Токуо J. Матн. Vol. 24, No. 2, 2001

The Connectivities of Leaf Graphs of Sets of Points in the Plane

Atsushi KANEKO and Kiyoshi YOSHIMOTO

Kogakuin University and Nihon University

(Communicated by K. Kobayasi)

Abstract. Let U be a finite set of points in general position in the plane. We consider the following graph \mathcal{G} determined by U. A vertex of \mathcal{G} is a spanning tree of U whose edges are straight line segments and do not cross. Two such trees t and t' are adjacent if for some vertex $u \in U$, $\mathbf{t} - u$ is connected and coincides with $\mathbf{t}' - u$. We show that \mathcal{G} is 2-connected, which is the best possible result.

1. Introduction.

Let G be a connected graph and \mathcal{V}_G the set of all the spanning trees of G. We define an adjacency relation on \mathcal{V}_G so that two spanning trees \mathbf{t}_1 and $\mathbf{t}_2 \in \mathcal{V}_G$ are adjacent if and only if there exist edges $e_i \in E(\mathbf{t}_i)$ such that

$$\mathbf{t}_1 - e_1 = \mathbf{t}_2 - e_2 \,. \tag{1}$$

The graph thus obtained is called *a tree graph*. The lower bound of the connectivities of a tree graph was shown by Liu.

THEOREM 1 (Liu [8]). The tree graph of a connected graph G = (V, E) is 2(|E| - |V| + 1)-connected.

We can consider two subgraphs of a tree graph as follows. If an edge is incident to endvertices in a spanning tree \mathbf{t} , then we call it an *outer edge*. An edge is not outer is called *inner*. In the equation (1), the edge e_1 is an outer edge in \mathbf{t}_1 if and only if e_2 is also outer in \mathbf{t}_2 . A *leaf graph* is defined on \mathcal{V}_G as follows; \mathbf{t}_1 and $\mathbf{t}_2 \in \mathcal{V}_G$ are said to be adjacent if there exist outer edges $e_i \in E(\mathbf{t}_i)$ which satisfy the equation (1). The authors showed the following theorem.

THEOREM 2 (Kaneko and Yoshimoto [7]). Let G be a 2-connected graph of minimum degree δ . Then the leaf graph of G is $(2\delta - 2)$ -connected.

We can define adjacency relation of a leaf graph as follows; \mathbf{t}_1 and \mathbf{t}_2 are adjacent if there exists a vertex $u \in V(G)$ such that $\mathbf{t}_1 - u$ is connected and coincides with $\mathbf{t}_2 - u$. On the other hand, a trunk graph is defined on the set \mathcal{V}_G^* of all the spanning trees except stars as follows; \mathbf{t}_1 and $\mathbf{t}_2 \in \mathcal{V}_G^*$ are said to be adjacent if there exist inner edges $e_i \in E(\mathbf{t}_i)$ which satisfy the

Received October 10, 2000

FIGURE 1.

equation (1). Yoshimoto [9] showed that if G is a 2-connected graph with at least five vertices and if G is k-edge connected, then the trunk graph of G is (k - 1)-connected.

In this paper, we consider a geometric version of a leaf graph. Let U be a set of n points in the plane which is in general position, i.e., no three points in U are collinear. A graph on U whose edges are straight line segments joining two vertices in U and do not cross is called *a non-crossing graph* on U. Let \mathcal{V}_U be the set of all the non-crossing spanning trees on U. Ikebe et al. [6] showed that any rooted tree with n vertices can be embedded as a non-crossing spanning tree on a given set U, the root being mapped to an arbitrary specified point of U.

A geometric tree graph on U is defined on the set \mathcal{V}_U as follows; \mathbf{t}_1 and $\mathbf{t}_2 \in \mathcal{V}_U$ are said to be adjacent if there exist edges $e_i \in E(\mathbf{t}_i)$ which satisfy the equation (1). Avis and Fukuda [1] showed that the geometric tree graph on U is connected. In [4], Hernando et al. showed hamiltonicity and connectivity of a geometric tree graph on U whose points are in convex position. A geometric leaf graph on U is defined by \mathcal{V}_U as follows; \mathbf{t}_1 and $\mathbf{t}_2 \in \mathcal{V}_U$ are said to be adjacent if there exists $u \in U$ such that $\mathbf{t}_1 - u$ is connected and coincides with $\mathbf{t}_2 - u$. We shall prove the following theorem in this paper.

