# The Connectivities of Leaf Graphs of Sets of Points in the Plane 

Atsushi KANEKO and Kiyoshi YOSHIMOTO

Kogakuin University and Nihon University

(Communicated by K. Kobayasi)


#### Abstract

Let $U$ be a finite set of points in general position in the plane. We consider the following graph $\mathcal{G}$ determined by $U$. A vertex of $\mathcal{G}$ is a spanning tree of $U$ whose edges are straight line segments and do not cross. Two such trees $\mathbf{t}$ and $\mathbf{t}^{\prime}$ are adjacent if for some vertex $u \in U, \mathbf{t}-u$ is connected and coincides with $\mathbf{t}^{\prime}-u$. We show that $\mathcal{G}$ is 2-connected, which is the best possible result.


## 1. Introduction.

Let $G$ be a connected graph and $\mathcal{V}_{G}$ the set of all the spanning trees of $G$. We define an adjacency relation on $\mathcal{V}_{G}$ so that two spanning trees $\mathbf{t}_{1}$ and $\mathbf{t}_{2} \in \mathcal{V}_{G}$ are adjacent if and only if there exist edges $e_{i} \in E\left(\mathbf{t}_{i}\right)$ such that

$$
\begin{equation*}
\mathbf{t}_{1}-e_{1}=\mathbf{t}_{2}-e_{2} \tag{1}
\end{equation*}
$$

The graph thus obtained is called a tree graph. The lower bound of the connectivities of a tree graph was shown by Liu.

THEOREM 1 (Liu [8]). The tree graph of a connected graph $G=(V, E)$ is $2(|E|-$ $|V|+1)$-connected.

We can consider two subgraphs of a tree graph as follows. If an edge is incident to endvertices in a spanning tree $\mathbf{t}$, then we call it an outer edge. An edge is not outer is called inner. In the equation (1), the edge $e_{1}$ is an outer edge in $\mathbf{t}_{1}$ if and only if $e_{2}$ is also outer in $\mathbf{t}_{2}$. A leaf graph is defined on $\mathcal{V}_{G}$ as follows; $\mathbf{t}_{1}$ and $\mathbf{t}_{2} \in \mathcal{V}_{G}$ are said to be adjacent if there exist outer edges $e_{i} \in E\left(\mathbf{t}_{i}\right)$ which satisfy the equation (1). The authors showed the following theorem.

ThEOREM 2 (Kaneko and Yoshimoto [7]). Let G be a 2-connected graph of minimum degree $\delta$. Then the leaf graph of $G$ is $(2 \delta-2)$-connected.

We can define adjacency relation of a leaf graph as follows; $\mathbf{t}_{1}$ and $\mathbf{t}_{2}$ are adjacent if there exists a vertex $u \in V(G)$ such that $\mathbf{t}_{1}-u$ is connected and coincides with $\mathbf{t}_{2}-u$. On the other hand, a trunk graph is defined on the set $\mathcal{V}_{G}^{*}$ of all the spanning trees except stars as follows; $\mathbf{t}_{1}$ and $\mathbf{t}_{2} \in \mathcal{V}_{G}^{*}$ are said to be adjacent if there exist inner edges $e_{i} \in E\left(\mathbf{t}_{i}\right)$ which satisfy the


Figure 1.
equation (1). Yoshimoto [9] showed that if $G$ is a 2-connected graph with at least five vertices and if $G$ is $k$-edge connected, then the trunk graph of $G$ is $(k-1)$-connected.

In this paper, we consider a geometric version of a leaf graph. Let $U$ be a set of $n$ points in the plane which is in general position, i.e., no three points in $U$ are collinear. A graph on $U$ whose edges are straight line segments joining two vertices in $U$ and do not cross is called a non-crossing graph on $U$. Let $\mathcal{V}_{U}$ be the set of all the non-crossing spanning trees on $U$. Ikebe et al. [6] showed that any rooted tree with $n$ vertices can be embedded as a non-crossing spanning tree on a given set $U$, the root being mapped to an arbitrary specified point of $U$.

