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1. Imntroduction.

Let M = (M, J, g) be an almost Hermitian manifold and U (M) the unit tangent bundle
of M. Then the holomorphic sectional curvature H = H(x) (x € U(M)) can be regarded
as a differentiable function on U (M). If the function H is constant along each fiber, then M
is called a space of pointwise constant holomorphic sectional curvature. Especially, if H is
constant on the whole of U (M), then M is called a space of constant holomorphic sectional
curvature. |

An almost Hermitian manifold M = (M, J, g) is called an almost Kihler manifold if its
Kahler form £2 is closed, or equivalently,

9(Vx )Y, Z) + g(Vy NN Z, X) + g((Vz))X,Y) =0,

for all smooth vector fields X, Y, Z on M.

Concerning the integrability of the almost complex structure of an almost Kdhler mani-
fold, S. I. Goldberg [2] conjectured that the almost complex structure of a compact Einstein
almost Kahler manifold is integrable (and the manifold is necessarily Kihler). In connection
with this conjecture, P. Nurowski and M. Przanowski [4] recently constructed a non-compact
example of a strictly almost Kahler, Ricci-flat manifold. This is also a space of pointwise
positive constant holomorphic sectional curvature (see also [6]).

On one hand, the author [5, 6] investigated some properties on almost Kahler 4-manifolds
of pointwise constant holomorphic sectional curvature.

In the present paper, we shall show that there exists an example of almost Kihler
manifold of pointwise negative constant holomorphic sectional curvature. Our example
is also weakly *-Einstein, but not Einstein. The example is constructed by the framework
of Nurowski and Przanowski [4]. We also show that there are other examples of weakly *-
Einstein almost Kahler manifolds. But we cannot construct a strictly almost Kahler Einstein
manifold in our case.
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Our example shows that the theorem of Schur does not hold for the class of 4-dimensional
almost Kahler manifolds (see [3]). And it shows that an almost Kahler manifold of point-
wise constant holomorphic sectional curvature is not always Einstein. The example is 4-
dimensional and non-compact. We do not know whether or not there exist arbitrary dimen-
sional, compact almost Kahler manifolds which are of (pointwise) constant holomorphic sec-
tional curvature.

In §2, after preparing some definitions and notations, we shall give a curvature expres-
sion for a 4-dimensional almost Kahler manifold of pointwise constant holomorphic sectional
curvature by using the expressions A;; introduced by J. T. Cho and K. Sekigawa [1]. §3 is
devoted to the construction of an example. We begin with the Nurowski-Przanowski lemma.
By calculating curvature tensors, we derive conditions for our almost Kdhler manifold to be
of pointwise constant holomorphic sectional curvature. Taking account of these conditions,
we shall obtain an example (Theorem 3.6, Theorem 3.7).

The author wishes to express his hearty thanks to Prof. K. Sekigawa for his valuable
suggestions. The author also would like to express his thanks to the referee for his valuable
advice.

2. Preliminaries.

Let M = (M, J, g) be an m(= 2n)-dimensional almost Hermitian manifold with an
almost Hermitian structure (J, g). We denote by £2 and N the Kihler form and the Nijenhuis
tensor of M defined respectively by 2(X,Y) = ¢g(X,JY) and N(X,Y) = [JX,JY] —
(X, Y] -JJX,Y] - J[X,JY] for X,Y € X(M), where X(M) is the Lie algebra of all
smooth vector fields on M. The Nijenhuis tensor N satisfies

NUX,Y)=NX,JY)=-IJN(X,Y), X, YeXM).

Further we denote by V, R = (R,-jk’), p = (pij), T, p* = (p;"j) and t* the Riemannian
connection, the Riemannian curvature tensor, the Ricci tensor, the scalar curvature, the Ricci
*-tensor and the *-scalar curvature of M, respectively:

R(X,Y)Z =[Vx,VylZ — Vix.vZ,
R(X,Y,Z,W)=g(R(X,Y)Z, W),
p(x, y) = trace of [z = R(z, x)y],
T = trace of p,
p*(x,y) =trace of [z — R(x, J2)Jy],

t* = trace of p*,
where X,Y,Z, W € X(M),x,y,z € T,M, p € M. The Ricci *-tensor p* satisfies

PrUX, JY)=p*"Y,X), X,YeXM).
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An almost Hermitian manifold M is called a weakly *-Einstein manifold if it satisfies
p* = A*g for some function A* on M. In particular, if A* is constant on M, then M is called
a x-Einstein manifold.