THEOREM 3. Let U be the set of points in the plane in general position. Then the geometric leaf graph on U is 2-connected.

Let t be the non-crossing spanning tree in Figure 1. Let $\mathbf{t}' = (\mathbf{t} - uu_1) \cup uu_2$ and $\mathbf{t}'' = (\mathbf{t} - vv_1) \cup vv_2$. Then since $\mathbf{t}' - u = \mathbf{t} - u$ and this graph is connected, the non-crossing spanning tree t' is adjacent to t in the geometric leaf graph on U. Similarly, t'' is adjacent to t. Because any other non-crossing spanning tree on U is not adjacent to t, the degree of t in the geometric leaf graph is two. Thus the lower bound of the theorem is the best possible.

Finally, we introduce concepts and notations used in the subsequent arguments. Let G be a non-crossing graph on U and $u \in U$. Let \tilde{G} be a maximal non-crossing graph (i.e. any edge except edges in $E(\tilde{G})$ intersects this graph) on $U \setminus u$ which includes G - u as a subgraph. The vertex u is included in some triangulate region or the infinite region of \tilde{G} . In either case, u can be adjacent to at least two vertices in \tilde{G} . Since \tilde{G} includes G - u, it holds for G - u. We denote by $S_G(u)$ the set of all the vertices which can be adjacent to u in G - u. It is a plain fact that if $S_G(u)$ includes only two vertices, then these are adjacent in G. We call the edge the *shield* of the vertex u. Since a non-crossing spanning treet \mathbf{t} does not include a cycle, there

FIGURE 2.

exists exactly one path between any vertices u and $v \in U$, denoted by $P_t(u, v)$. A simple path $P = (u_1, u_2, \dots, u_l)$ is a path in a non-crossing spanning tree t such that u_1 is an endpoint of t and the degree of any vertex u_i is two in t for $2 \le i < l$. Let $x \in S_t(u_1) \setminus \{u_2, u_3, \dots, u_{l-1}\}$. Then there exists a natural path from t to $t' = (t - u_{l-1}u_l) \cup u_1 x$. See Figure 2.

In fact, let $\mathbf{r}_1 = (\mathbf{t} - u_1 u_2) \cup u_1 x$ and

$$\mathbf{r}_i = (\mathbf{r}_{i-1} - u_i u_{i+1}) \cup u_i u_{i-1}$$

for any $i \leq l$. Then \mathbf{r}_i is a non-crossing spanning tree and \mathbf{r}_i is adjacent to \mathbf{r}_{i-1} in the geometric leaf graph for any $i \leq l$. If $i \neq j$, then $\mathbf{r}_i \neq \mathbf{r}_j$. Thus

$$(t, r_1, r_2, \cdots, r_{l-1} = t')$$

is a path between t and t' in the leaf graph. We call the path a *short-cut passage* determined by the edge u_1x and the simple path P.

2. The proof of Theorem 3.

In the following, we call a geometric leaf graph simply a leaf graph. At first, we shall show that the leaf graph \mathcal{G} of U is connected. Let \mathbf{t}_1 and \mathbf{t}_n be any non-crossing spanning trees on U. We find out a path between the graphs by an induction on the number of vertices in U.

Suppose that there exists $u \in U$ such that u is an endpoint of \mathbf{t}_1 and \mathbf{t}_n . Then there is a path

$$(\mathbf{t}_1 - u = \mathbf{s}_1, \mathbf{s}_2, \cdots, \mathbf{s}_n = \mathbf{t}_n - u)$$

in the leaf graph of $U \setminus u$ by the hypothesis. Let us assume that $\mathbf{s}_{i+1} = (\mathbf{s}_i - v_1 v_i) \cup v_i v_i''$ for any *i*.