A geometric tree graph on $U$ is defined on the set $\mathcal{V}_{U}$ as follows; $\mathbf{t}_{1}$ and $\mathbf{t}_{2} \in \mathcal{V}_{U}$ are said to be adjacent if there exist edges $e_{i} \in E\left(\mathbf{t}_{i}\right)$ which satisfy the equation (1). Avis and Fukuda [1] showed that the geometric tree graph on $U$ is connected. In [4], Hernando et al. showed hamiltonicity and connectivity of a geometric tree graph on $U$ whose points are in convex position. A geometric leaf graph on $U$ is defined by $\mathcal{V}_{U}$ as follows; $\mathbf{t}_{1}$ and $\mathbf{t}_{2} \in \mathcal{V}_{U}$ are said to be adjacent if there exists $u \in U$ such that $\mathbf{t}_{1}-u$ is connected and coincides with $\mathbf{t}_{2}-u$. We shall prove the following theorem in this paper.

THEOREM 3. Let $U$ be the set of points in the plane in general position. Then the geometric leaf graph on $U$ is 2-connected.

Let $\mathbf{t}$ be the non-crossing spanning tree in Figure 1. Let $\mathbf{t}^{\prime}=\left(\mathbf{t}-u u_{1}\right) \cup u u_{2}$ and $\mathbf{t}^{\prime \prime}=\left(\mathbf{t}-v v_{1}\right) \cup v v_{2}$. Then since $\mathbf{t}^{\prime}-u=\mathbf{t}-u$ and this graph is connected, the non-crossing spanning tree $\mathbf{t}^{\prime}$ is adjacent to $\mathbf{t}$ in the geometric leaf graph on $U$. Similarly, $\mathbf{t}^{\prime \prime}$ is adjacent to $\mathbf{t}$. Because any other non-crossing spanning tree on $U$ is not adjacent to $t$, the degree of $t$ in the geometric leaf graph is two. Thus the lower bound of the theorem is the best possible.

Finally, we introduce concepts and notations used in the subsequent arguments. Let $G$ be a non-crossing graph on $U$ and $u \in U$. Let $\tilde{G}$ be a maximal non-crossing graph (i.e. any edge except edges in $E(\tilde{G})$ intersects this graph) on $U \backslash u$ which includes $G-u$ as a subgraph. The vertex $u$ is included in some triangulate region or the infinite region of $\tilde{G}$. In either case, $u$ can be adjacent to at least two vertices in $\tilde{G}$. Since $\tilde{G}$ includes $G-u$, it holds for $G-u$. We denote by $S_{G}(u)$ the set of all the vertices which can be adjacent to $u$ in $G-u$. It is a plain fact that if $S_{G}(u)$ includes only two vertices, then these are adjacent in $G$. We call the edge the shield of the vertex $u$. Since a non-crossing spanning treet $t$ does not include a cycle, there


Figure 2.
exists exactly one path between any vertices $u$ and $v \in U$, denoted by $P_{\mathbf{t}}(u, v)$. A simple path $P=\left(u_{1}, u_{2}, \cdots, u_{l}\right)$ is a path in a non-crossing spanning tree $\mathbf{t}$ such that $u_{1}$ is an endpoint of $\mathbf{t}$ and the degree of any vertex $u_{i}$ is two in $\mathbf{t}$ for $2 \leq i<l$. Let $x \in S_{\mathbf{t}}\left(u_{1}\right) \backslash\left\{u_{2}, u_{3}, \cdots, u_{l-1}\right\}$. Then there exists a natural path from $\mathbf{t}$ to $\mathbf{t}^{\prime}=\left(\mathbf{t}-u_{l-1} u_{l}\right) \cup u_{1} x$. See Figure 2 .

In fact, let $\mathbf{r}_{1}=\left(\mathbf{t}-u_{1} u_{2}\right) \cup u_{1} x$ and

$$
\mathbf{r}_{i}=\left(\mathbf{r}_{i-1}-u_{i} u_{i+1}\right) \cup u_{i} u_{i-1}
$$

for any $i \leq l$. Then $\mathbf{r}_{i}$ is a non-crossing spanning tree and $\mathbf{r}_{i}$ is adjacent to $\mathbf{r}_{i-1}$ in the geometric leaf graph for any $i \leq l$. If $i \neq j$, then $\mathbf{r}_{i} \neq \mathbf{r}_{j}$. Thus

$$
\left(\mathbf{t}, \mathbf{r}_{1}, \mathbf{r}_{2}, \cdots, \mathbf{r}_{l-1}=\mathbf{t}^{\prime}\right)
$$

is a path between $\mathbf{t}$ and $\mathbf{t}^{\prime}$ in the leaf graph. We call the path a short-cut passage determined by the edge $u_{1} x$ and the simple path $P$.