Now we assume that M = (M, J, g) is an almost Kdhler manifold. Then we have

2.1 29((Vx )Y, Z) = g(JX,N(¥, Z)),

1 1
(22) T -t = —SIVIIP = 2N
In the sequel, we adopt the following notational convention: for an orthonormal basis
{ei} of a tangent space T, M, we put
Jij = 9(Jei, ej), ViJjxk = g((Ve; Jej, ex)
Nijxk = g(ei, N(ej,ex)),  Riju = R(ei, ej, ek, er),
ViJjk = 9((Vye; Nej, ex),  Nij = g(Jei, N(ej, er)),
ij_'k = g(Jei, N(Jej, ex)), Rijlzl_ = R(ei,ej, Jex, Je)), etc.
Then it is easy to see that '
ViJjr + V;ij =0,
Vidjk = Vi-l]'k = V,'Jj,; ,
Nijx = —2ViJjr, 2ViJj = Tk
Next, we consider a four-dimensional almost Kéahler manifold M. We set
(2.3)  Ajj =g(ei, (Ve;N)(er, €3)) = VN3,
for a unitary basis {e;} = {e1, e2 = Jey, e3,e4 = Je3} of T,M, p € M. We note that
Aij — Aji = —2(Rij13 — Rij2a) .
By using these A;;, J. T. Cho and K. Sekigawa obtained the following characterization of
almost Kéhler manifolds of pointwise constant holomorphic sectional curvature:

PROPOSITION 2.1 ([1]). Let M be a 4-dimensional almost Kiihler‘manifold of point-
wise constant holomorphic sectional curvature ¢ = c(p) (p € M). Then

R1212 = R3434 = —c(p),

Ry = —c(2p) - %(f* -1),

Rizs = —C(f) + 3i2(r* — )+ %(A13 — As1 — Au+ Ag),
Rz = # + %(t* -7+ ‘;'(AB — A3) — A + A2),
Ri313 = -—C(f) + %(t* -7)— %(AB — A31) — %(Azzx — Ag),
Ris14 = —-# + 35—2(1* —-T)— %(AB + Ag) — %(A31 + Az4),
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c 5 1 3

R2323 = -—%—)2 + 35(1'* —-17)+ g(A31 + Axp) + §(A13 + As),
c 1 3 1

R4 = — (f) + 3—2(1* —7)+ -8-(A24 —Agp)+ §(A13 — Az1),

R1334 = —R2434 = —-‘II(A34 — Ag3),
R1213 = —Ri224 = —%(An - A21),
Ri1434 = Rp33a = -—%(Ass + A4),
Ri214 = Ri223 = —%(An + A2),
Rz = %(A14‘+ A41 + A3z —3A23),
R34 = %(Au + A4 + A2z — 3A32),
R1314 = f-;-(Aza + A3 + A1s — 3A41),

1
Riszs = —§(A23 + A3z + Aa1 — 3A14),

for any unitary basis {e;} of T, M at each point p € M.

3. An example.

In this section, we construct an example of a 4-dimensional strictly almost Kahler mani-
fold of pointwise constant holomorphic sectional curvature.

Let M be an open set of R4, and let (x), x2, x3, x4) be the Euclidean coordinates on M.
We put

zZ1=x1+vV-1x2, zZ2=x3++/—1x4.

Let f be a non-zero real function and & be a complex function on M. Then P. Nurowski and
M. Przanowski proved the following

LEMMA 3.1 ([4]). Let(z1, 21, 22, 22) be coordinates on M. Then for each value of the
real constant ¢ € [0, 21), the metric
- - 2 -
9=2f%(dz1 + hdzy)(dz1 + hdZ2) + F2dz2dz2
and the almost complex structure
Jt _ =2Re I:«/——le‘/"—l"’ fidz1 + hdz22) ® i—}_li ——idzz®—a—}
V-1 8z2 37 Z

define an almost Kahler structure on M.
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When ¢ = 0, the Riemannian metric g = (g;;) and the almost complex structure J1+ =
(Jl-]) in the above Lemma 3.1 are given with respect to the real coordinates (x1, x2, x3, x4) by

70 fPu ~f*v
0 f? V&L f2u
GO @p=2| s o LEEd 0 ,
~fv  fu 0 ﬂmhw%+%
—f2U f2u 0 _f2
f2u f2v _f2 0
32 )= 0 f2(u2+v2)+3}5 —f - |,
f2(u2+v2)+% 0 ~fu f

where u and v are the real and imaginary part of the complex function h, respectively. It is
easy to see that (J1+ , @) is an almost Kahler structure.

