
TOKYO J. MATH.
VOL. 24, No. 1, 2001

Inverse Scattering for the Nonlinear Schr\"odinger Equation
with Cubic Convolution Nonlinearity

Michiyuki WATANABE

Tokyo Metropolitan University

(Communicated by H. Ishii)

Dedicated to Professor Kiyoshi Mochizuki on his sixtieth birthday

Abstract. In this paper it will be shown that a potential $V(x)$ and a constant $\lambda$ are uniquely determined from
the scattering operator $S$ associated with the nonlinear Schrodinger equation

$i\frac{\partial u}{\partial t}+(-\Delta+V)u+\lambda(|x|^{-\sigma}*|u|^{2})u=0$ ,

and the corresponding unperturbed equation

$i\frac{\partial u}{\partial t}-\Delta u=0$ .

1. Introduction.

Let $H=H_{0}+V(x)$ , where $H_{0}=-\Delta=-\sum_{j=1}^{n}\partial^{2}/\partial x_{j}^{2}$ , and $V(x)$ is a real valued
function defined on $R^{n}$ which satisfies conditions described below. Let $F(u)$ be the cubic
convolution nonlineanity:

$F(u)=\lambda(|x|^{-\sigma}*|u|^{2})u=\lambda(\int_{R^{n}}|x-y|^{-\sigma}|u(y)|^{2}dy)u(x)$ ,

where $\lambda>0$ is a constant.
In this paper we shall consider the inverse scattering problem for the nonlinear

Schr\"odinger equation

$i\frac{\partial u}{\partial t}+Hu+F(u)=0$ (1.1)

for $(x, t)\in R^{n}\times R,$ $n\geq 3$ .
The nonlinear inverse scattering problem has been studied in Weder [10] for the equation

(1.1) in the case of power nonlinearity

$F(u)=f(|u|)\frac{u}{|u|}$
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with $f\in C^{1}(R)$ satisfies $f(0)=0$ and

$|\frac{df}{d\mu}|\leq c|\mu|^{p-1}$

for some $1+4/n\leq p<1+4/(n-2),$ $\mu\in$ R. In this case, if $V$ satisfies the following
conditions

1. $(1 +|x|^{2})^{\alpha/2}V(x)$ is a bounded operator from $H^{\beta,2}$ into $H^{\beta,2}(H^{r,p}$ is a usual
Sobolev space of order $r$ in $L^{p}$ ) for some $\alpha>n+4$ and $\beta>0$ ,

2. $\hat{V}\in L^{1}$ , (
$\wedge$

denotes the Fourier transfrom) ,

3. $H=H_{0}+V$ with the domain $H^{2,2}$ has no eigenvalues and that zero is not a
resonance for $H,$ ($0$ is said to be a resonance of $H$ if there exists a solution of $Hu=0$ such
that $(1+|x|^{2})^{-\gamma}u(x)\in L^{2}(R^{n})$ for any $\gamma>1/2$ but not for $\gamma=0.$ ),

then there is a $\delta>0$ such that for every $\emptyset-\in \mathcal{H}_{\delta}$ $:=\{\phi\in H^{1,2} : ||\phi||_{H^{1.2}}<\delta\}$ , there exist a
unique solution $u$ of (1.1) such that

$||u(t)-e^{itH_{0}}\phi-||_{H^{1,2}}\rightarrow 0$ as $ t\rightarrow-\infty$ .
Furthermore, there exists a unique $\emptyset+\in H^{1,2}$ which satisfies

$||u(t)-e^{itH_{0}}\phi+\Vert_{H^{1.2}}\rightarrow 0$ as $ t\rightarrow\infty$ .
And in the above conditions of $V(x)$ , as is well known (see for example [1], [2]), the wave
operators for $H$ and $H_{0}$ ,

$W\pm=s-\lim_{t\rightarrow\pm\infty}e^{-itH}e^{irH_{0}}$

exist and are complete, where $s$ -indicates the strong limit in $L^{2}(R^{n})$ . The mapping $S$ :
$\phi-\rightarrow\emptyset+defined$ on a neighborhood of $0$ in $H^{1,2}$ is called the nonlinear scattering operator.
Put

