets. Further-
more X is a totally umbilic imbedding of a hyperbolic 2-space.

EXAMPLE 4.8 (Spacelike surface with spacelike axis). Seté = 1,5 =0, A = 0and
B = —1/(2H) in (3.1); and (4.2);. Then we have f(s) = 1/(2|H|) and g(s) = —(|H|/H)s.
Hence,

1 |H | 1
X(s,0) = | ——sinh9, ——s, ho ) .
(s, 0) , (2|Hl si I ) 31H] cos )

This surface can be written as

2 2

ZF—x= z>0,

4H?’
which shows that the surface is the spacelike hyperbolic cylinder.

EXAMPLE 4.9 (Timelike surface with timelike axis). Seté = —1,52 =0, A = 0 and
B = —1/(2H) in (3.1); and (4.2),. Then we have f(s) = 1/(2|H]) and g(s) = —(|H|/H)s.
Hence,

1. |H |
X(s,0) = 6, ——sin@, ———s ) .
(s, 0) (2|H| cos 21H] sin I s)
This surface can be written as
1
2 2 _
Y =
which shows that the surface is the timelike circular cylinder.
EXAMPLE 4.10 (Timelike surface with spacelike axis). Setd = —1,50 =0, A =0

and B = 0in (3.1); and (4.2);. Then we have f(s) = (sinh Hs)/|H| and g(s) = (—1 +
cosh Hs)/H. Hence,
1 1 1
X(s,0) = (—— sinh Hs sinh8, —(—1 4+ cosh Hs), — sinh Hs cosh9) .
|H| H |H|
This surface can be written as

1\?2 1 H
x2+(>'+ﬁ) —P= o, Lyso.
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This surface is drawn in Figure 5. This surface is a hyperbololid of one sheet. Namely
X is a totally umbilic imbedding of a Lorentz sphere into L3.

If the constant H is zero, by Theorem 3.1 (ii), then we get the following.

EXAMPLE 4.11 (Timelike minimal surface with spacelike axis). Setc; # 0 in (3.16),
(3.22), (3.25) and (3.26). Then we have,

X(s,0) = ({c% + (s + ¢2)?}1/2 cosh 6,

S
/ ci{ct + (s + c2)*Y2ds + c3, {c} + (s + c2)?}/? sinhe) :
0

This surface is catenoid of the 5th kind (cf. Figure 6).

If the constant H is non-zero, by Theorem 3.1 (ii), then we get the following.

x5[H_1[s_,t_l:=((Sinh[H s] Sinh[t])/(Abs[H]),
(-1 + Cosh[H s])/H, (Sinh[H 8] Cosh[t])/(Abs[H]))}
ParametricPlot3D([x5[-1](s,t]//Evaluate,
{s,—l,l},(t,-l,l},PlotPoints->(24,24},
ViewPoint->{2.748,-1.774,0.867},
Boxed->False,Axas->None]

-Graphics3D~

FIGURE 5.

x6[c1_,c2_,c3_][s_,g_]:-{
Sqrt[Cl112 + (s + C2)~2] Cosh|t],
Integrate([Cl/Sqrt[Cl42 + (u + c2)+2],
{u, 0, 8}] + C3,
8qrt[C12 + (s + €2)~2] Sinh(t]}
Parametric?lot3D[x6[1,1,0][s,t]//Evaluate,
{s,—4,4},{t,-1,1},PlotPoints->{24,24},
ViewPoint->{1.300,—2.400,2.000},
Boxed->False,Axes->None]

-Graphics3D~

FIGURE 6.
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EXAMPLE 4.12 (Timelike surface with spacelike axis). Set H(s) = H # 0in (3.16),
(3.22), (3.25) and (3.26). Then we have,

1
X(s, 6) =(m{1 + B2 4+ 2Bsin2Hs}/2 cosh#,

s 1+ Bsin2H 1
f T OSIMILS s {1+ B? 4+ 2Bsin2Hs}!/? sinh9) ,
0

{1 4+ B2+ 2Bsin2Hs}/27"" 2|H|
where B is any constant (cf. Figure 7).
If the constant H is zero, by Theorem 3.1 (iii), then we get the following.