In the present paper, for the sake of simplicity, we shall consider the case where u = v =
0,ie.,h =0, and we put J = Jl+. We define a unitary frame field {e;, e2 = Jej, e3,e4 =
Jez} on M by

1 9 f o
(3.3) j= =l
V2 f 9x1 2 /2 0x4
1 9 f o
= ——— 4 = ——==——.
V2foxy’ ¢ V2 3x3
With respect to this unitary frame {e;};=1,2,3,4, we have
(34
s f o f if 9 f
Ve, e1 = ey — ez + —es, V,er=———ep,
%t : __af
Vele3 = »\/ifzel ’ Vele4 = -'ﬁel ’
o f hrf , hf , S
Ve, €1 = — ey, Ve, e3 = 1+ es4,
“ V2 f? KV TRV, TN
_ O&f _of
Ve,e3 = — Jaf? e, Ve,e4 = ﬁez,
_of daf
Veser = ﬁfzea, Vesez = —ﬁes,
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af % f 3 f 3 f

Vv = — e1+ —er+ —e4, Ve, e4=———¢e3,
Ve4el = —J%;Z 4, Ve4e2 = %e4 ,
o f _ of a4f 32f

where we denote 9; f = %. From (3.4) and by a straightforward calculatlon, we obtain
3.5)

V1113=%, V1114=j—;—j:2, V1-’23=%§—2, Vﬂzr‘*%
ViJ3 = —% ViJay = —;-2—]{2 , ViJa = —53;2 » Vidaa = %
Va3 = j%f,z , VoJis = —?j/—; Vol = —%—3/_-]2: Voo = -%%,
Va3 = —%1;—2, VaJz = Eig VoJy = % Vodaz = 822_1:2
V3Ji3 = —% V3Jis = —j%;z » V3= —%;—2, ViJoy = %4/‘%’
ViJ3 = 847/;, Vi3 = j%iz » V3dy = —j%—f& V3Jay = —%—,
VaJ13 —3%;2 » Vadiu= % , VaJaz = %—-;:, Vadoy = —;—;% ,
Val3 = j—;—;z ; Vi = —% s Valy = —% » V4l = _3%;2 ,
ViJjk =0 (otherwise).
By (2.1) and (3.5), we then have

3.6)
N1z = —Ji822f , N3 =+2%f, Naz= Jifilf . Naiz=—28f,
Niia=~28f, Nowu= £2;2_2_f_ . Nsa=—+20f, Naas= —J;z;lf
Nz =V2%f, Naz= % N33 = —~284f, Nazz= —\/iazlf ;
Nig = JiiZf . Naa=—+28f, Naa= —-—\/—ifi;f , Naga =204f,

Nijx =0 (otherwise).

By (3.5), (3.6), we see that (M, J, g) is non-Kihlerian if f is not constant. Furthermore,
from (2.3) and (3.6), we get
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_ 018 f | 301fdf

3.7 Ap = 73 rZae 03fosf,
8204f  201ff 200f0uf
A = -~ :
12 7 + 72 72
Wdf @GP | 2@/
Ap=——F5 - —g—+ = - 3%,
A = 08 f hfdaf afdsf
f f? 2
Ay — 0103 f  202f04f
f 2
Apy = — 3304 f + 9‘—%1 — o fouf,
Aps — N&Bf  faf hfHf
f f? 2
2
tas = —fortn + 4 @2,
ndf  2@1)P | B2f)?
Az =~ f; - }4 + ;4 + @ f)?,
gy o 08 01S0uf | BafOsf
f f? 2
010 301 f0
Ass = 1f§f _ 1}{42f oSS,
Ay = N0f  201f03f 20,f04f
METTF TR T T
Ay = 0af  8ifoaf Safdsf
TT N
(31/)?