$ S_{F}\phi=\phi(x)+\int_{-\infty}^{\infty}e^{-i\tau H}F(u(\tau))d\tau$ , (1.2)

where $u$ is the solution of (1.1) with the initial data $\phi$ at $ t=-\infty$ (see (3.1)). Then the
nonlinear scattering operator $S$ is represented as

$ S=W_{+}^{*}S_{F}W-\cdot$ (1.3)

Weder [10] has proved that the potential $V$ is uniquely determined from the nonlinear
scattering operator $S$ . To be more percise, the following equality has been proved. For any
$\phi,$ $\psi\in H^{1,2}$

$\lim_{\epsilon\rightarrow 0}\frac{1}{\epsilon}(S(\epsilon\phi), \psi)=(S_{L}\phi, \psi)$ , (1.4)

where $S_{L}$ is the linear scattering operator associated with perturbed Schr\"odinger equation

$i\frac{\partial u}{\partial t}+Hu=0$ , (1.5)

and the corresponding unperturbed Schr\"odinger equation

$i\frac{\partial u}{\partial t}+H_{0}u=0$ . (1.6)
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As is well known, the sattering operator $S_{L}$ can be defined as

$ S_{L}=W_{+}^{*}W-\cdot$

From (1.4) and the well known uniqueness results for the inverse scattering problem for the
linear Schrodinger equation (for example [3], [4]), the nonlinear scattering operator $S$ deter-
mines uniquely the potential $V(x)$ .

From (1.3) and (1.2),

$\frac{1}{\epsilon}S(\epsilon\phi)-S_{L}\phi=\frac{1}{\epsilon}W_{+}^{*}S_{F}W_{-}(\epsilon\phi)-W_{+}^{*}W-\phi$ (1.7)

$=\frac{1}{\epsilon}W_{+}^{*}(S_{F}-I)W_{-}(\epsilon\phi)$ . (1.8)

It is found from (1.8) and (1.2) that one of the key point to prove (1.4) is the estimate on
nonlinearity like (2.8) in Section 2. In Weder [10], to obtain it, the $L^{p}-L^{p^{\prime}}$ estimate and
the Strichartz type estimate on $e^{-itH}$ , which have been shown by Joum\’e, Soffer, Sogge [5],

and estimates on power nonlinearity $F(u)$ like (2.6) and (2.7) in Section 2, which have been
shown by Strauss ([8], [9]), are used.

Estimates on cubic convolution nonlinearity $F(u)$ like (2.6) and (2.7) in Section 2 also
have been proved in Strauss [9] when $\sigma$ satisfies $2\leq\sigma<4$ and $\sigma<n$ . Hence, as for our
case of cubic convolition nonlineaity, it can also be shown that (1.4) follows when a satisfies
$2\leq\sigma<4$ and $\sigma<n$ . But in this way the case $\sigma=4$ is not included.

On the other hand, Yajima ([11], [12]) has shown the boundedness of the wave operators
$W\pm inH^{1,p}$ and the $H^{1,p}-H^{1,p^{\prime}}$ estimate on $e^{-itH}$ under the Assumption 1.1 which is
described below. Mochizuki [7] has shown the Strichartz type estimate on $e^{-itH}$ using the
$H^{1,p}-H^{1,p^{\prime}}$ estimate. Moreover, using these estimates Mochizuki [7] has given estimates
on the nonlinearity as in Lemma 2.3 including the case $\sigma=4$ .

In this paper it will be proved by Weder’s method that the nonlinear scattering operator $S$

uniquely determines the potential $V$ , not only the case $2\leq\sigma<4$ and $\sigma<n$ but also the case
$2\leq\sigma\leq 4$ and $\sigma<n$ . Moreover, the topology of the convergence in (1.4) will be improved.
Namely, we can prove that $(1/\epsilon)S(\epsilon\phi)$ converges to $ S_{L}\phi$ strongly as $\epsilon\rightarrow 0$ .

Let $\mathfrak{F}$ be the Fourier transfrom. We use the notation: $n_{*}=(n-1)/(n-2)(n\geq 3)$ ,
$\langle x\rangle=(1+|x|^{2})^{1/2}$ . We assume that $V(x)$ and $\sigma$ satisfy the following conditions.