EXAMPLE 4.13 (Maximal surface with lightlike axis). Setd = 1 in (3.27) and (3.29).
Then we have

X(s,t)=(as3+b+s—tzs, —2st, as3+b—s—t2s), a>0.

This surface is an Enneper’s surface of the 2nd kind (cf. Figure 8). Note that the con-
jugate of Enneper’s surface of the 2nd kind is just, after an affine change of coordinates,

x7{H_,B 1(s_,t_J:={ ]
Sqrt[l + B*2 + 2B Sin[2 H s]]/(2Abs[H]) Cosh[t],
Integrate(
(1 + B 8in[2 H u))/sSqrt{l + B*2 + 2B 8in(2 H ull,
{u, 0, s}i,
sqrt(l + B*2 + 2B 8in[2 H s8])/(2Abs[H]) 8inh{t]}
ParametricPlot3D([x7([1,1](s,t]//Evaluate,
(s,—2,2},{t,—l,l},PlotPointa—>(24,2A},
ViewPoint->{1.300,-2.400,2.000},
Boxed->False,Axes~>None]

-Graphics3D-

FIGURE 7.

x8{a ,b_lIls_,t _]:=(a 8*3 + b + 8- 8 tr2,-2 8 ¢,
as*3 +b - 8 - 8 t*2}

ParametricPlot3D[x8([1/3,0]1(s,t]1//Evaluate,
{s,-1.4,1.4),{t,-1.4,1.4)} ,PlotPoints->{24,24},
ViewPoint->{1.612,-2.975,0.040},
Boxed->False,Axes->None]

-Graphics3D-

FIGURE 8.
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Cayley’s ruled surface of 3rd degree studied in affine differential geometry (cf. [7]).

EXAMPLE 4.14 (Timelike minimal surface with lightlike axis). Set§ = —1 in (3.27)
and (3.29). Then we have

X(s,t) = (——as3 - b+s—t?s, —2st, —as> —b—s — tzs), a>0.
This surface is an Enneper’s surface of the 3rd kind (cf. Figure 9).
If the constant H is non-zero, by Theorem 3.1 (iii), then we have
(4.3) h(s) = 8{1/(4H?a) — 1/(4H?s)},

where H(s) = H # 0,50 =0ands; =a # 0.
Therefore we get the following.

EXAMPLE 4.15 (Spacelike surface with lightlike axis). Set § = 1 in (3.27) and (4.3).
Then we have h(s) = 1/(4H?a) — 1/(4H?s). Hence,

X(s, 1) ! ! + 5 —t2s, —2st ! 1 s — t2s
’ = - - y —&ST, - e .
4H2a ~ aHZs ¢ 4H?a  4HZs
This surface is drawn in Figures 10, 11 and 12.
EXAMPLE 4.16 (Timelike surface with lightlike axis). Setd = —1 in (3.27) and (4.3).
Then we have A(s) = —1/(4H2a) + 1/(4H2s). Hence,

X(s,t) = 1 ! + 5 — t2s, —2st 1 - 1 s —t2s
7T \4H2s 4H2q ’ ' 4H2s 4H2q '

This surface is drawn in Figures 13, 14 and 15.

x9{a_,b_)[s_,t_):={(-a 8"3 - b + 8 ~ 8 t*2,-2 8 t,
-a 83 -b - 8 -8 t*2}

ParametricPlot3D[x9(1/3,0](s,t]l//Evaluate,
{s,-1.4,1.4},{t,-1.4,1.4} ,PlotPoints->{24,24},
ViewPoint->{1.612,-2.975,0.040},
Boxed->False,Axes->Nona]

-Graphics3D-

FIGURE 9.
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x10[H_,a ]lis_,t ]:=
{1/(4 a H*2) - 1/(4 s H*2) + 8 - 8 t*2,-2 8 t,
1/(4 a H*2) - 1/(4 8 H*2) - 8 - 8 t*2}
ParametricPlot3D([x10([-100,1/10](s,t]//Evaluate,
{s,-1,1},{t,~-1,1} ,PlotPoints->{20,20},
ViewPoint->{3.047,-1.463,0.159},
Boxed->False,Axes->None]

-Graphics3D-

FIGURE 10 (front view).