Ay = f34daf — 7~ = 33 )?%,
_%daf + 201 fo3 f

Agz =

f 2
Asg = f0304f — a“;—?f +03f0f.

From (3.4), the components of Riemannian curvature tensor with respect to the unitary
frame {e;};—1,2,3,4 are given by the following expressions:
gidnf | f 3@ @) B Baf)?

2p3 TR T T 2 T2

(3.8) Ri212 = —
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ar)? 3 2 (@) (84f)?
om0y Loy QL 3G @ G
R1234 =0,
Ri324 =0,
Ri423 =0,
oS | Bdf @) Bf)? | B3 (Baf)?
Rizi3 = 27 + Y Y Sy t—=—t—
3,0 3 (81 f)? 2 (33f)F  (84f)?
Risia = ———-—;flf + §3333f+ 5( lfJ:) - (622]{4) +4 32f) - 42f) ;
d 2 3 2 2 p) 2
Ry323 = —6;(;23]? + §8434f— (21;4) + 5(3’}{) - (332f) + ( 42f) ,
f f @ )2 Bf)? @)  (84f)?
Raa24 = —53333f - 33434f+ 2 £ + 2 £ + =+,
0103 f
Ri334 = 2f
Roana — 0% f hfdf
__%uf
Ri213 = 2f
0 01f0
Ri24 = — 123;f + 1;23f s
0102 f 01 fof
Ri434 = — 27 +2 74
R334 = —%3334f — 33 foaf,
Ri214 = §3334f +33f04f,
0102 f 01 forf
Ri223 = ;f3 -2 1f4 ,
__0104f
Ry323 = 2 f
Ronos = QABf hfdf
2324 = 2 f 7z
_ _0df
Ri314 = _2f ,
R _0104f O1f0af
1424 = - .

2f f?
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Now, we use the following notation:

A f:=0101f +020:f, Azf :=0303f +03404f,
ligrad f112 := 31.)* + (32)%, llgrada f1I? := (33 £)% + (84 1)2.

Then, by (3.8), we obtain easily

5@ [ 3@ 1

_0df Hdhf f, . 2 - 2
(39 o= T S d2f =5 T3 5 lgrada f11%,
Mf o f 3 llgradi FI2  (3f)?  3(34f)?
922=—2F+5(3383f—3434f)—§ f4 + 2 - 2 )
_ dif | %S f 301/ 5@f)? 1 2
p=-m o gl — 5 - 5 llgrada £,
Af f 3 llgradi FII2  3@31)% | (34f)?
44 = EF“E(3333f—3434f)—5 Iz - > + >
_O1fosf
==
o f oforf
P13 = 23 -4 2
01 f0
02f0sf
3 f2
024 =—f0304f —203f04f,
hfof
34 = f2
‘ d 2
(3.10) =2 - ra0r 4B _pgnaar 2,
. _ . _O10if f 301/ (2% @) (Baf)?
(3.11) P11=P22=—;713——’2—3434f—§ Iz + 27 + T T
. . 0®f f @1 3@@2f)? (@3f)?  (3af)?
P33=P44=—2—}.'3——~2-3333f+ 254 —5 Iz i + >

PI2 = P21 = P3g = P33 =0,
« _010f fhf f

Pl3 = pip = 273 2 i —2-3334f — K fouf,
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« __x _013f 00af
Pla= =P = 2f 2F
« _ 0Bf 0fdf 0204f  Bfdaf

p;S = —Pg = 2f - f2 2f + f2 ’
8,0 9
osa =05 = 3 —22 L2 Lo —safaur.
A d; f11?
(3.12) = f;{ — flof - 2"graf;f" .

By Proposition 2.1, and using (3.7), (3.8), we have the following
LEMMA 3.2. Let

M = {(x1, x2, x3, x4) € R*| £ (x1, x2, x3, x4) # O},

f2 0 0 O
0 f2 0 0
1
g=(gj)=2] 0 O 7z 0 ,
1
0O 0 0 —
f2
0 0 0 —f2
0 0 —f2 o0
iy — 1
J=])= 0 I 0 0
1
7 0 0 0

Then the almost Kihler manifold (M, J, g) is of pointwise constant holomorphic sectional
curvature ¢ = c( p) if and only if

(3.13) TSRO0 f — 0t f) + L @0nf — 2s0up)

= 'F{(alf)z — 320)%) = {331)* — (34 1)*},
(3.14) c= —%(1:* —7) = —w - %llgradzfllz,
3.15) Af_lf _fhrf = M ~ llgrada £ 12,
(3.16) 3103 f + 0204 f = 232ffa“f
(3.17) 3133f+3234f=281fj?3f,
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8lﬁ§f — £330 f_48“;82f +203f34f

- (3.18)

1
(3.19) 0104 f — 0203 f = ?(31f34f —hfosf).

