TOKYO J. MATH. Vol. 23, No. 2, 2000

Deformation of Current Lie Algebra with Type Euclidean Group

Faouzi AMMAR

Universite de Sfax (Communicated by Y. Maeda)

Introduction.

Let E be a vector space of dimension n, we note \langle , \rangle the non degenerate bilinear, symmetric form and the Lie algebra of orthogonal group

$$\theta(E) = \{ M \in M_n(K) / \langle MX, Y \rangle + \langle X, MY \rangle = 0; \forall X, Y \in E \}.$$

There is an isomorphism between $\theta(E)$ and $\wedge^2 E$ (see section 2).

We consider $\mathfrak{g} = \theta(E) | \times E$ the semi direct product of $\theta(E)$ by E with Lie group G and \mathfrak{g}_F the current Lie algebra over a smooth manifold M with type G.

We note $H_{loc}(\mathfrak{g}_F, \mathfrak{g}_F)$ the cohomology of the Chevalley local cochains of the adjoint representation of \mathfrak{g}_F .

Our main purpose in this paper is to compute the second group of local cohomology of g_F and determine the local deformations associated to it.

1. Some notation and definitions.

Let $m = \dim M$, we denote by $\mathfrak{g}_{\infty}(m)$ the Lie algebra of formal power series in m indeterminates t^1, \dots, t^m with coefficients in \mathfrak{g} . We denote by $\sum_{\alpha} t^{\alpha} x_{\alpha}$ a generic element of $\mathfrak{g}_{\infty}(m)$; here $\alpha = (\alpha_1, \dots, \alpha_m) \in \mathbb{N}^m$ is a multi-index, t^{α} is the monomial $(t^1)^{\alpha_1} \cdots (t^m)^{\alpha_m}$, we denote by $|\alpha|$ the weight of α , let $|\alpha| = \sum_{i=1}^m \alpha_i$.

The adjoint representation of g induces a representation $(\sum_{\alpha} t^{\alpha} x_{\alpha}) \rightarrow ad_{x_{\alpha}}$.

For multi-indices $\alpha_1, \dots, \alpha_p$, we define the $(\alpha_1, \dots, \alpha_p)$ component of a g-valued p-cochain C on $\mathfrak{g}_{\infty}(m)$ to be the p-linear map from \mathfrak{g}^p into \mathfrak{g} :

$$C_{\alpha_1\cdots\alpha_p}(x_1,\cdots,x_p)=C(t^{\alpha_1}x_1,\cdots,t^{\alpha_p}x_p).$$

The cochain C is said to be homogeneous of weight k if $\sum_{i=1}^{p} |\alpha_i| \neq k \Rightarrow C_{\alpha_1 \cdots \alpha_p} = 0$. Denote by $\bar{\mathfrak{g}}_{\infty}(m)$ the ideal of formal power series in m indeterminates, without constant term and with coefficient in g. The space of homogeneous g-valued cochains of order k on

Received June 1, 1999 Revised September 23, 1999

FAOUZI AMMAR

 $\bar{\mathfrak{g}}_{\infty}(m)$ is denoted by $\wedge_k(\mathfrak{g}_{\infty}(m),\mathfrak{g})$. It is a subcomplex of the Chevalley of the representation of $\mathfrak{g}_{\infty}(m)$ on \mathfrak{g} .

Observe that the space of continuous g-valued cochains on $\mathfrak{g}_{\infty}(m)$ (with respect to the *m*-adic topology of $\mathfrak{g}_{\infty}(m)$) is $\wedge_c(\mathfrak{g}_{\infty}(m), \mathfrak{g}) = \bigoplus_{k \ge 0} \wedge_k(\mathfrak{g}_{\infty}(m), \mathfrak{g})$ and that its cohomology simply reads $H_c(\mathfrak{g}_{\infty}(m), \mathfrak{g}) = \bigoplus_{k \ge 0} H(\mathfrak{g}_{\infty}(m), \mathfrak{g})_k$.

Recall that a g_F -valued p-cochain c on g_F is local, if

$$\operatorname{supp}[c(s_1,\cdots,s_p)] \subset \bigcap_{i=1}^{i=p} \operatorname{supp} s_i \quad \text{for all } s_1,\cdots,s_p \in \mathfrak{g}_F,$$

where supp denotes the support.

As easily seen, the space $\wedge_{loc}(\mathfrak{g}_F, \mathfrak{g}_F)$ of local \mathfrak{g}_F -valued cochains on \mathfrak{g}_F is a subcomplex of the Chevalley complex of the adjoint representation of \mathfrak{g}_F . We write $H_{loc}(\mathfrak{g}_F, \mathfrak{g}_F)$ for its cohomology.

P. Lecomte and C. Roger showed that $H_{loc}(\mathfrak{g}_F, \mathfrak{g}_F)$ may be computed in terms of the cohomology of the continuous cochains of $\mathfrak{g}_{\infty}(m)$ on \mathfrak{g} [4].