ASSUMPTION 1.1. $V(x)$ is a real valued function on $R^{n},$ $n\geq 3$ . For any multi-indices
$\alpha=$ $(\alpha_{1}, \cdots , \alpha_{n})$ with $|\alpha|\leq 1$ and some $\rho>2/n_{*},$ $S(\langle x\rangle^{\rho}D^{\alpha}V)\in L^{n_{*}}(R^{n})$ holds, where
$D^{\alpha}=D_{1}^{\alpha_{1}}\cdots D_{n}^{\alpha_{n}}(D_{j}=-i\partial/\partial x_{j})$ . $H$ has no eigenvalues and $0$ is not a resonance for $H$ .
Moreover, $V(x)$ satisfies one of the following conditions:

1. $\Vert S((x\rangle^{\rho}V)\Vert_{L^{n}*}$ is sufficiently small.
2. The spatial dimension $n=2n^{\prime}-1$ is odd. For any $|\alpha|\leq\max\{1,1+n^{\prime}-4\}$ , there

exists a constant $C_{\alpha}>0$ such that

$|\frac{\partial^{\alpha}V}{\partial x^{\alpha}}|\leq C_{\alpha}\langle x)^{-\delta}$
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where $\delta>\max\{n+2,3n/2-2\}$ .
3. $n$ is even, $V(x)>0$ . For any $|\alpha|\leq n+1$ , there exists a constant $C_{\alpha}>0$ such that

$|\frac{\partial^{\alpha}V}{\partial x^{\alpha}}|\leq C_{\alpha}\langle x)^{-\delta}$

where $\delta>3n/2+1$ .
ASSUMPTION 1.2. $2\leq\sigma\leq 4$ and $\sigma<n$ .

REMARK 1.1. It follows from Yajima ([11], [12]) that $V(x)$ is short range in the sense
of Agmon [1]. Hence, the wave operators $W\pm exist$ and are complete. The scattering operator
$S_{L}$ can be defined as

$S_{L}=W_{+}^{*}W_{-}$ .
It will be shown in Propositon 3.1 that for the equation (1.1), the nonlinear scattering

operator $S$ can be defined on a neighborhood of $0$ in $H^{1,2}$ and represented as (1.3).

The main result is the following

THEOREM 1.1. Under Assumptions 1.1 and 1.2 the following holds, for any $\phi\in H^{1,2}$

$\lim_{\epsilon\rightarrow 0}\frac{1}{\epsilon}S(\epsilon\phi)=S_{L}\phi$ in $H^{1,2}$

From the well known results (for example [3], [4]) that $V$ is uniquely determined from
the scattering operator $S_{L}$ , we obtain the following corollary.

COROLLARY 1.1. Assume that Assumptions 1.1 and 1.2 are satisfied, the scattering
operator $S$ detemines uniquely the potential $V$

THEOREM 1.2. Under Assumptions 1.1 and 1.2, the scattering operator $S$ determines
uniquely a constant $\lambda$ . Furthemore, for any $\phi\in H^{1,2}$

$\lambda=\lim_{\epsilon\rightarrow 0}\frac{1}{\epsilon^{3}}\frac{||(S_{F}-I)(\epsilon\phi)||_{H^{1,2}}}{||\int_{-\infty}^{\infty}e^{-itH}(|x|^{-\sigma}*|e^{itH}\phi|^{2})e^{itH}\phi dt\Vert_{H^{1.2}}}$ , (1.9)

where $S_{F}$ is the scattering operator associated with the nonlinear equation (1.1) and the
purturbed equation (1.5), and $S_{F}$ is defined as (1.2).

In Section 2 we give notations and several results used throughout this paper. The scat-
tering problem for the equation (1.1) is discussed in Section 3. Theorem 1.1 and Theorem 1.2
are proved in Section 4.