Since the interior of the edge $v_i v_i''$ does not intersect \mathbf{s}_i , we have that $\mathbf{s}_i \cup v_i v_i''$ is noncrossing. Thus there exists a vertex $u_i \in S_{\mathbf{s}_i \cup v_i v_i''}(u)$ which is not v_i . Then the graph $\mathbf{s}_i \cup v_i v_i'' \cup uu_i$ is non-crossing. Let $\mathbf{r}_i = \mathbf{s}_i \cup uu_i$ and $\mathbf{t}_{i+1} = \mathbf{s}_{i+1} \cup uu_i$. These are non-crossing because \mathbf{r}_i and \mathbf{t}_{i+1} are subgraphs of $\mathbf{s}_i \cup v_i v_i'' \cup uu_i$. Furthermore \mathbf{r}_i is adjacent to \mathbf{t}_i and \mathbf{t}_{i+1} since $\mathbf{t}_i - u = \mathbf{s}_i = \mathbf{r}_i - u$ and $\mathbf{r}_i - v_i = \mathbf{t}_{i+1} - v_i$. Especially we denote the non-crossing spanning tree $\mathbf{s}_n \cup uu_{n-1}$ by \mathbf{t}'_n . Then we have found out the path

$$(\mathbf{t}_1, \mathbf{r}_1, \mathbf{t}_2, \mathbf{r}_2, \cdots, \mathbf{t}_{n-1}, \mathbf{r}_{n-1}, \mathbf{t}'_n, \mathbf{t}_n).$$

Assume that \mathbf{t}_1 and \mathbf{t}_n does not have a common endpoint. Let u and v be endpoints of \mathbf{t}_1 and \mathbf{t}_n respectively. Let \mathbf{s} be an non-crossing spanning tree on $U \setminus \{u, v\}$. Let $u' \in S_{\mathbf{s}}(u)$ and $\mathbf{s}' = \mathbf{s} \cup uu'$. Since \mathbf{s}' is non-crossing, there exists a vertex $v' \in S_{\mathbf{s}'}(v)$ which is not u. The non-crossing spanning tree $\mathbf{s}'' = \mathbf{s}' \cup vv'$ on U has u and v as endpoints. Since \mathbf{t}_1 and \mathbf{s}'' include the common endpoint u, there exists a path between the non-crossing spanning trees by the previous argument. Similarly there is a path from \mathbf{s}'' to \mathbf{t}_n , showing the connectivity of the leaf graph \mathcal{G} .

Next, we shall show the 2-connectivity of the leaf graph by a contradiction. Suppose that **t** is a cut vertex of \mathcal{G} , with \mathcal{C}_1 and \mathcal{C}_2 the connected components of $\mathcal{G} - \mathbf{t}$. Let $\mathbf{t}_i \in \mathcal{C}_i$ be adjacent to **t** in such a way that $\mathbf{t}_1 = (\mathbf{t} - uu_1) \cup uu_2$ and $\mathbf{t}_2 = (\mathbf{t} - vv_1) \cup vv_2$. If u = v, then \mathbf{t}_1 is adjacent to \mathbf{t}_2 . Therefore we have $u \neq v$. Let us find out a path joining \mathbf{t}_1 and \mathbf{t}_2 which is internally disjoint from $\mathcal{P} = (\mathbf{t}_1, \mathbf{t}, \mathbf{t}_2)$. (i.e., does not pass through \mathbf{t} .) Notice that the interiors of the edges uu_i and vv_i do not intersect $\mathbf{t} - \{u, v\}$. Furthermore the interior of the edge uu_1 does not intersect vv_1 .

We divide the arguments into three cases.

Case 1. $u_2 \neq v$ and $v_2 \neq u$

Suppose that the interior of the edge uu_2 does not intersect vv_2 . Then, since the interior of uu_2 does not intersect uu_1 , $\mathbf{t}_1 \cup uu_1 \cup vv_2$ is non-crossing. Thus $\mathbf{s} = (\mathbf{t}_1 - vv_1) \cup vv_2 \subset$ $\mathbf{t}_1 \cup uu_1 \cup vv_2$ is non-crossing and is adjacent to \mathbf{t}_1 . Since v_2 is not u, the vertex u is an endpoint in \mathbf{s} . Therefore \mathbf{s} is adjacent to \mathbf{t}_2 in the leaf graph. Because $\mathbf{s} \neq \mathbf{t}$, the path $\mathcal{Q} = (\mathbf{t}_1, \mathbf{s}, \mathbf{t}_2)$ is internally disjoint from \mathcal{P} .

