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Abstract. Let $\mathcal{M}_{n}$ be the moduli space of spatial polygons with $n$ edges. We consider the case of odd $n$ .
Let $K_{n}^{*}=\Lambda^{n-3}T\mathcal{M}_{n}$ be the dual bundle of the canonical bundle on $\mathcal{M}_{n}$ . In this paper we determine the sheaf
cohomology $H^{*}(\mathcal{M}_{n}, K_{n}^{*})$ . We have $H^{q}(\mathcal{M}_{n}, K_{n}^{*})=0(q\geq 1)$ and dim $H^{0}(\mathcal{M}_{n}, K_{n}^{*})$ is equal to the number of
lattice points in the convex polytope $\Delta_{n}$ in $R^{n-3}$ .

1. Introduction.

Let $\mathcal{M}_{n}$ be the moduli space of spatial polygons $P=$ $(a_{1}, a_{2}, \cdots , a_{n})$ whose edges are
vectors $a;\in R^{3}$ of length $|a_{i}|=1(1\leq i\leq n)$ . Two polygons are identified if they differ
only by motions in $R^{3}$ . The sum of the vectors is assumed to be zero. Thus we first define the
space $X_{n}$ by

(1.1) $X_{n}=\{P=(a_{1}, \cdots , a_{n})\in(S^{2})^{n} : a_{1}+\cdots+a_{n}=0\}$ .

Then we set $\mathcal{M}_{n}=X_{n}/SO(3)$ .
For odd $n$ or $n=4,$ $\mathcal{M}_{n}$ is known to be a Fano manifold (i.e. the dual bundle of the

canonical bundle is ample) of complex dimension $n-3[4]$ . On the other hand, for even
$n\geq 6,$ $\mathcal{M}_{n}$ has cone-like singular points. For other properties of $\mathcal{M}_{n}$ , see for example [3]
and the references therein.

In this paper, we consider $\mathcal{M}_{n}$ for odd $n$ . Since M3 $=$ {point}, we assume that $n\geq 5$ .
Thus $\mathcal{M}_{n}$ has no singular points such that $\dim_{\mathbb{C}}\mathcal{M}_{n}\geq 2$ . For a holomorphic vector bundle
$E\rightarrow \mathcal{M}_{n}$ , we abbreviate the sheaf cohomology group $H^{*}(\mathcal{M}_{n}, \mathcal{O}(E))$ to $H^{*}(\mathcal{M}_{n}, E)$ . In
[3] we proved that $H^{q}(\mathcal{M}_{n}, T\mathcal{M}_{n})=0(q\geq 0)$ , where $T\mathcal{M}_{n}$ denotes the tangent bundle of
the complex manifold $\mathcal{M}_{n}$ .

Let $K_{n}$ be the canonical bundle on $\mathcal{M}_{n}$ and $K_{n}^{*}$ be its dual bundle. Thus $K_{n}^{*}=\Lambda^{n-3}T\mathcal{M}_{n}$ .
The purpose of this paper is to determine $H^{*}(\mathcal{M}_{n}, K_{n}^{*})$ . In order to state the results, we re-
call some notations in [2]. First we define a map $\mu_{n}$ : $\mathcal{M}_{n}\rightarrow R^{n-3}$ as follows. Let $P=$
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$(a_{1}, \cdots , a_{n})\in \mathcal{M}_{n}$ . Then we set

(1.2) $\mu_{n}(P)=(|a_{1}+a_{2}|,$ $|a_{1}+a_{2}+a_{3}|$ , – , $|\sum_{i=1}^{n-2}a_{i}|)$ .