ParametricPlot3D[x10[-100,1/10][s,t]//Evaluate, "
{s,-1,1},{t,-1,1},PlotPoints->{20,20},
ViewPoint->{-0.027,-3.384,-0.000},
Boxed->False,Axes->None]

-Graphics3D-
FIGURE 10 (side view).

ParametricPlot3D[x10([-3,1/4][s,t]//Evaluata,
(a,-l,l},(t,-l,l},PlotPoints->{20,20),
ViewPoint->{3.047,-1.463,0.159},
Boxed->False,Axes->None]

-Graphics3D-

FIGURE 11 (front view).
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ParametricPlot3D[x10{~-3,1/4]([s,t]//Evaluate,
(s,-l,l},{t,-l,l},PlotPoints—>{20,20},
ViewPoint—)(-0.027,—3.384,—0.000},
Boxed->False,Axaes->Nonel

-Graphics3D-

FIGURE 11 (side view).

ParametricPlot3D[x10[{-3/2,1/4]1[s,t)//Evaluate,
{s,-1,1},{t,-1,1},PlotPoints->{20,20},
ViewPoint->{3.047,-1.463,0.159},
Boxed->False,Axes->None]

-Graphics3D-

FIGURE 12 (front view).

ParametricPlot3D[x10([-3/2,1/4]1[s,t]//Evaluate,
{s,-1,1},{t,~-1,1},PlotPoints->{20,20},
ViewPoint->{-0.027,-3.384,-0.000},
Boxed->False,Axes->None]

-Graphics3D-

FIGURE 12 (side view).
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x11[H ,a_][ls_,t_}]:=
{1/(4 s H*2) - 1/(4 a H*2) + 8 - 8 t"2,-2 8 t,
1/(4 s H*2) - 1/(4 a H*2) - 8 -8 t"2}
ParametricPlot3D([x11[-100,1/10]([s,t]//Evaluate,
{s,-1,1},{t,-1,1},PlotPoints->{20,20},
ViewPoint->{3.047,-1.463,0.159},
Boxed->False,Axes->None]

-Graphics3D-

FIGURE 13 (front view).

ParametricPlot3D({x11[-100,1/10][s,t]//Evaluate,
{s,-1,1},{(t,-1,1},PlotPoints->{20,20},
ViewPoint->(-0.027,-3.384,-0.000},
Boxed->False,Axes->None]

FIGURE 13 (side view).

ParametricPlot3D([x11(-3,1/4]([s,t]//Evaluate,
{s,-1,1},{t,-1,1)},PlotPoints->{20,20)},
ViewPoint->{3.047,-1.463,0.159},
Boxed->False,Axes->None])

-Graphics3D-

FIGURE 14 (front view).
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ParametricPlot3D(x11[-3,1/4][s,t]//Evaluate,
{s,-1,1},{t,-1,1},PlotPoints->{20,20},
ViewPoint->{-0.027,-3.384,-0.000},
Boxed->False,Axes->None]

-Graphics3D-

FIGURE 14 (side view).

ParametricPlot3D([x11([-3/2,1/4]1[s,t]//Evaluate,
{s,-1,1},{t,-1,1},PlotPoints->{20,20},
ViewPoint->{3.047,-1.463,0.159},
Boxed->False,Axes~->None]

~Graphics3D~

FIGURE 15 (front view).

ParametricPlot3D[x11([-3/2,1/4]([s,t]//Evaluate,
{s,-1,1},{(t,-1,1},PlotPoints->{20,20},
ViewPoint->{-0.027,~3.384,-0.000},
Boxed->False,Axes->Nonel

~Graphics3D~

FIGURE 15 (side view).