Assume that uu_2 intersects vv_2 . Let $\mathbf{r} = (\mathbf{t}_1 - uu_2) \cup vv_2$. If there exists a vertex $x \in S_r(u)$ which is not v and u_1 , then there is a path

$$\mathcal{Q}=(\mathbf{t}_1,\mathbf{s},\mathbf{s}',\mathbf{t}_2)\,,$$

where $\mathbf{s} = (\mathbf{t}_1 - uu_2) \cup ux$ and $\mathbf{s}' = (\mathbf{s} - vv_1) \cup vv_2$. Because \mathbf{s} and \mathbf{s}' include the edge ux, the path does not pass through \mathbf{t} . If $S_{\mathbf{r}}(u) = \{v, u_1\}$, then vu_1 is a shield of u in \mathbf{r} . Because v is adjacent to exactly two vertices in \mathbf{r} , the vertex u_1 is v_1 or v_2 . If $u_1 = v_1$, then the interior of the shield $vv_1 = vu_1$ intersect uu_2 . A contradiction. Thus the vertex u_1 is v_2 .

Let $\mathbf{r}' = \mathbf{t}_1 \cup uu_1$. If $S_{\mathbf{r}'}(v) \setminus \{u, v_1\} \neq \emptyset$, then there exists a path between \mathbf{t}_1 and \mathbf{t}_2 which is internally disjoint from \mathcal{P} as before. If such a vertex does not exist, then uv_1 is a shield of

562

CONNECTIVITIES OF LEAF GRAPHS

FIGURE 3.

v in \mathbf{r}' . Then vertex u is adjacent to exactly u_1 and u_2 in \mathbf{r}' . If $v_1 = u_1$, then the interior of the shield $uv_1 = uu_1$ intersects vv_2 . Thus we have $v_1 = u_2$. Because the edge vv_2 is a shield of u in \mathbf{r} and the edge uu_2 is a shield of v in \mathbf{r}' , any points in $U \setminus \{u, v, u_1 = v_2, u_2 = v_1\}$ are contains in the region R in Figure 3.

If there is not an endpoint except u and v and $u_1 = v_2$ in \mathbf{t}_1 , then $\mathbf{s}_1 = (\mathbf{t}_1 - uu_2) \cup uv$ is a Hamiltonian path. Therefore there exists a short-cut passage determined by uu_1 and $P_{\mathbf{s}_1}(v, v_2 = u_1)$, denoted by $(\mathbf{s}_1, \mathbf{s}_2, \dots, \mathbf{s}_l)$. The non-crossing spanning tree \mathbf{s}_l is $(\mathbf{s}_1 - vv_1) \cup uu_1 = (\mathbf{t}_2 - vv_2) \cup vu$. Because v is an endpoint of \mathbf{s}_l , the non-crossing spanning tree is adjacent to \mathbf{t}_2 . Thus we obtained a path

$$\mathcal{Q} = (\mathbf{t}_1, \mathbf{s}_1, \mathbf{s}_2, \cdots, \mathbf{s}_l, \mathbf{t}_2)$$

which does not pass through t.

Suppose that there is an endpoint w other than u and v and $u_1 = v_2$ in \mathbf{t}_1 . Since $u_2 = v_1$ is not an endpoint in \mathbf{t}_1 , U includes at least five points. Two different vertices do not have a common shield if the number of vertices in a graph is greater than four. Thus $uu_2 = uv_1$ is not a shield of w. Furthermore because $w \in R$, $S_{\mathbf{t}_1}(w)$ contains at least two vertices which are not u and v. Assume that $ww_1 \in E(\mathbf{t}_1)$ and let $w_2 \in S_{\mathbf{t}_1}(w) \setminus \{u, v, w_1\}$. Then the interior of the edge $ww_2 \subset R$ does not intersect uu_i and vv_i . Therefore, after transferring the edge ww_1 to ww_2 , we move the edges uu_2 and vv_1 to the desired place. It is clear that the transformations induces a path from \mathbf{t}_1 to \mathbf{t}_2 which does not pass through \mathbf{t} .