## 2. The proof of Theorem 3.

In the following, we call a geometric leaf graph simply a leaf graph. At first, we shall show that the leaf graph $\mathcal{G}$ of $U$ is connected. Let $\mathbf{t}_{1}$ and $\mathbf{t}_{n}$ be any non-crossing spanning trees on $U$. We find out a path between the graphs by an induction on the number of vertices in $U$.

Suppose that there exists $u \in U$ such that $u$ is an endpoint of $\mathbf{t}_{1}$ and $\mathbf{t}_{n}$. Then there is a path

$$
\left(\mathbf{t}_{1}-u=\mathbf{s}_{1}, \mathbf{s}_{2}, \cdots, \mathbf{s}_{n}=\mathbf{t}_{n}-u\right)
$$

in the leaf graph of $U \backslash u$ by the hypothesis. Let us assume that $\mathbf{s}_{i+1}=\left(\mathbf{s}_{i}-v_{1} v_{i}^{\prime}\right) \cup v_{i} v_{i}^{\prime \prime}$ for any $i$.

Since the interior of the edge $v_{i} v_{i}^{\prime \prime}$ does not intersect $\mathrm{s}_{i}$, we have that $\mathrm{s}_{i} \cup v_{i} v_{i}^{\prime \prime}$ is noncrossing. Thus there exists a vertex $u_{i} \in S_{\mathrm{s}_{i} \cup v_{i} v_{i}^{\prime \prime}}(u)$ which is not $v_{i}$. Then the graph $\mathrm{s}_{i} \cup$ $v_{i} v_{i}^{\prime \prime} \cup u u_{i}$ is non-crossing. Let $\mathbf{r}_{i}=\mathbf{s}_{i} \cup u u_{i}$ and $\mathbf{t}_{i+1}=\mathbf{s}_{i+1} \cup u u_{i}$. These are non-crossing because $\mathbf{r}_{i}$ and $\mathbf{t}_{i+1}$ are subgraphs of $\mathbf{s}_{i} \cup v_{i} v_{i}^{\prime \prime} \cup u u_{i}$. Furthermore $\mathbf{r}_{i}$ is adjacent to $\mathbf{t}_{i}$ and $\mathbf{t}_{i+1}$ since $\mathbf{t}_{i}-u=\mathbf{s}_{i}=\mathbf{r}_{i}-u$ and $\mathbf{r}_{i}-v_{i}=\mathbf{t}_{i+1}-v_{i}$. Especially we denote the non-crossing spanning tree $\mathbf{s}_{n} \cup u u_{n-1}$ by $\mathbf{t}_{n}^{\prime}$. Then we have found out the path

$$
\left(\mathbf{t}_{1}, \mathbf{r}_{1}, \mathbf{t}_{2}, \mathbf{r}_{2}, \cdots, \mathbf{t}_{n-1}, \mathbf{r}_{n-1}, \mathbf{t}_{n}^{\prime}, \mathbf{t}_{n}\right)
$$

Assume that $\mathbf{t}_{1}$ and $\mathbf{t}_{n}$ does not have a common endpoint. Let $u$ and $v$ be endpoints of $\mathbf{t}_{1}$ and $\mathbf{t}_{n}$ respectively. Let $\mathbf{s}$ be an non-crossing spanning tree on $U \backslash\{u, v\}$. Let $u^{\prime} \in S_{\mathbf{s}}(u)$ and $\mathbf{s}^{\prime}=\mathbf{s} \cup u u^{\prime}$. Since $\mathbf{s}^{\prime}$ is non-crossing, there exists a vertex $v^{\prime} \in S_{\mathbf{s}^{\prime}}(v)$ which is not $u$. The non-crossing spanning tree $\mathbf{s}^{\prime \prime}=\mathbf{s}^{\prime} \cup v v^{\prime}$ on $U$ has $u$ and $v$ as endpoints. Since $\mathbf{t}_{1}$ and $\mathbf{s}^{\prime \prime}$ include the common endpoint $u$, there exists a path between the non-crossing spanning trees by the previous argument. Similarly there is a path from $\mathbf{s}^{\prime \prime}$ to $\mathbf{t}_{n}$, showing the connectivity of the leaf graph $\mathcal{G}$.