495



496 NAOSHI SASAHARA

5. Spacelike helicoidal surfaces in L3.

In Euclidean 3-space, a helicoidal motion is defined as a one-parameter subgroup of the
Euclidean motion group which is a rotation together with a translation in the axis of rotation.
However, in Minkowski 3-space, it is easy to see that a rotation around lightlike axis together
with a translation in the direction of the axis is again a rotation around a lightlike axis. In
Minkowski 3-space helicoidal motions are defined as non-trivial one-parameter subgroup of
Minkowski motion group. The helicoidal motions are classified and explicitly given as follows

[7]:

X cost —sint O X 0
ge{y|=1\|sint <cost O}{y|+ht{0], tekR,
z 0 0 1 z 1
x cosht O sinhr) [x 0
glyl= 0 1 0 yl+htjl], tekR, or
Z sinht O cosht? z 0
2 2 3
t t t
l——= ¢t — \ - —t
* 2 2 x
gly]=] -t 1 t y|+n| 2 , teR,
¢ e t 1+t2 ¢ t3+t
2 2 3

according as the axis [ is timelike, spacelike or lightlike, is called a helicoidal motion g; with
the axis | and pitch h. A helicoidal surface with the axis [ and pitch & is a surface that is
invariant by g,, for all 2. When & = 0, they reduce to surfaces of revolution.

Let f : M — L3 be a spacelike immersion and let U C M be an open set. Assume for
the time being that the intersection of the image f(U) with some plane IT C L3 containing
the line I = z-axis (resp. y-axis or the direction (1, 0, 1)) is a curve which is a graph z = A(p)
(resp. y = A(p) or (x + 2)/2 = A(p)) over the intersection of IT and xy-plane (resp. xz-plane
or the lightlike plane spanned by (1,0, 1) and (1, 0, —1)). If f is invariant by a helicoidal
motion around the axis / with pitch A, the restriction f|y can be written as

(5.1

where

(5.2);

(5.1)s

where

cos @
f(p,p) = | sing

0
1—Nmﬂ>o,‘
cosh ¢

flo,9) = 0

sinhgp O coshg

—sing O P 0
cosp O 0 ) +he ,
0 1/ \\(p) 1

1 -1 (p)?
—hA'(p)

0 sinhg
1 0

—hA'(p)
p2 — K2
0

A(p)
P

>0,

+ ho

p2—h2>0,

0
1],
0
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M) —1 ki (p)

0, p>+hr*>0,
1A' (o) p2+h2> pe+h” > or

(52)s MNP -1>0,

L 9 9 _
2 ¢ 2 Ap) +p 3 Y
S fle, @) = A 1 ¢ 0 +h| ¢ |,
@ @ A(p) —p @3
- 14 2 r
7 ¢ 1t3 3 T

where

4X (p)  —2h) (p)
—2hA(0) 4p?

according as the axis / is timelike, spacelike or lightlike.

(5.2 M(p) >0, >0, p*>0,

LEMMA 5.1. Given a spacelike helicoidal surface of the forms (5.1) and (5.2) there
exists a two-parameter family of spacelike helicoidal surfaces isometric to (5.1) and (5.2).

PROOF. The first fundamental form do? of (5.1) can be written as
(5.3)  do? = (1-p*N(0)*(p? — h)~Ndp® + (p* — k3)(dg — ho) (p)(p? — k)~ 'dp)?,
(5.3)s  do? = (=14+pA"(0)* (0> + k) "Hdp? + (o +h3)(de+hoX (p) (2 +h3) " dp)?,
or
(5.3 do? =N (p)(4 — N (p)h3p~2)dp? + 4p*(de — ho)' (0)(20%)~1dp)?,
where the prime denotes the derivative in p and we have set, for definiteness, # = hg in (5.1)—
(5.2). We introduce new parameters (s, ¢) in (5.1) by functions s = s(p, @), t = t(p, ) that
satisfy
ds = (1 = p*A'(p)*(0* — h§)~H/2dp
dt = dg — ho)'(0)(p*> — h§)"'dp,

ds = (=1+ p*}(0)*(p* + h) =1 2dp
dt =dp +hN(0)(p* +h3)"'dp,  or

(5.4); | [

(5.4)s [

ds = (X' ()4 — N (p)hgp~2)2dp
dt = dg — hoX' (p)(2p*)"'dp .