Thus $\mu_{n}(P)$ is the lengths of the diagonals connecting the vertices to the origin. (Sinct
$|a_{1}|=|\sum_{i=1}^{n-1}a_{i}|=1$ , only these $n-3$ lengths are new. And in fact, the restriction $\mu_{n}|\mathcal{M}^{\prime}$,
of $\mu_{n}$ to an open dense subspace $\mathcal{M}_{n}^{\prime}$ of $\mathcal{M}_{n}$ is a moment map for the $T^{n-3}$ -action of $\mathcal{M}_{n}^{\prime}.$ )

We set $\Delta_{n}=\mu_{n}(\mathcal{M}_{n})$ . Thus $\Delta_{n}$ is an $(n-3)$-dimensional convex polytope in $R^{n-3}$

(Note that in [2], we wrote the image of $\mu_{n}$ by $\Delta_{n-3}$ in order to indicate the dimension of tht
polytope. But in this paper we write the image by $\Delta_{n}.$) Now let $\#(\Delta_{n}\cap Z^{n-3})$ be the numbe
of lattice points in $\Delta_{n}$ . Then our first result is the following:

THEOREM A. For odd $n\geq 5$ , we have
(i) $H^{q}(\mathcal{M}_{n}, K_{n}^{*})=1(q\geq 1)$ .
(ii) dim $H^{0}(\mathcal{M}_{n}, K_{n}^{*})=\#(\Delta_{n}\cap Z^{n-3})$ .
Next we give a formula for tt $(\Delta_{n}\cap Z^{n-3})$ with $n\geq 4$ , although Theorem A is valid $on]_{1}$.

for odd $n$ . For $n\geq 4$, we define $\alpha_{n}$ by

(1.3) $\alpha_{n}=-\frac{1}{2}\sum_{q=0}^{n1}(-1)^{q}\left(\begin{array}{l}n\\q\end{array}\right)\left(\begin{array}{ll}2n & -2-3q\\ & -n3\end{array}\right)[+]$ .

In fact, (1.3) is equivalent to

(1.4) $\alpha_{n}=\frac{1}{\pi}\int_{0}^{2\pi}(\frac{\sin 3\theta}{\sin\theta})^{n}\sin^{2}\theta d\theta$ .

Then we have the following:

THEOREM B. For $n\geq 4$ , we have

$\#(\Delta_{n}\cap Z^{n-3})=\alpha_{n}$ .
EXAMPLE 1.5. We have the following examples: $\alpha_{4}=3,$ $\alpha_{5}=6,$ $\alpha_{6}=15,$ $\alpha_{7}=36$

$\alpha_{8}=91,$ $\alpha_{9}=232$ and $\alpha_{10}=603$ .
REMARK 1.6. Let $\Delta$ be an integral convex polytope, $V(\Delta)$ the associated toric variet

and $\mathcal{O}(D)$ the line bundle of a T-Cartier divisor $D$ on V $(\Delta)$ . Then a theorem similar $t($

Theorem A holds for the cohomology $H^{*}(V(\Delta), \mathcal{O}(D))[5]$ . However the example that $\mathcal{M}$

is the del Pezzo surface of degree 5 (obtained from $CP^{2}$ by blowing up four points in genera
position) [4], which is not a toric variety (see [5]), tells us that in general $\mathcal{M}_{n}$ is not a tori
variety.

Finally note that in contrast to $H^{*}(\mathcal{M}_{n}, K_{n}^{*})$ , the cohomology $H^{*}(\mathcal{M}_{n}, K_{n})$ is alread
known. In fact this is a special case of the fact $h^{i,j}(\mathcal{M}_{n})=0(i\neq j)$ (see for example [4]).

This paper is organized as follows. In Section 2, we calculate $H^{*}(\mathcal{M}_{n}, K_{n}^{*})$ . Abou
$H^{0}(\mathcal{M}_{n}, K_{n}^{*})$ , we prove that its dimension is equal to $\alpha_{n}$ (see Theorem 2.1). Here $\alpha_{n}i$
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dePned in (1.3) and (1.4). In Section 3, we prove Theorem B. In particular, the proof of
Theorem A (ii) completes in this Section.

2. Cohomology of $\mathcal{M}_{n}$ .
First we prove Theorem A (i). Note that $H^{q}(\mathcal{M}_{n}, K_{n}^{*})=H^{q}(\mathcal{M}_{n}, \Omega^{n-3\emptyset 2}((K_{n}^{*})))$ .