Next, we shall show the 2-connectivity of the leaf graph by a contradiction. Suppose that $\mathbf{t}$ is a cut vertex of $\mathcal{G}$, with $\mathcal{C}_{1}$ and $\mathcal{C}_{2}$ the connected components of $\mathcal{G}-\mathbf{t}$. Let $\mathbf{t}_{i} \in \mathcal{C}_{i}$ be adjacent to $\mathbf{t}$ in such a way that $\mathbf{t}_{1}=\left(\mathbf{t}-u u_{1}\right) \cup u u_{2}$ and $\mathbf{t}_{2}=\left(\mathbf{t}-v v_{1}\right) \cup v v_{2}$. If $u=v$, then $t_{1}$ is adjacent to $\mathbf{t}_{2}$. Therefore we have $u \neq v$. Let us find out a path joining $\mathbf{t}_{1}$ and $\mathbf{t}_{2}$ which is internally disjoint from $\mathcal{P}=\left(\mathbf{t}_{1}, \mathbf{t}, \mathbf{t}_{2}\right)$. (i.e., does not pass through $\mathbf{t}$.) Notice that the interiors of the edges $u u_{i}$ and $v v_{i}$ do not intersect $\mathbf{t}-\{u, v\}$. Furthermore the interior of the edge $u u_{1}$ does not intersect $v v_{1}$ and $v v_{2}$ and the interior of the edge $u u_{2}$ does not intersect $v v_{1}$.

We divide the arguments into three cases.
Case 1. $u_{2} \neq v$ and $v_{2} \neq u$
Suppose that the interior of the edge $u u_{2}$ does not intersect $v v_{2}$. Then, since the interior of $u u_{2}$ does not intersect $u u_{1}, \mathbf{t}_{1} \cup u u_{1} \cup v v_{2}$ is non-crossing. Thus $\mathbf{s}=\left(\mathbf{t}_{1}-v v_{1}\right) \cup v v_{2} \subset$ $\mathbf{t}_{1} \cup u u_{1} \cup v v_{2}$ is non-crossing and is adjacent to $\mathbf{t}_{1}$. Since $v_{2}$ is not $u$, the vertex $u$ is an endpoint in $\mathbf{s}$. Therefore $\mathbf{s}$ is adjacent to $\mathbf{t}_{2}$ in the leaf graph. Because $\mathbf{s} \neq \mathbf{t}$, the path $\mathcal{Q}=\left(\mathbf{t}_{1}, \mathbf{s}, \mathbf{t}_{2}\right)$ is internally disjoint from $\mathcal{P}$.

Assume that $u u_{2}$ intersects $v v_{2}$. Let $\mathbf{r}=\left(\mathbf{t}_{1}-u u_{2}\right) \cup v v_{2}$. If there exists a vertex $x \in S_{r}(u)$ which is not $v$ and $u_{1}$, then there is a path

$$
\mathcal{Q}=\left(\mathbf{t}_{1}, \mathbf{s}, \mathbf{s}^{\prime}, \mathbf{t}_{2}\right)
$$

where $\mathbf{s}=\left(\mathbf{t}_{1}-u u_{2}\right) \cup u x$ and $\mathbf{s}^{\prime}=\left(\mathbf{s}-v v_{1}\right) \cup v v_{2}$. Because $\mathbf{s}$ and $\mathbf{s}^{\prime}$ include the edge $u x$, the path does not pass through $\mathbf{t}$. If $S_{\mathbf{r}}(u)=\left\{v, u_{1}\right\}$, then $v u_{1}$ is a shield of $u$ in $\mathbf{r}$. Because $v$ is adjacent to exactly two vertices in $\mathbf{r}$, the vertex $u_{1}$ is $v_{1}$ or $v_{2}$. If $u_{1}=v_{1}$, then the interior of the shield $v v_{1}=v u_{1}$ intersect $u u_{2}$. A contradiction. Thus the vertex $u_{1}$ is $v_{2}$.

