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1. Introduction.

Let N be the set of all positive integers. Let a, b, ¢ be fixed positive integers, and let d
be a fixed prime with d = 3 (mod 8). In [2], using a lower bound for linear forms in two
logarithms due to Laurent, Mignotte and Nesterenko [1], Terai and Takakuwa proved that if
a, b, c, d satisfy

b
¢)) a’+db*=c*, a=3(mod8), 4|0, (Z)=_1

) a>Ab, d <23865310019,

where (*/*) denote the Jacobi symbol and

- —-1/2
logd + 2 !
A =d [exp 2(3-g—-i— +3231), ~1 :
log5
then the equation

3) a*+db’ =c*, x,y,zeN,

has only the solution (x, y, z) = (2, 2, 2). In this paper, by an elementary approach, we prove
the following result.

THEOREM Ifa, b, c, d satisfy (1) and

@) a=db?—b? b=2bby c=db3+b},

where b1, by are positive ihtegers satisfying by > 1, by = 1(mod4), 2 " by and ged(by, by) =
1, then (3) has only the solution (x, y, z) = (2, 2, 2).
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By the above result, we see that for any fixed prime d with d = 3 (mod 8), there exist
infinitely many pairs (a, b, ¢) which (3) has only the solution (x, y, z) = (2, 2, 2). This is an
improvement on the results of [2].

2. Proofs.

LEMMA 1. Ifa,b,c,d satisfy (1), then (4) holds for some positive integers by, by
satisfying 21 by, 2 ||b2 and ged(by, b2) = 1.

PROOF. Since 4 || b, we get from (1) that

2b2 2db?
5 = 1’ —a= 2’ b=2bby,
(%) cta {2db§, c—a [21;1}, 122

where by, b, are positive integers satisfying 2 | b1b2 and ged (b1, b2) = 1. By (5), we get

2
b? — db3,

c=db?+b>.
db3 — b2, 207

6) a=[

Since d = 3 (mod8), if a = b? — db, thena = 1 # 3 (mod4), a contradiction. So
we have a = db? — b? by (6). Further, if 2| by, then 2| by anda = 7 # 3 (mod8), a
contradiction. Thus, we get 2 { by, 2 " b, and (5). The lemma is proved.

LEMMA 2. Leta,b,c,d be as in (1). If (3) has a solution (x,y, z) with (x,y,2) #
2,2,2), thenwehave2|x,y =1land21tz

PROOF. Let (x, y, z) be a solution of (3) with (x, y, z) # (2,2, 2). By [2, Lemma 4],
then either 2 |x,y = land2 { z or 2|x,y = 2 and 2|z. Since (x,y,2) # (2,2,2), if
x,y, z satisfy 2 |x, y = 2 and 2 Iz, then x > 4 and z > 4. Hence, by (1) and (4), we get
db2 = —q* = (cz/2 + qx/2)(cz/2 _ ax/2) > cz/2 +ax/2 > c2 +a2 > 02 ___a2 = db2, a
contradiction. The lemma is proved.

PROOF OF THEOREM. We suppose that (3) has a solution (x, y, z) with (x, y, z) #
(2,2, 2). By Lemma 2, we get

@) a*+db=c*, 2x, 2{z.

Further, by Lemma 1, we see from (4) and (7) that

_(c\ _ [dbj+b}\ [(d
® "(E)“('T -()

On the other hand, since (b/a) = —1 by (1), we obtain from (4) that
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= () (22)- () ()

9 = (=1)&1=D/2+G22-D/2 (2} (_2_
®) (=1 0 ) \5a2
— (_1)(b1—1)/2+(b2/2——1)/2 db% - b% dbg - b% — (__1)(b1—1)/2 (i) .
b b2/2 b1

The combination of (8) and (9) yields b1 = 3 (mod4). Thus, if b; # 3 (mod 4), then (3) has
only the solution (x, y, z) = (2, 2, 2). The theorem is proved.
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