Case 2. $u_2 = v$ and $v_2 \neq u$

The interior of the edge uu_2 does not intersect vv_2 in the present case. Thus $\mathbf{r} = \mathbf{t}_1 \cup uu_1 \cup vv_2$ is non-crossing. If $S_{\mathbf{r}}(u) \setminus \{v = u_2, u_1\} \neq \emptyset$, then there exists a path from \mathbf{t}_1 to \mathbf{t}_2 which does not pass through \mathbf{t} as before. If such a vertex does not exist, then the edge vu_1 is a shield of u in \mathbf{r} . Thus we have that the vertex u_1 is v_1 or v_2 .

If there is not an endpoint in \mathbf{r} , then \mathbf{t}_1 is a Hamiltonian path. See Figure 4. Thus it is easy to find out a path between \mathbf{t}_1 and \mathbf{t}_2 which is internally disjoint from \mathcal{P} .

Therefore we suppose that there exists an endpoint w in \mathbf{r} . If $S_{\mathbf{r}}(w) \setminus \{v, v_i \neq u_1\} \neq \emptyset$, then we can find out a path between \mathbf{t}_1 and \mathbf{t}_2 as follows. Assume that $ww_1 \in E(\mathbf{t}_1)$ and let $w_2 \in S_{\mathbf{r}}(w)$ be neither v nor w_1 and let $\mathbf{s} = (\mathbf{t}_1 - ww_1) \cup ww_2$. Since $w \notin S_{\mathbf{r}}(u)$, the vertex w_2 is not u. Therefore u is also an endpoint of \mathbf{s} . Thus the non-crossing spanning tree $\mathbf{s}' = (\mathbf{s} - uu_2) \cup uu_1$ is adjacent to \mathbf{s} . Furthermore since u_1 is not $v = u_2$, the non-crossing

FIGURE 5.

spanning tree s' is adjacent to $\mathbf{s}'' = (\mathbf{s}' - vv_1) \cup vv_2$. Then $\mathbf{s}'' = (\mathbf{t}_2 - ww_1) \cup ww_2$. Thus there is a path

$$\mathcal{Q} = (\mathbf{t}_1, \mathbf{s}, \mathbf{s}', \mathbf{s}'', \mathbf{t}_2)$$

which does not pass through t.

Let $v_i \in \{v_1, v_2\}$ be not u_1 . If $S_r(w) = \{v, v_i\}$, then vv_i is a shield of w. It is clear that \mathbf{r} contains at least five vertices. Thus the only endpoint in \mathbf{r} is w because no two vertices admit a common shield. Since v is not adjacent to w, we have $wv_i \in E(\mathbf{t}_1)$. Let $\mathbf{s} =$ $(\mathbf{t}_1 - wv_i) \cup wv$. Then $\mathcal{P}_{\mathbf{s}}(v, v_2)$ is a simple path. See Figure 5. Thus there exists a short-cut passage determined by the edge vv_2 and the simple path. The short-cut passage is a path from \mathbf{s} to $\mathbf{s}' = (\mathbf{s} - vv_1) \cup vv_2$. Since u is also an endpoint of \mathbf{s}' , it is adjacent to \mathbf{t}_2 . Now we get a path between \mathbf{t}_1 and \mathbf{t}_2 which does not pass through \mathbf{t} .

Case 3. $u_2 = v$ and $v_2 = u$

If there is not an endpoint in $\mathbf{r} = \mathbf{t}_1 \cup uu_1$, then the non-crossing spanning tree \mathbf{t}_1 is a Hamiltonian path. Therefore there exists a short-cut passage determined by the edge uu_1 and the path $P_{\mathbf{t}_1}(v, u_1)$. The short-cut passage is a path from \mathbf{t}_1 to $\mathbf{t}_2 = (\mathbf{t}_1 - vv_1) \cup uu_1$ which is internally disjoint from \mathcal{P} .