2. Notations and preliminary lemmas.

First we give notations which will be freely used in the sequel. $c_{0}^{\infty}=C_{0}^{\infty}(R^{n})=$

$\bigcap_{k=1}^{\infty}C_{0}^{k}(R^{n})$ , where $C_{0}^{k}(R^{n})$ is the space of all k-times continuously differentiable function
with compact support in $R^{n}$ . For a Banach space $Z,$ $L^{p}(Z)=L^{p}(R;Z)$ is the space of all $Z$

valued $L^{p}$ functions in $R^{n}$ . $\wedge$

denotes the Fourier transfrom and $S^{-1}$ is its inverse. For $r\in R$
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and $ 1\leq p\leq\infty$ , let $H^{r,p}=H^{r,p}(R^{n})$ be the completions of $C_{0}^{\infty}$ with respect to the norm,

$\Vert f||_{H^{r,p}}=\Vert S^{-1}\{\langle\xi\rangle^{r}f(\xi)\}||_{L^{p}}$ . (2.1)

Conjugate exponents are denoted by $q,$ $q^{\prime};s,$
$s^{\prime}$ etc. $c$ will denote a constant that may differ in

different equation or inequalities.
Next we summarize several lemmas which will be used throughout this paper.

LEMMA 2.1 ([11], [12]). Under Assumption 1.1, there exists a constant $c>0$ such
that, for all $t\neq 0$,

$\Vert e^{itH}f\Vert_{H^{1,q}}\leq c|t|^{-d}\Vert f\Vert_{H^{1,q^{\prime}}}$ , (2.2)

for $ 2\leq q\leq\infty$ and $f\in L^{2}\cap H^{1_{q^{\prime}}}’$ , where

$d=n(\frac{1}{q}-\frac{1}{2})$ . (2.3)

Put
$X=H^{1,2}$ $Y=H^{1,q}$ , $Y^{\prime}=H^{1,q^{\prime}}$

and
$W=L^{3}(R;H^{1,q})\cap L^{\infty}(R;H^{1,2})$ ,

where $q$ satisfies

$\frac{1}{q}=\frac{1}{2}-\frac{2}{3n}$ . (2.4)

LEMMA 2.2 ([7]). Let $\phi\in X.$ Then $e^{itH}\phi\in L^{3}(Y)$ and there exists $c\geq 1$ such that

$||e^{itH}\phi||_{L^{3}(Y)}\leq c||\phi\Vert_{X}$ . (2.5)

The cubic convolution nonlinearity $F(u)=\lambda(|x|^{-\sigma}*|u|^{2})u$ is estimated as follows.

LEMMA 2.3 ([7]). Assume thatAssumption 1.2. Then

$||F(u)-F(v)||_{Y^{\prime}}\leq c\Vert u-v||_{X}\{||u\Vert_{Y}^{2}+||v||_{Y}^{2}\}$

(2.6)
$+c\{\Vert u\Vert_{X}+\Vert v\Vert_{X}\}\Vert u-v\Vert_{Y}\{\Vert u\Vert_{Y}+\Vert v||_{Y}\}$ ,

$||F(u)-F(v)||_{X}\leq c\Vert u-v\Vert_{Y}(\Vert u\Vert_{Y}^{2}+\Vert v||_{Y}^{2})$ . (2.7)

It follows from Lemmas 2.1 and 2.3 that

$\Vert\int_{-\infty}^{t}e^{i(t-\tau)H}\{F(u(\tau))-F(v(\tau))\}d\tau\Vert_{W}\leq c_{1}||u-v||w(||u\Vert_{W}^{2}+||v||_{w}^{2})$ . (2.8)

3. Nonlinear scattering with small data.

The theory of small data scattering with cubic convolution nonlinearity for the free
Schr\"odinger operator $H_{0}$ has been studied in Mochizuki [7]. In this section we shall extend it
to the purturbed Schr\"odinger operator $H=H_{0}+V$ .
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First we consider the equation

$\left\{\begin{array}{ll}i\frac{\partial u}{\partial t}+Hu+F(u)=0, & t\in R\\\Vert u(t)-e^{itH}\phi_{-}\Vert_{X}\rightarrow 0, & as t\rightarrow-\infty,\end{array}\right.$ (3.1)

where $F(u)=\lambda(|x|^{-\sigma}*|u|^{2})u$ and $\phi-\in X$ . It is convenient to rewrite (3.1) into the integral
form;

$ u(t)=e^{itH}\phi-+\int_{-\infty}^{t}e^{i(t-\tau)H}F(u(\tau))d\tau$ . (3.2)

By Lemma 2.2 and the boundedness of $e^{itH}$ in $X$ , there exists a constant $c_{2}\geq 1$ such
that

$||e^{itH}\phi||_{W}\leq c_{2}||\phi||_{x}$ . (3.3)

Let $\phi-\in \mathcal{H}_{\delta}$ $:=\{\phi\in X : ||\phi||x<\delta\}$ and put

$(\Phi u)(t)=e^{itH}\phi-+\int_{-\infty}^{t}e^{i(t-\tau)H}F(u(\tau))d\tau$ .