Let $\mathbf{r}^{\prime}=\mathbf{t}_{1} \cup u u_{1}$. If $S_{\mathbf{r}^{\prime}}(v) \backslash\left\{u, v_{1}\right\} \neq \emptyset$, then there exists a path between $\mathbf{t}_{1}$ and $\mathbf{t}_{2}$ which is internally disjoint from $\mathcal{P}$ as before. If such a vertex does not exist, then $u v_{1}$ is a shield of


Figure 3.
$v$ in $\mathbf{r}^{\prime}$. Then vertex $u$ is adjacent to exactly $u_{1}$ and $u_{2}$ in $\mathbf{r}^{\prime}$. If $v_{1}=u_{1}$, then the interior of the shield $u v_{1}=u u_{1}$ intersects $v v_{2}$. Thus we have $v_{1}=u_{2}$. Because the edge $v v_{2}$ is a shield of $u$ in $\mathbf{r}$ and the edge $u u_{2}$ is a shield of $v$ in $\mathbf{r}^{\prime}$, any points in $U \backslash\left\{u, v, u_{1}=v_{2}, u_{2}=v_{1}\right\}$ are contains in the region $R$ in Figure 3.

If there is not an endpoint except $u$ and $v$ and $u_{1}=v_{2}$ in $\mathbf{t}_{1}$, then $\mathbf{s}_{1}=\left(\mathbf{t}_{1}-u u_{2}\right) \cup u v$ is a Hamiltonian path. Therefore there exists a short-cut passage determined by $u u_{1}$ and $P_{\mathbf{s}_{1}}\left(v, v_{2}=u_{1}\right)$, denoted by $\left(\mathbf{s}_{1}, \mathbf{s}_{2}, \cdots, \mathbf{s}_{l}\right)$. The non-crossing spanning tree $\mathbf{s}_{l}$ is ( $\mathbf{s}_{1}-$ $\left.v v_{1}\right) \cup u u_{1}=\left(\mathbf{t}_{2}-v v_{2}\right) \cup v u$. Because $v$ is an endpoint of $\mathbf{s}_{l}$, the non-crossing spanning tree is adjacent to $\mathbf{t}_{2}$. Thus we obtained a path

$$
\mathcal{Q}=\left(\mathbf{t}_{1}, \mathbf{s}_{1}, \mathbf{s}_{2}, \cdots, \mathbf{s}_{l}, \mathbf{t}_{2}\right)
$$

which does not pass through $\mathbf{t}$.
Suppose that there is an endpoint $w$ other than $u$ and $v$ and $u_{1}=v_{2}$ in $\mathbf{t}_{1}$. Since $u_{2}=v_{1}$ is not an endpoint in $\mathbf{t}_{1}, U$ includes at least five points. Two different vertices do not have a common shield if the number of vertices in a graph is greater than four. Thus $u u_{2}=u v_{1}$ is not a shield of $w$. Furthermore because $w \in R, S_{\mathbf{t}_{1}}(w)$ contains at least two vertices which are not $u$ and $v$. Assume that $w w_{1} \in E\left(\mathbf{t}_{1}\right)$ and let $w_{2} \in S_{\mathbf{t}_{1}}(w) \backslash\left\{u, v, w_{1}\right\}$. Then the interior of the edge $w w_{2} \subset R$ does not intersect $u u_{i}$ and $v v_{i}$. Therefore, after transferring the edge $w w_{1}$ to $w w_{2}$, we move the edges $u u_{2}$ and $v v_{1}$ to the desired place. It is clear that the transformations induces a path from $\mathbf{t}_{1}$ to $\mathbf{t}_{2}$ which does not pass through $\mathbf{t}$.

## Case 2. $u_{2}=v$ and $v_{2} \neq u$

The interior of the edge $u u_{2}$ does not intersect $v v_{2}$ in the present case. Thus $\mathbf{r}=\mathbf{t}_{1} \cup$ $u u_{1} \cup v v_{2}$ is non-crossing. If $S_{\mathrm{r}}(u) \backslash\left\{v=u_{2}, u_{1}\right\} \neq \emptyset$, then there exists a path from $\mathbf{t}_{1}$ to $\mathbf{t}_{2}$ which does not pass through $\mathbf{t}$ as before. If such a vertex does not exist, then the edge $v u_{1}$ is a shield of $u$ in $\mathbf{r}$. Thus we have that the vertex $u_{1}$ is $v_{1}$ or $v_{2}$.

If there is not an endpoint in $\mathbf{r}$, then $\mathbf{t}_{1}$ is a Hamiltonian path. See Figure 4. Thus it is easy to find out a path between $\mathbf{t}_{1}$ and $\mathbf{t}_{2}$ which is internally disjoint from $\mathcal{P}$.