By (3.9), we have the following

LEMMA 3.3. The almost Kdhler manifold (M, J, g) in Lemma 3.2 is Einstein if and
only if

(3.20) 2;3§f + 0303 f = f4{ —(@1 1) + 3327 — (33£)* + (3af)?,
4 R
(3.21) 3o f —hdf = 7{(alf)2 — (&)%),
(3.22) F(3383f — 840af) = —2(85 )% + 2(84f)?,
(3.23) 010af =0,
4
(3.24) ‘8182f = 781f82f,
(3.25) d103f =0,
(3.26) 004f =0,
(3.27) - f0304f = —=283f04f,
(3.28) 0203 f =0.

By (3.11), we have the following

LEMMA 3.4. The almost Kdahler manifold (M, J, g) in Lemma 3.2 is weakly *-Einstein
if and only if

(3.29) f3 @01 f — %) + L (30 f — 2434 )

== 2@ = B = (B 1) — @a ),

(3.30) alﬁzf — 30 f = 412 lj;azf +285f84f,
(3.31) 0103 f = 004 f,

2
(3.32) 0103 f — 304 f = }-(31f33f —02f04f).

By Lemma 3.3, we get the following
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PROPOSITION 3.5. Ifthe almost Kdhler manifold (M, J, g) in Lemma 3.2 is Einstein,
then (M, J, g) is Kdhler.

PROOF. First, we show that if f is a function of two variables x;, x2 or x3, x4, then f
is constant. Suppose that f is a function of x1, x2; f = f(x1, x2). Then the conditions in
Lemma 3.3 reduce to

(3.33) ' fadaf =—@11)*+30@20)%,
(3.34) | fadf =3@11)? - (321)?,
(3.35) foidf =401fof.

Differentiating (3.33) with respect to x; yields

@1 /)3 f + f3133f = =281 1)3131 f + 6(821)d132f .
By using (3.33), (3.34) and (3.35), we have
(3.36) 20182 f = =501 1) + 2331 /) 321)>.

On one hand, differentiating (3.35) with respect to x3, and making use of (3.33) and (3.35),
we have

(3.37) 20192 f = —4(31 1) + 2431 )32 1)*.

From (3.36) and (3.37), we obtain

(3.38) (31.f)llgrad; f1|*> = 0.
Similarly, differentiating (3.34) with respect to x2, we have

(3.39) F2olf =231 1) f =53 f)°.

Differentiating (3.35) with respect to x;, we have

(3.40) fro20,f =241 )20 f —4(8.f)°.

From (3.39) and (3.40), we get

(3.41) (®)llgrad; f1I> = 0.

By virtue of (3.38) and (3.41), we obtain

llgrad; fI = 0.

This shows that f must be constant.

Next, let f be a function of x3, x4; f = f(x3, x4). Then the conditions in Lemma 3.3
reduce to ’

(3.42) fB5f =—@1)%+ @af)?,
(3.43) f34daf = (B3 )2 — (34 1)?,

(3.44) ' f0304f = —203fuf .
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By the same argument as above, we obtain
lgrad2 £11° = 0

and it follows that f is constant.

We now proceed to complete the proof. By (3.23) and (3.26), we can see that 94 f is a
function of x3 and x4. Similarly, by (3.25), (3.28), 33 f is also a function of x3, x4. Assume
that there exists a point p € M such that 9303 f — 9404 f # O or 3394 f # 0 at p. Then,
by (3.22), (3.27), f is a function of only two variables x3, x4 on some neighborhood of p. It
follows that f is constant around p, but this contradicts with the assumption.

Thus 3393 f — 0494 f = 0 and 3394 f = 0. Then, by (3.22) and (3.27), we have

(31)? = Baf)? and 83fdsf =0.