We consider the nonlinear operator $\Phi$ in the ball $\mathfrak{B}(\delta_{1})=\{u\in W;||u\Vert_{W}\leq\delta_{1}\}$ , where the
constants $\delta_{1}>0$ and $\delta>0$ are chosen to satisfy

$2c_{1}\delta_{1}^{2}\leq\frac{1}{2}$ and $c_{2}\delta\leq\frac{3}{4}\delta_{1}$ . (3.4)

($c1$ and $c_{2}$ are constants used in (2.8) and (3.3) respectively.)
Let $u\in \mathfrak{B}(\delta_{1})$ . Then, by (3.3) with $\phi=\phi$-and by (2.8) with $v=0$,

$||\Phi u||_{W}\leq c_{2}||\phi_{-}||x+c_{1}||u||_{W}^{3}\leq\delta_{1}$ . (3.5)

On the other hand, it follows from (2.8) that

$||\Phi u-\Phi v||_{W}\leq\frac{1}{2}||u-v||_{W}$ (3.6)

for any $u,$ $v\in \mathfrak{B}(\delta_{1})$ . From (3.5) and (3.6) $\Phi$ defines a contraction map of $\mathfrak{B}(\delta_{1})$ into itself.
Thus there exists a unique fixed point $u\in \mathfrak{B}(\delta_{1})$ which solves (3.2). Moreover, by (3.2) and
(2.7) with $v=0$, we have

$\Vert u(t)-e^{itH}\phi_{-}\Vert_{X}\leq c\int_{-\infty}^{t}||u(\tau)||_{Y}^{3}d\tau\rightarrow 0$ as $ t\rightarrow-\infty$ .

Next put

$\phi_{+}=\phi-+\int_{-\infty}^{\infty}e^{-i\tau H}F(u(\tau))d\tau$ . (3.7)

Then $\phi+\in X$ and

$ e^{itH}\phi+=u(t)+\int^{\infty}e^{i(t-\tau)H}F(u(\tau))d\tau$ .

Thus
$\Vert u(t)-e^{itH}\phi_{+}||_{X}\rightarrow 0$ as $ t\rightarrow\infty$ .

Hence we can define the scattering operator $S_{F}$ : $\psi_{-}\rightarrow\emptyset+on\mathcal{H}_{\delta}$ .
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Next as in [10], put
$ S:=W_{+}^{*}S_{F}W-\cdot$

Then it is easy to see that solution of (1.6) has the same asymptotics as the solution $u$ of the
(1.1) when $ t\rightarrow\pm\infty$ (see Weder [10]). Thus if we take $\rho=\Vert W-\Vert_{X\rightarrow X}\delta$ (the operator norm
is denoted by $||\cdot||x\rightarrow x$ and $\delta$ is a constant which satisfies (3.4)), we obtain

PROPOSITION 3.1. Under Assumptions 1.1 and 1.2, there exists $\rho>0$ with the fol-
lowing properties: If $\psi_{-}\in \mathcal{H}_{\rho}$ , then there exists a unique solution $u\in W$ of (1.1) such
that

$||u(t)-e^{itH_{0}}\psi_{-}||_{H^{1,2}}\rightarrow 0$ as $ t\rightarrow-\infty$ .
Furthermore, put $\psi_{+}=S\psi_{-}$ . Then $\psi+satisfies$

$\Vert u(t)-e^{itH_{0}}\psi_{+}\Vert_{H^{1,2}}\rightarrow 0$ as $ t\rightarrow\infty$ .