Therefore we suppose that there exists an endpoint $w$ in $\mathbf{r}$. If $S_{\mathbf{r}}(w) \backslash\left\{v, v_{i} \neq u_{1}\right\} \neq \emptyset$, then we can find out a path between $\mathbf{t}_{1}$ and $\mathbf{t}_{2}$ as follows. Assume that $w w_{1} \in E\left(\mathbf{t}_{1}\right)$ and let $w_{2} \in S_{\mathbf{r}}(w)$ be neither $v$ nor $w_{1}$ and let $\mathbf{s}=\left(\mathbf{t}_{1}-w w_{1}\right) \cup w w_{2}$. Since $w \notin S_{\mathbf{r}}(u)$, the vertex $w_{2}$ is not $u$. Therefore $u$ is also an endpoint of $\mathbf{s}$. Thus the non-crossing spanning tree $\mathbf{s}^{\prime}=\left(\mathbf{s}-u u_{2}\right) \cup u u_{1}$ is adjacent to $\mathbf{s}$. Furthermore since $u_{1}$ is not $v=u_{2}$, the non-crossing


Figure 4.


Figure 5.
spanning tree $\mathbf{s}^{\prime}$ is adjacent to $\mathbf{s}^{\prime \prime}=\left(\mathbf{s}^{\prime}-v v_{1}\right) \cup v v_{2}$. Then $\mathbf{s}^{\prime \prime}=\left(\mathbf{t}_{2}-w w_{1}\right) \cup w w_{2}$. Thus there is a path

$$
\mathcal{Q}=\left(\mathbf{t}_{1}, \mathbf{s}, \mathbf{s}^{\prime}, \mathbf{s}^{\prime \prime}, \mathbf{t}_{2}\right)
$$

which does not pass through $\mathbf{t}$.
Let $v_{i} \in\left\{v_{1}, v_{2}\right\}$ be not $u_{1}$. If $S_{\mathbf{r}}(w)=\left\{v, v_{i}\right\}$, then $v v_{i}$ is a shield of $w$. It is clear that $\mathbf{r}$ contains at least five vertices. Thus the only endpoint in $\mathbf{r}$ is $w$ because no two vertices admit a common shield. Since $v$ is not adjacent to $w$, we have $w v_{i} \in E\left(\mathbf{t}_{1}\right)$. Let $\mathbf{s}=$ $\left(\mathbf{t}_{1}-w v_{i}\right) \cup w v$. Then $\mathcal{P}_{\mathbf{s}}\left(v, v_{2}\right)$ is a simple path. See Figure 5. Thus there exists a short-cut passage determined by the edge $v v_{2}$ and the simple path. The short-cut passage is a path from $\mathbf{s}$ to $\mathbf{s}^{\prime}=\left(\mathbf{s}-\boldsymbol{v} v_{1}\right) \cup \boldsymbol{v} v_{2}$. Since $u$ is also an endpoint of $\mathbf{s}^{\prime}$, it is adjacent to $\mathbf{t}_{2}$. Now we get a path between $\mathbf{t}_{1}$ and $\mathbf{t}_{2}$ which does not pass through $\mathbf{t}$.

Case 3. $u_{2}=v$ and $v_{2}=u$
If there is not an endpoint in $r=t_{1} \cup u u_{1}$, then the non-crossing spanning tree $t_{1}$ is a Hamiltonian path. Therefore there exists a short-cut passage determined by the edge $u u_{1}$ and the path $P_{\mathbf{t}_{1}}\left(v, u_{1}\right)$. The short-cut passage is a path from $\mathbf{t}_{1}$ to $\mathbf{t}_{2}=\left(\mathbf{t}_{1}-v v_{1}\right) \cup u u_{1}$ which is internally disjoint from $\mathcal{P}$.