Since $K_{n}^{*}$ is an ample line bundle [4], so is $(K_{n}^{*})^{\otimes 2}$ . Then from the Kodaira-Nakano vanishing
theorem [1], we have $H^{q}(\mathcal{M}_{n}, K_{n}^{*})=0$ for $q+n-3>n-3$ . Thus Theorem A (i) holds.

Instead of Theorem A (ii), we prove the following Theorem in this section:

THEOREM 2.1. For odd $n\geq 5$ , the Euler characteristic $\chi(\mathcal{M}_{n}, K_{n}^{*})$ is equal to $\alpha_{n}$ .
PROOF. We follow the method of the calculations of $X(M_{n}, TM_{n})$ in [3]. In that

paper the previous results which are necessary to the calculations are summarized. We shall
not repeat the results here, but we note that the following three facts are essential. For odd $n$ ,
we set $n=2m+1$ .

(i) The ring structure: $H^{*}$ ( $\mathcal{M}_{n}$ ; R) is generated by $Z1$ , , $z_{n}\in H^{2}$ ( $\mathcal{M}_{n}$ ; R). Since
$z_{i}^{2}=z_{j}^{2}$ , we define $D^{2}\in H^{4}$ ($M_{n}$ ; R) to be $z_{i}^{2}=D^{2}(1\leq i\leq n)$ .

(ii) The total Chem class: The description of $c(TM_{n})$ in terms of the ring generators
$Z1$ , , $z_{n}$ is known.

(iii) The intersection number: For a sequence $(d_{1}, \cdots d_{n})$ of nonnegative integers
with $\sum_{i=1}^{n}d_{i}=n-3$ , the intersection number ( $z_{1}^{d_{1}}\cdots z_{n}^{d_{n}},$ $[\mathcal{M}_{n}]\rangle$ is known. In particular, if
we define { $\rho_{n,2k}\rangle$ $(0\leq k\leq m-1)$ by $\langle\rho_{n,2k}\rangle=(z_{1}^{2k}z_{2}\cdots z_{n-2k-2}, [\mathcal{M}_{n}])$ , then ( $\rho_{n,2k}\rangle$ is
known.

Now we calculate $\chi(\mathcal{M}_{n}, K_{n}^{*})$ . From the Hirzebruch-Riemann-Roch formula [1], we
have

(2.2) $\chi(M_{n}, K_{n}^{*})=\{\frac{2}{D^{2}}(-1+\cosh D)\prod_{i=1}^{n}(\frac{z_{i}e^{z_{i}}}{1-e^{-z_{i}}}),$ $[\mathcal{M}_{n}]\}$ .

We define even functions $f(x)$ and $g(x)$ to satisfy

$\frac{xe^{x}}{1-e^{-x}}=f(x)+xg(x)$ .

Then (2.2) is equivalent to

(2.3) X $(\mathcal{M}_{n}, K_{n}^{*})=\sum_{j=0}^{n}\left(\begin{array}{l}n\\j\end{array}\right)\{\frac{2}{D^{2}}(-1+\cosh D)(f(D))^{j}(g(D))^{n-j}z_{1Z2},$ $[\mathcal{M}_{n}]\}$ .

Since $\dim_{C}M_{n}=n-3$ , which is even, we can assume that $j$ in (2.3) is odd $\geq 3$ . Hence
we set $j=2l+1$ . We define a rational number $\zeta_{n,2l}$ by

$\zeta_{n,2l}=the$ coefficient of $x^{2l}$ in $[2(-1+\cosh x)(f(x))^{2l+1}(g(x))^{2m-2l}]$ .
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Then (2.3) is equivalent to

(2.4) $X(\mathcal{M}_{n}, K_{n}^{*})=\sum_{l=1}^{m}\left(\begin{array}{ll}2m & +1\\2l+1 & \end{array}\right)(\rho_{n,2l-2})\zeta_{n,2l}$ .