Notice that the Jacobian d(s, t) /3(p, ¢) is nonzero and that (s, ¢) is a natural parametriza-
tionon U C M. By setting

(5.4) {

(5.5) U(s) = (0*(s) — hY)'/?,
(5.5)s U(s) = (p*(s) + h)V?,  or
(5.5 U(s) =2p(s).

we can write, in the natural parametrization, do? = ds? + U%(s)dr>.
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We are now reduced to showing that, given a function U = U (s), we can find functions
p, A and ¢ of s and ¢ that satisfy

(5.6); ds? = dp? — p%(p? — h)71dA?,

(5.7 Udt = £(p? — h?)/2(dp — h(p* — hH)~'d}),

(5.6)s ds? = —dp? + p*(p* + h?)~1d)?,

(5.7)s Udt = (p* + h2)V2(dp + h(p? + h?)~1dr), or
(5.6) ds? = (4dp — h2p~2d))dA,

5.7 Udt = £2p(de — h(2p*)~1dAr),

for an arbitrary constant h.
We first observe, from (5.6), that p and A do not depend on ¢. Then, from (5.7), we obtain

(3¢ h d\
los ~ p2—n? ds

58 dp 2 32\~1)2

-5t—=iU(p — h%) =x1/m,

[ dp h di

(5.8) ) as - p2+h2 ds

’ 3¢ _ 2 2v=1/2 _

Lgt—_:i:U(p + h°) =zx1/m, or
(09 _ h dA

(58)[ ) gs 2p2 ds
L% = +UQRp)"! = £1/m,

where m is a constant.
Therefore we can write (5.7) as

(5.9); do = +m~ldt + h(mU)~2dA,
(5.9)s dg = £m~ldt — h(mU)™2dxr, or
(5.9); do = tm~'dt + 2h(mU)~2dA.

Now, from (5.8), it follows that
(5.10); p =m2UUm2U? + h?)~1/2,
(5.10); p=m*UUm2U? —h?)~1/2,  or
(5.10); p = -;-mz'f,

where dot denotes the derivative in s.
From (5.6) and (5.10) we obtain

(5.11), d) = +(m2U2(m202% — 1) — B»)12(m?2U2 + h?)~'mUds,
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(5.11), d)r = £mM2U2(m20?% + 1) — BHV2(m2U? — h?)~'mUds, or
3772772 4rr2r72 _ n211/2
u<U 4 .
5.11); dr=2 +2’"U{4’:2U U/d =R} " i mbv20%/a—n?>o0.
It follows from (5.8), (5.10) and (5.11) that the spacelike helicoidal surface (5.1), where
P, ¢ and A are given by

'p — (m2u2 + h2)1/2

(m2U?*(m?*U? — 1) — k)12
(5.12); {¢= i"fd’ih/ mU(m2U2+h2) @,
(mM2U%(m2U? — 1) — h2)1/2
4= f m2U? + h2 muds,
p — (m2u2 _ h2)1/2,
1 (m?*U2(m*U? + 1) — h?)1/2
(5.12); o == /d’ q:hf U =2
202(m202 + 1) — h2)1/2
A=if(mU(m2(Z]2+,1)2 ) mUds , or
C 1
p= —mU
m2U U2 4172172 74 — K2)1/2
(5.12); < ﬂ:—fd +/ = :i:2(m2r(r{hU Bas.
m U0 + 2mU (m*U20%/4 — )2

’

4h?

are all isometric with the first fundamental form given by do? = ds? + U?dt?. Thus there
are essentially two parameters in the family described by (5.12). This proves Lemma 5.1.

REMARK 5.1. The family (5.12) contains the surface we started with for m = 1,
h = hg. In particular, Lemma 5.1 asserts the existence of a two-parameter family of spacelike
helicoidal surfaces isometric to a given spacelike surface of revolution (m = 1, A = 0). Thus
we have proved that the associated family of a spacelike surface of revolution with constant
mean curvature is made up by spacelike helicoidal surfaces with constant mean curvature.