This implies that 33 f = 94 f = 0 and f is a function of two variables x1, x2. Therefore we
can conclude that f is a constant function, and VJ = 0 by (3.5). O

Now, we provide an almost Kahler structure (J, g) which has pointwise constant holo-
morphic sectional curvature. First, we assume that f is a function of two variables x1, x7;
f = f(x1, x2). Then (3.13)—(3.19) reduce to

(3.45) 3101f — Ba0n f = %{(alff — B2,
1, ligradi I

(3.46) c———g(t —‘L')—--—-——-4f4 ,

(3.47) fALf = |lgrad; fII%,

(3.48) fo100f =40, forf .

If we choose f = K (xf + x%)“, where K and « are constants, then it is easy to see that f
satisfies (3.47). Substituting f in (3.45), we obtain « = —1/3. In this case, f also satisfies
(3.48),and c = —(1/9K 2)(xl2 + x%)"l/ 3. Consequently, we obtain the following

THEOREM 3.6. Let
M = {(x1, x2, x3, x4) € R*| (x1, x2) # 0}.

We define a Riemannian metric g and an almost complex structure J on M by

K2(x} + x3)72/3 0 0 0
0 K2(x? +x3)72/3 0 0
- 1
9=2 0 0 =3O + 59?3 0 :

1
0 0 0 L
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Y 0 0 —K2(x? +x3)72/3
0 0 —K2(x? +x3)723 0
- 1
/= 0 2o + x93 0 0 j
1
2+ 0 0 0

where K is a non-zero constant. Then the almost Kdhler manifold (M, J, g) is of pointwise
constant holomorphic sectional curvature with c = —(1/9K 2)(Jc% +x%)_ 13, It is also weakly
x-Einstein, and v = —(4/3K%)(x} + x3)71/3, v* = —(4/9KH)(x? + x3)~1/3.

It should be remarked that the pointwise constant ¢ is negative contrary to the Nurowski-

Przanowski example.

Next, we assume that f is a function of x3, x4; f = f(x3,x4). Then (3.13)-3.19)
reduce to

(3.49) (3303 f — 0404 f) = =23 1)* — (34 1)?},
1 1

(3.50) c=—p@ -1)= —legrad2f||2,

(3.51) fA2f = lgrada f1I%,

(3.52) f0304f = —203foaf .

By the same way, we can easily see that f = L(x% +x§)1/ 3 satisfies (3.49), (3.51) and (3.52).
Therefore we have the following

THEOREM 3.7. Let
M’ = {(x1, x2, X3, x4) € R*| (x3, x4) # O}.

We define a Riemannian metric ¢ and an almost complex structure J' on M’ by

L2(x2 + x2)*/3 0 0 0
0 L2(x3 + x2)*3 0 0
3 4 1
g=2 0 0 — 6} + 2D 0 :
1
0 0 0 ﬁ(xg +x3)~23
0 0 0 —L2(x2 + x2)?/3
0 0 —L2(x3 +xH)*3 0
— 1
J'= 0 303 +xH7P 0 0 :
1
Laded o 0 0

where L is a non-zero constant. Then the almost Kéihler manifold (M', J', ¢) is of pointwise
constant holomorphic sectional curvature with ¢ = —(L? /9) (xg + xz)‘l/ 3. It is also weakly
*-Einstein, and T = —(4L2/3)(x} + x2)~1/3, v* = —(4L2/9)(x2 + x2)~1/3.
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We define a mapping ¢ : M — M’ by
@(x1, X2, x3, x4) = (x3, X4, X1, X2) .

Then it is easy to show that the almost Kéhler manifold (M’, —J’, ¢) is holomorphically
isometric to (M, J, g) in Theorem 3.6, when L? = 1/K 2

Finally, we remark that there exist other examples of weakly *-Einstein almost Kahler
manifolds. For example, we can choose

1/3
f=K(x1+x2)_1/3, f=K(x3-f—.)C4)1/3 and f=K(x3+—x4)
x1 +x2

which all satisfy the conditions in Lemma 3.4, and we have
1 . K?
T K2+ P T 9 v x Y
. K1 4+ x2)? + (x3 + x4)?/3
T O9K2{(x1 + x2)(x3 + x4)}4/3
respectively. Moreover, from (3.9), we see that the Ricci tensors of these examples are J-anti-
invariant, i.e., p(J X, JY) = —p(X, Y).

*

o

b
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