Here as before ( $\rho_{n,2l-2}\rangle$ is the intersection number and known to be equal $t($

$(-1)^{l+1}\frac{(^{m-1}l-1)(2mm-1)}{(_{2l-1}^{2m-1})}$ .
Using standard arguments of binomial coefficients, we see that (2.4) is equivalent to (1.3

or (1.4). Thus we have Theorem 2.1.

3. Proof of Theorem B.

In order to calculate tt $(\Delta_{n}\cap Z^{n-3})$ , it is convenient to construct a recursion relation. Firs
we generalize the convex polytope $\Delta_{n}$ to $\Delta_{n,i}$ . For $i\in N$ , we define $M_{n,i}$ as follows. $L\epsilon$

$S^{2}(i)$ be the sphere in $R^{3}$ with center the origin and radius $i$ . We define $X_{n,i}$ by

$X_{n,i}=\{(a_{1}, a_{2}, \cdots a_{n})\in S^{2}(i)\times(S^{2})^{n-1} : a_{1}+a_{2}+\cdots+a_{n}=0\}$ .
(Compare (1.1).) Then we set $\mathcal{M}_{n,i}=X_{n,i}/SO(3)$ . Thus $\mathcal{M}_{n,1}=M_{n}$ .

Note the map $\mu_{n}$ : $\mathcal{M}_{n}\rightarrow R^{n-3}$ in (1.2) is naturally generalized to a map $\mu_{n}$ : $M_{n,i}-$

$R^{n-3}$ . Then we set $\Delta_{n,i}=\mu_{n}(\mathcal{M}_{n,i})$ . Thus $\Delta_{n,1}=\Delta_{n}$ .
Finally we set $\beta_{n,i}=^{\beta}(\Delta_{n,i}\cap Z^{n-3})$ . When $i=0$, we define $\beta_{n,0}$ , by

(3.1) $\beta_{n,0}=\beta_{n-1,1}$ .
Thus Theorem $B$ is equivalent to $\beta_{n,1}=\alpha_{n}$ , where $\alpha_{n}$ is defined in (1.3) or (1.4).

About $\beta_{n,i}$ , we have the following:

PROPOSITION 3.2. (i) $\beta_{4,0}=1,$ $\beta_{4,1}=3,$ $\beta_{4,2}=2$ and $\beta_{4,3}=1$ .
(ii) $\beta_{n,i}=\beta_{n-1,i-1}+\beta_{n-1},;+\beta_{n-1,i+1}(i\geq 1)$ .
(iii) $\beta_{n,0}=\beta_{n-1,1}$ .
(iv) $\beta_{n,i}=0(i\geq n)$ .
PROOF. (i) Since $\Delta_{4,1}=[0,2],$ $\Delta_{4,2}=[1,2],$ $\Delta_{4,3}=\{2\}$ and $\beta_{n,i}$ is the number $\mathfrak{c}$

lattice points in $\Delta_{n,i}$ , the result follows.
(ii) Let $(xx, \cdots , x_{n-3})\in\Delta_{n,i}\cap Z^{n-3}$ . From the definition of $\Delta_{n,i}$ , the triar

gle inequality shows that $x_{1}$ is either of $i-1,$ $i$ or $i+1$ . If $x_{1}=i-1$ , then we hav
$(x_{2}, \cdots , x_{n-3})\in\Delta_{n-1,i-1}\cap Z^{n-4}$ . The other two cases are considered similarly. Thus $(i$

follows.
(iii) is the definition of $\beta_{n,0}$ in (3.1).

(iv) The triangle inequality shows that $\mathcal{M}_{n,i}=\emptyset(i\geq n)$ . Thus we have $\Delta_{n,i}=$

$(i\geq n)$ and the result follows. $\square $

Now we see that the solution of the recursion relation in Proposition 3.2 is given by

$\beta_{n,i}=\frac{1}{\pi}\int_{0}^{2\pi}(\frac{\sin(1+2i)\theta}{\sin\theta})(\frac{\sin 3\theta}{\sin\theta})^{n-1}$ sin2 $\theta d\theta$ .
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In particular we have $\beta_{n,1}=\alpha_{n}$ (see (1.4)). This completes the proof of Theorem B.
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