4. Proof of Theorems.

First we prove Theorem 1.1. By (3.2) and (2.8) for $\epsilon$ small enough, we have

$\Vert u||_{W}\leq c\Vert e^{itH}\epsilon\phi\Vert_{W}+\tilde{c}||u\Vert_{W}$

for a solution $u\in W$ of (3.2) with $\phi-=\epsilon\phi$ and some $\tilde{c}<1$ . Then, by (3.3),

$||u$ llw $\leq c\epsilon||e^{itH}\phi$ IIw $\leq c\epsilon||\phi\Vert_{X}$ . (4.1)

Moreover, by (3.7) and (2.7),

$\frac{1}{\epsilon}\Vert(S_{F}-I)(\epsilon\phi_{-})\Vert_{x}\leq\frac{c}{\epsilon}\int_{-\infty}^{\infty}||u(\tau)||_{Y}^{3}d\tau$

$=\frac{c}{\epsilon}||u||_{L^{3}(Y)}^{3}$ .

Hence for any $\phi\in X$ , using (4.1), we have

$\Vert\frac{1}{\epsilon}S(\epsilon\phi)-S_{L}\phi\Vert_{X}=\frac{1}{\epsilon}||S(\epsilon\phi)-S_{L}(\epsilon\phi)\Vert_{X}$

$\leq\frac{C}{\epsilon}||(SF-I)W-(\epsilon\phi)$ IIx

$\leq\frac{c}{\epsilon}\Vert W_{-}(\epsilon\phi)||_{X}^{3}$

$\leq c\epsilon^{2}\Vert\phi\Vert_{X}^{3}\rightarrow 0$ as $\epsilon\rightarrow 0$ .
Thus Theorem 1.1 follows.

Next we prove Theorem 1.2. Note that for any $\phi\in X$ ,

$\frac{1}{\epsilon^{3}}\int_{-\infty}^{\infty}e^{-itH}F(e^{itH}\epsilon\phi))dt=\lambda\int_{-\infty}^{\infty}e^{-itH}(|x|^{-\sigma}*|e^{itH}\phi|^{2})e^{itH}\phi dt\in X$

by (2.7) and (2.5).
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Compute that

$\Vert\frac{1}{\epsilon^{3}}\int_{-\infty}^{\infty}e^{-itH}(F(u(t))-F(e^{itH}\epsilon\phi))dt\Vert_{X}$

$\leq\frac{c}{\epsilon^{3}}\int_{-\infty}^{\infty}\Vert u(t)-e^{itH}\epsilon\phi\Vert_{Y}(\Vert u(t)\Vert_{Y}^{2}+||e^{itH}\epsilon\phi\Vert_{Y}^{2})dt$

$\leq\frac{c}{\epsilon^{3}}||u-e^{itH}\epsilon\phi\Vert_{W}(||u||_{W}^{2}+||e^{itH}\epsilon\phi||_{W}^{2})$

$\leq\frac{c}{\epsilon^{3}}\Vert\int_{-\infty}^{t}e^{i(t-\tau)H}F(u(\tau))d\tau\Vert_{W}(\epsilon^{2}||\phi||_{X}^{2})$

$\leq\frac{c}{\epsilon}\Vert u1w\Vert\phi|1_{X}^{2}$

$\leq c\epsilon^{2}\Vert\phi||_{X}^{5}$ .
Hence

$\frac{1}{\epsilon^{3}}(S_{F}-I)W_{-}(\epsilon\phi)=\frac{1}{\epsilon^{3}}\int_{-\infty}^{\infty}e^{-itH}F(u(t))dt$

$=\int_{-\infty}^{\infty}e^{-itH}F(e^{itH}\phi)dt+\frac{1}{\epsilon^{3}}\int_{-\infty}^{\infty}e^{-itH}(F(u)-F(e^{itH}\epsilon\phi))dt$

$\rightarrow\int_{-\infty}^{\infty}e^{-itH}F(e^{itH}\phi)dt$ in $X$ , as $\epsilon\rightarrow 0$ .

Thus we obtain (1.9). From Corollary 1.1, $V$ and, consequently, the wave operators $W\pm are$

determined uniquely by $S$ . Hence $S_{F}=W+SW_{-}^{*}$ is uniquely determined by $S$ .
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