6. Spacelike helicoidal surfaces with constant mean curvature in L>.

A spacelike surface of family (5.12) is determined by giving a function U (s) and constant
h. For convenience, let us denote it by [U, m, h]. In this section we shall study spacelike
helicoidal surface [U, m, h] of constant mean curvature with non lightlike axis.

LEMMA 6.1 A spacelike helicoidal surface [U, m, h] with non lightlike axis has con-
stant mean curvature H if and only if U (s) satisfies the equation

(6.1); m2UU + m2U? — 1 = 2Hm2U2(m?U0? - 1) = h)1/2,  or
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(6.1)s —m2UU — m2U? — 1 = 2Hm2U?(m?U? + 1) — h?)1/2,

PROOF. We choose an orthonormal frame {e1, ez, e3} by setting ey = fs, e2 = fi/U
and e3 = e X e32. Note that (e1, e2, e3) = 1.
We obtain from (5.1) and (5.8) that

(6 2) (ﬁt’ .ft, fs) = :sz)‘m—3

- (fis» for f5) = (Bp? — 9Ap?)m=2 = hm~2, or
(6.2) (fers fos f5) = :I:pz)"m—3
- (.ftS9 'ft’ fS) = (hpz + ¢Ap2)m—2 = '—hm_2 ’

where (-, -, -) denotes the determinant of the enclosed vectors and dots denote derivatives in
s. It follows that

hyy = :i:pzim—3U—3
(6.3), —2r1—2
hi2 =hy1 = —-hm—“U™~°, or
h22 = q:pzim_3U—3
(6.3); 212
hi2 =hyy =hm—<U"~.
Furthermore, since the Gaussian curvature K is easily seen tobe K = —U /U, we obtain
that
(6.4); hiy = 2W*m WU + m3U0)(0%4)~!,  or
(6.4)s ki = FR2m~ U + m3U20)(p24) 1.

Finally, since 2H = hj; + h22, we obtain the equation (6.1), and this proves Lemma 6.1.
The equation (6.1) is easily integrated if we make the changes of variables
[x =mU

6.5
() y=2GE -1 —m)12, o

6.5 x =mU
s y=@&2@E2+1) — hH)H/2,

Then (6.1) becomes

(6.6), y=2Hxx, or
(6.6)s y=—2Hxx,

an integral of which is

6.7) y=Hx?+a, or
(6.7)s y=—Hx?+a,

where a is a constant.
By assuming H # 0 and returning to the variable x, we obtain
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(6.8); 22 = ((Hx?+a)?* +x2+h?/x?, or
(6.8)s %2 = ((Hx* — a)? — x> + h?)/x?,

which can be integrated by z = x? to transform it into

-1/2

+a?+h? dz = 2ds, or

2 2
6.9), (Hz + l_ifl’l’ﬂ) _(d+2Ha)

2H 4H?

—-1/2
2Ha +1\?> (QHa+ 1)?
(6.9 I(Hz—za—;) —(—z“H—t—)—+a2+h2} dz =2ds.

Since z = m2U? we finally arrive at
exp(2H (2s + b)) + 2Ha + 1)?/(4H?) —a®> —h?> 2Ha +1

6.10 Us)? ==+ — ,

©.10)  U(s) 2Hm? exp(H (25 + b)) 202m?
expQH(2s + b)) + QHa + 1)?/(4H*) —a®> —h?> 2Ha+1

6.10 U(s)? =+ ,

€10, Uls) 2Hm? exp(H (2 + b)) t 2 HIm?

where b is a constant, that yields a two-parameter family of functions Uy, such that [Ugp, m, h]
is a spacelike helicoidal surface with constant mean curvature H.
Therefore we have proved the following.

THEOREM 6.1 (spacelike helicoidal surfaces in L3 with none lightlike axis). The space-
like helicoidal surfaces with non lightlike axis of the forms (5.1) and (5.2) that have constant
mean curvature H # O constitute a four-parameter family with parameters a, b, m and h
and are given in a natural parametrization if we replace p, ¢ and A in (5.1) by their values
obtained by (5.12) and (6.10).
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