PROPOSITION 1.1 (P. Lecomte and C. Roger [4]). If the manifold M is parallelizable, then $H_{loc}(\mathfrak{g}_F, \mathfrak{g}_F) = C_{\infty}(M, \mathbb{R}) \otimes H_c(\mathfrak{g}_{\infty}(m), \mathfrak{g})$. We consider in this paper the vector space E of dimension n > 2, the case n = 2 will be studied [2].

2. Computing the space $H^*(\mathfrak{g}_F, \mathfrak{g}_F)$.

The isomorphism between $\theta(E)$ and $\wedge^2 E$ is given by

$$\wedge^2 E \rightarrow \theta(E)$$

 $v \wedge w \rightarrow \phi_{v \wedge w}$ for v and w in E, where $\phi_{v \wedge w}$ is defined by

$$\phi_{v \wedge w}(a) = (\langle w, a \rangle v - \langle v, a \rangle w).$$

This map induces an isomorphism between the Lie algebra $(\theta(E), [,])$ and $(\wedge^2 E, b)$ where [,] is the usual braket of $\theta(E)$ and b is defined by

 $b(v \wedge w, \alpha \wedge \beta) = \langle w, \alpha \rangle v \wedge \beta + \langle v, \beta \rangle w \wedge \alpha - \langle v, \alpha \rangle w \wedge \beta - \langle w, \beta \rangle v \wedge \alpha.$

Let us take some preliminary results.

PROPOSITION 2.1. Let $s : \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ be a bilinear \mathfrak{g} -invariant mapping.

i) If s is symmetric then s = 0.

ii) Assume that s is skew-symmetric then

$$s(e_i, e_j) = ae_i \wedge e_j \quad i, j = 1, \dots, n; \ a \in \mathbb{R} \text{ for all } e_i, e_j \in E$$
$$s(e_i \wedge e_j, e_k) = [e_i \wedge e_j, e_k] \quad i, j, k = 1, \dots, n \text{ for all } e_i, e_j, e_k \in E.$$

PROOF. See [4] for the case $g = \theta(E)$ for the other case see [6].

PROPOSITION 2.2. $H^1(\mathfrak{g}, Hom(\mathfrak{g}, \mathfrak{g})) = 0.$

474

PROOF. From the theorem of Hochshild and Serre [3] we have $H^1(\mathfrak{g}, Hom(\mathfrak{g}, \mathfrak{g})) = Inv_{\mathfrak{g}}H^1(E, Hom(\mathfrak{g}, \mathfrak{g})) = H^1(Inv_{\theta(E)}C^1(E, Hom(\mathfrak{g}, \mathfrak{g})))$ since $\theta(E)$ is semi simple Lie algebra, we identify $C^1(E, Hom(\mathfrak{g}, \mathfrak{g}))$ to the space of bilinear maps from $E \times \mathfrak{g}$ to \mathfrak{g} . Let $C \in Inv_{\theta(E)}C^1(E, Hom(\mathfrak{g}, \mathfrak{g}))$, from the vanishing of the coboundary of C, one easily sees that $H^1(\mathfrak{g}, Hom(\mathfrak{g}, \mathfrak{g}))$ is identically zero. Hence the result follows.

We study the cohomology $H^*(\mathfrak{g}_{\infty}(m), \mathfrak{g})$ and we consider the filtration of $\wedge(\mathfrak{g}_{\infty}(m), \mathfrak{g})$ deduced from the Hochshild-Serre filtration induced on $\wedge(\mathfrak{g}_{\infty}(m), \mathfrak{g})_k$ by the extension:

$$0 \to \overline{\mathfrak{g}}_{\infty}(m) \to \mathfrak{g}_{\infty}(m) \to \mathfrak{g} \to 0.$$

The term of the corresponding spectral sequence reads [3] $E_2 = H(\mathfrak{g}, H(\bar{\mathfrak{g}}_{\infty}(m), \mathfrak{g}))$ and one has following.

PROPOSITION 2.3. $H^2(\mathfrak{g}_{\infty}(m),\mathfrak{g}) = H^2(\mathfrak{g},\mathfrak{g}) \oplus S^2 \mathbb{R}^m$.

PROOF. The E_2 terms of the spectral sequence can be identified as

$$E_2^{o,2} = H^2(\mathfrak{g}, H_c^o(\bar{\mathfrak{g}}_\infty(m), \mathfrak{g})) = H^2(\mathfrak{g}, \mathfrak{g})$$

and $E_2^{1,1} = H^1(\mathfrak{g}, H_c^1(\overline{\mathfrak{g}}_{\infty}(m), \mathfrak{g})) = H^1(\mathfrak{g}, Hom(\mathfrak{g}, \mathfrak{g}) \otimes \mathbb{R}^m)$ this space is identically zero, (see Proposition 2.2). $E_2^{o,2} = H^o(\mathfrak{g}, H^2(\overline{\mathfrak{g}}_{\infty}(m), \mathfrak{g}))_k = 0$ if k > 2 see [1].