Suppose that there exists an endpoint $w$ in $\mathbf{r}$ such that $S_{\mathbf{r}}(w)$ contains at least three vertices. Assume that $w w_{1} \in E(\mathbf{r})$ and let $w_{2} \in S_{\mathbf{r}}(w)$ be neither $w_{1}$ nor $u$. Then the noncrossing spanning tree $\mathbf{s}_{1}=\left(\mathbf{t}_{1}-w w_{1}\right) \cup w w_{2}$ is adjacent to $\mathbf{t}_{1}$. Since $u$ is also an endpoint, we transfer the edge $u u_{2}$ to $u u_{1}$ to obtain $\mathbf{s}_{2}=\left(\mathbf{s}_{1}-u u_{2}\right) \cup u u_{1}$. Let $w_{3} \in S_{\mathbf{r}}(w)$ be neither


Figure 6.
$w_{1}$ nor $v$ and let $\mathbf{s}_{3}=\left(\mathbf{s}_{2}-w w_{2}\right) \cup w w_{3}$. Because it is adjacent to $\mathbf{s}_{4}=\left(\mathbf{s}_{3}-v v_{1}\right) \cup v v_{2}=$ $\left(\mathbf{t}_{2}-w w_{1}\right) \cup w w_{3}$, we have found out a path

$$
\mathcal{Q}=\left(\mathbf{t}_{1}, \mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{s}_{3}, \mathbf{s}_{4}, \mathbf{t}_{2}\right)
$$

which does not pass through $\mathbf{t}$.
Assume that any endpoint of $\mathbf{r}$ can be adjacent to exactly two vertices. If there exists an endpoint in $\mathbf{r}$ whose shield is not incident to $u$ and $v$, then a desired path between $\mathbf{t}_{1}$ and $\mathbf{t}_{2}$ is easy to find out.

Thus we suppose that such an endpoint does not exist in $\mathbf{r}$. Notice that there is not an endpoint with shield $u v$ because $u$ and $v$ are not adjacent to an endpoint in $\mathbf{r}$. Therefore the endpoints in $\mathbf{r}$ whose shield is incident to $u$ or $v$ are at most two. See Figure 6. We transfer the edge $w w_{1} \in E\left(\mathbf{t}_{1}\right)$ to $w u$ or $w v$ for any endpoint $w$ in $\mathbf{r}$. Then the path between $u_{1}$ and $v$ in the non-crossing spanning tree is simple. Thus there exists a short-cut passage determined by the edge $u u_{1}$ and this simple path. At the endpoint of the short-cut passage, we transfer the edge $w u$ or $w v$ back to the original place. Then we get the non-crossing spanning tree $\mathbf{t}_{2}$. Therefore we have found out the desired path.

## References

[ 1 ] D. Avis and K. Fukuda, Reverse search for enumeration, Discrete Appl. Math. 65 (1999), 21-46.
[ 2 ] H. J. Broersma and Li Xueliang, The connectivity of the leaf-exchange spanning tree graph of a graph, Ars Combin. 43 (1996), 225-231.
[3] R. Cummings, Hamilton circuits in tree graphs, IEEE Trans. Circuit Theory, 13 (1966), 82-90.
[ 4 ] M. C. Hernando, F. Hurtado, A. Márquez, M. Mora and M. Noy, Geometric tree graphs of points in convex position, Discrete Appl. Math. 93 (1999), 51-66.
[ 5 ] C. Holzmann and F. Harary, On the tree graph of a matroid, SIAM J. Appl. Math. 22 (1972) 187-193.
[6] Y. Ikebe, M. Perles, A. Tamura and S. Tokunaga, The rooted tree embedding problem into points on the plane, Discrete Comput. Geom. 11 (1994), 51-63.
[7] A. KANEKO and K. YOSHIMOTO, The connectivities of leaf graphs of 2-connected graphs, J. Combin. Theory Ser. B 76 (1999), 155-169.
[ 8 ] G. LiU, A lower bound on connectivities of matroid base graph, Discrete Math. 69 (1988), 55-60.
[9] K. Yoshimoto, The connectivities of trunk graphs of 2-connected graphs, Ars Combin. (to appear).

Present Addresses:<br>Atsushi Kaneko<br>Department of Computer Science and Communication Engineering, Kogakuin University,<br>Nishi-Shinjuku, Shinjuku-ku, Tokyo, 163-8677 Japan.<br>e-mail: kaneko@ee.kogakuin.ac.jp<br>Kiyoshi Yoshimoto<br>Department of Mathematics, College of Science and Technology, Nihon University,<br>Kanda-Surugadai, Chiyoda-ku, Tokyo, 101-8308 Japan.<br>e-mail: yoshimoto@math.cst.nihon-u.ac.jp