Suppose that there exists an endpoint w in \mathbf{r} such that $S_{\mathbf{r}}(w)$ contains at least three vertices. Assume that $ww_1 \in E(\mathbf{r})$ and let $w_2 \in S_{\mathbf{r}}(w)$ be neither w_1 nor u. Then the non-crossing spanning tree $\mathbf{s}_1 = (\mathbf{t}_1 - ww_1) \cup ww_2$ is adjacent to \mathbf{t}_1 . Since u is also an endpoint, we transfer the edge uu_2 to uu_1 to obtain $\mathbf{s}_2 = (\mathbf{s}_1 - uu_2) \cup uu_1$. Let $w_3 \in S_{\mathbf{r}}(w)$ be neither

 w_1 nor v and let $\mathbf{s}_3 = (\mathbf{s}_2 - ww_2) \cup ww_3$. Because it is adjacent to $\mathbf{s}_4 = (\mathbf{s}_3 - vv_1) \cup vv_2 = (\mathbf{t}_2 - ww_1) \cup ww_3$, we have found out a path

$$Q = (\mathbf{t}_1, \mathbf{s}_1, \mathbf{s}_2, \mathbf{s}_3, \mathbf{s}_4, \mathbf{t}_2)$$

which does not pass through t.

Assume that any endpoint of \mathbf{r} can be adjacent to exactly two vertices. If there exists an endpoint in \mathbf{r} whose shield is not incident to u and v, then a desired path between \mathbf{t}_1 and \mathbf{t}_2 is easy to find out.

Thus we suppose that such an endpoint does not exist in **r**. Notice that there is not an endpoint with shield uv because u and v are not adjacent to an endpoint in **r**. Therefore the endpoints in **r** whose shield is incident to u or v are at most two. See Figure 6. We transfer the edge $ww_1 \in E(\mathbf{t}_1)$ to wu or wv for any endpoint w in **r**. Then the path between u_1 and v in the non-crossing spanning tree is simple. Thus there exists a short-cut passage determined by the edge uu_1 and this simple path. At the endpoint of the short-cut passage, we transfer the edge wu or wv back to the original place. Then we get the non-crossing spanning tree \mathbf{t}_2 . Therefore we have found out the desired path.

References

- [1] D. AVIS and K. FUKUDA, Reverse search for enumeration, Discrete Appl. Math. 65 (1999), 21-46.
- [2] H. J. BROERSMA and LI XUELIANG, The connectivity of the leaf-exchange spanning tree graph of a graph, Ars Combin. 43 (1996), 225–231.
- [3] R. CUMMINGS, Hamilton circuits in tree graphs, IEEE Trans. Circuit Theory, 13 (1966), 82–90.
- [4] M. C. HERNANDO, F. HURTADO, A. MÁRQUEZ, M. MORA and M. NOY, Geometric tree graphs of points in convex position, Discrete Appl. Math. 93 (1999), 51–66.
- [5] C. HOLZMANN and F. HARARY, On the tree graph of a matroid, SIAM J. Appl. Math. 22 (1972) 187–193.
- [6] Y. IKEBE, M. PERLES, A. TAMURA and S. TOKUNAGA, The rooted tree embedding problem into points on the plane, Discrete Comput. Geom. 11 (1994), 51-63.
- [7] A. KANEKO and K. YOSHIMOTO, The connectivities of leaf graphs of 2-connected graphs, J. Combin. Theory Ser. B 76 (1999), 155-169.
- [8] G. LIU, A lower bound on connectivities of matroid base graph, Discrete Math. 69 (1988), 55-60.
- [9] K. YOSHIMOTO, The connectivities of trunk graphs of 2-connected graphs, Ars Combin. (to appear).

Present Addresses: ATSUSHI KANEKO DEPARTMENT OF COMPUTER SCIENCE AND COMMUNICATION ENGINEERING, KOGAKUIN UNIVERSITY, NISHI-SHINJUKU, SHINJUKU-KU, TOKYO, 163–8677 JAPAN. *e-mail*: kaneko@ee.kogakuin.ac.jp

KIYOSHI YOSHIMOTO DEPARTMENT OF MATHEMATICS, COLLEGE OF SCIENCE AND TECHNOLOGY, NIHON UNIVERSITY, KANDA-SURUGADAI, CHIYODA-KU, TOKYO, 101–8308 JAPAN. *e-mail*: yoshimoto@math.cst.nihon-u.ac.jp

566