If k = 2 we have $Inv_{\mathfrak{g}}H^2(\bar{\mathfrak{g}}_{\infty}(m), \mathfrak{g})_2 = H^2(Inv_{\theta(E)}C^2(\bar{\mathfrak{g}}_{\infty}(m), \mathfrak{g}))$ by semi simplicity again. By Proposition 2.1 the components of a g-invariant 2-cocycle C on $\bar{\mathfrak{g}}_{\infty}(m)$ valued in \mathfrak{g} have the form: $C_{\alpha\beta}(e_i, e_j) = a^{\alpha\beta}e_i \wedge e_j, 1 \leq i < j \leq n$.

While $a^{\alpha\beta}$ are coefficients of a 2-tensor $(a^{\alpha\beta}) \in \wedge^2 \mathbf{R}^m$ one easily shows that the spectral sequence degenerates. Hence the result follows.

Let observe the local cohomology of current Lie algebra. The correspondence between $H_{\text{loc}}(\mathfrak{g}_F,\mathfrak{g}_F)$ and $H_c(\mathfrak{g}_{\infty}(m),\mathfrak{g})$ can be viewed on the space of cochains as

$$I: C^p(\mathfrak{g}_{\infty}(m),\mathfrak{g})\otimes C_{\infty}(M,\mathbf{R})\to C^p(\mathfrak{g}_F,\mathfrak{g}_F).$$

 $I(s \otimes a)(f_1, \dots, f_p)(x) = a(x)s(j_{\infty}f_1(x), \dots, j_{\infty}f_p(x)), i = 1, \dots, p$, where $j_{\infty}f_i(x)$ is the jets at x of f_i .

From the relation between $H_{\text{loc}}(\mathfrak{g}_F, \mathfrak{g}_F)$ and $H_c(\mathfrak{g}_{\infty}(m), \mathfrak{g})$ we have

THEOREM 2.4. $H^2_{loc}(\mathfrak{g}_F,\mathfrak{g}_F) = H^2(\mathfrak{g},\mathfrak{g}) \otimes C^{\infty}(M) \oplus S^2(M).$

Let $S^2(M)$ the space of 2-contravariant-symmetric tensor field on M. Let $s \in S^2(M)$. As is easily verified, there is a unique bilinear local skew symmetric map $C_s : \mathfrak{g}_F \times \mathfrak{g}_F \to \mathfrak{g}_F$ such that on each chart $(U, (x^1, \dots, x^m))$ of M, one has

$$C_{s}(f,g)(x) = \sum_{\alpha,\beta} S^{\alpha\beta} C(\mathfrak{d}_{\alpha} f(x),\mathfrak{d}_{\beta} g(x)).$$

3. Construction of deformations.

a) Since $H^2(\mathfrak{g}, \mathfrak{g})$ is included in $H^2_{loc}(\mathfrak{g}_F, \mathfrak{g}_F)$ the deformations of \mathfrak{g} can be understood as deformation of order 0 of \mathfrak{g}_F .

475

FAOUZI AMMAR

b) Let studied the deformation corresponding to the tensors space S^2M .

Let C_s the cocycle determined by an arbitrary 2-tensor of $S^2 M$. By the special nature of the invariant C (see the proof of the Proposition 2.3), we show that the bracket of Richardson-Nijenhuis [5] of C_s by it self is zero $[|C_s, C_s|] = 0$.

Every 2-cocycle C_s is indeed a formal deformation of order 1 (called true deformation) of the current Lie algebras.

$$[f, g]_t(x) = [f, g](x) + tC_s(f(x), g(x)).$$

ACKNOWLEDGMENTS. I thank Professor Claude Roger for several illuminating discussions.

References

- [1] F. AMMAR, Déformation de l'algèbre des courants associée au groupe de Poincaré, preprint.
- [2] F. AMMAR, Déformation de l'algèbre des courants associée au groupe euclidien E(2), preprint.
- [3] G. HOCHSCHILD and J. P. SERRE, Cohomology of Lie algebras, Ann. of Math. 57 (1953), 91–603.
- [4] B. P. A. LECOMTE et C. ROGER, Rigidity of current Lie algebras of complex simple type, J. London Math. Soc. 37 (1988), 232-240.
- [5] A. NIJENHUIS and R. RICHARDSON, Deformation of Lie algebra structures, J. Math. Mech. 17 (1967), 39– 105.
- [6] H. WEYL, *The classical groups, their invariants and representations*, Princeton Math. Series, Princeton Univ. Press (1946).

Present Address: DEPARTMENT DE MATHÉMATIQUES, FACULTÉ DES SCIENCES, UNIVERSITE DE SFAX, 3038 SFAX, TUNISIE.