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Abstract. In this paper, we shall show some representations of Nevanlinna-type spaces $N^{p},$ $ 1\leqq p<\infty$ , as
unions of weighted $H^{q}$ -spaces, $ 0<q<\infty$ . Moreover, we shall prove that the usual metric topology on $N^{p}$ is
equivalent to an inductive limit topology on $N^{p}$ .

$0$. Introduction.

Let $U$ be the unit disk in the complex plane and $T$ the unit circle. The Nevanlinna class
$N$ is the class of all holomorphic functions $f$ on $U$ which satisfy

$\sup_{0<r<1}\int_{0}^{2\pi}\log(1+|f(re^{i\theta})|)d\theta<+\infty$ .

It is well-known that each function $f$ in $N$ has the nontangential limit $f^{*}(e^{i\theta})=$

$\lim_{r\rightarrow 1}-f(re^{i\theta})$ (a.e. $e^{i\theta}\in T$ ).

The Smimov class $N_{*}$ consists of all $f\in N$ for which

$\lim_{r\rightarrow 1^{-}}\int_{0}^{2\pi}\log(1+|f(re^{i\theta})|)d\theta=\int_{0}^{2\pi}\log(1+|f^{*}(e^{i\theta})|)d\theta$ .

The class $N^{p},$ $p>1$ , is the class of all holomorphic functions $f$ on $U$ which satisfy

$\sup_{0<r<1}\int_{0}^{2\pi}(\log(1+|f(re^{i\theta})|))^{p}d\theta<+\infty$ .

The class $N^{p},$ $p>1$ , lies between Hardy spaces $H^{q}(0<q\leqq\infty)$ and $N_{*};$ i.e., we have
$H^{q}\subset N^{p}\subset N_{*}\subset N(0<q\leqq\infty, p>1)$ . These including relations are proper. The notion
of $N^{p}$ was introduced by Stoll [9] and has been explored by several authors (see [1], [2] and
[7]). $N$ and its subspaces ( $N_{*},$ $N^{p}$ and $H^{q}$ ) are called Nevanlinna-type spaces. In this note,

the symbol $N^{1}$ is used to denote the Smimov class $N_{*}$ .
Helson $[3, 4]$ and Eoff [2] represented $N^{p},$ $ 1\leqq p<\infty$ , as a union of weighted $H^{2_{-}}$

spaces respectively. In this paper, we show some extensions of their result of $N^{p}$ . Moreover,
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by using our representations, we shall prove that the usual metric topology on $N^{p}$ is equivalen
to an inductive limit topology on $N^{p}$ .

The author wishes to express his sincere gratitude to his thesis advisor Professor $N$

Mochizuki, who introduced this subject and kindly directed him. Thanks go also to Professo
Y. Ohno, who has encouraged him and suggested many improvements to this note.

1. Preliminaries.

Recall that an outer function $F$ for the class $N$ is of the form

$F(z)=a$ exp $(\frac{1}{2\pi}\int_{0}^{2\pi}\frac{e^{i\theta}+z}{e^{i\theta}-z}$ log $\psi(e^{i\theta})d\theta)$ (1.1

where $\psi\geqq 0$, log $\psi\in L^{1}(T)$ and $a\in T$ .
It is well-known that $f\in N^{1}$ is factored as $f=BSF$ , where $B$ is the Blaschke produc

determined by the zeros of $f,$ $S$ is a singular inner function and $F$ is an outer function for $N$

Mochizuki [7] introduced outer functions for the class $N^{p},$ $p>1$ , of the form (1.1) witl
$\log^{+}\psi\in L^{p}(T)$ . After that Eoff [2] proved that $f\in N^{p}$ if and only if $f=BSF$ , where $l$

is an outer function for the class $N^{p}$ .
Note that $f$ is in $N^{1}$ if and only if it can be expressed as the quotient $g/h$ , where $g$ ant

$h$ are in $H^{q}(0<q\leqq\infty)$ , and $h$ is an outer function for $N$ .
Let $(N^{p})^{-1}$ denote the class of all invertible elements of $N^{p}$ . When $q=2$ and $ q=\infty$

Eoff [2] proved $N^{p}=\{g/h:g, h\in H^{q}, h\in(N^{p})^{-1}\}$ for $p>1$ .
From Eoff’s result, we easily have the following:

LEMMA 1.1. Let $ 1\leqq p<\infty$ and $ 0<q\leqq\infty$ . Then

$N^{p}=t\frac{g}{h}$ : $g,$ $h\in H^{q},$ $h\in(N^{p})^{-1}\}$ .

2. Union of weighted Hardy spaces.

In this section, we shall show that $N^{p}$ may be expressed as a union of certain weighte $($

Hardy spaces.
Let $w$ be a weight (i.e., nonnegative $L^{1}$ -function on $T$ ) and denote by $W_{p}$ the class $0$

weights $w$ satisfying log $w\in L^{p}(T)$ for $ 1\leqq p<\infty$ . We also denote by $H^{q}(w),$ $ 0<q<\infty$

the closure of the polynomials in $L^{q}(wd\theta)$ .
Using these weighted Hardy spaces, we can characterize $N^{p}$ as follows:

THEOREM 2.1. Let $ 1\leqq p<\infty$ and $ 0<q<\infty$ . Then $H^{q}(|h|^{q})=H^{q}(w)fo$

$h\in H^{q}\cap(N^{p})^{-1}$ and $w\in W_{p}$ . Moreover, we have

$N^{p}=\bigcup_{h\in H^{q}\cap(N^{p})^{-1}}H^{q}(|h|^{q})=\bigcup_{w\in W_{p}}H^{q}(w)$
. (2.1

The proof requires a well-known result (see [8, Theorem 7]).
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LEMMA 2.2. For $f\in N^{1},$ $f$ is invertible ifand only if $f$ is an outerfunction for the
class $N$ .

LEMMA 2.3. Let 1 $\leqq p<\infty,$ $ 0<q<\infty$ and $h\in H^{q}\cap(N^{p})^{-1}$ . Then $ f\in$

$H^{q}(|h|^{q})\iota f$and only if $f\in N^{p}$ and $f^{*}\in L^{q}(|h^{*}(e^{i\theta})|^{q}d\theta)$ .

PROOF. From Lemma 2.2, $h$ is an outer function for the class $N$ .
Let $f\in H^{q}(|h|^{q})$ , then $f^{*}\in L^{q}(|h^{*}(e^{i\theta})|^{q}d\theta)$ . Therefore if $g=fh$ , then $ g\in H^{q}\subset$

$N^{p}$ . Since $N^{p}$ is an algebra, so $f=g\cdot 1/h\in N^{p}$ .
Conversely, if $f\in N^{p}$ and $f^{*}\in L^{q}(|h^{*}(e^{i\theta})|^{q}d\theta)$ , then $f^{*}h^{*}\in L^{q}(T)$ , so that $ fh\in$

$H^{q}$ . And $rh$ is in $H^{q}$ for any polynomial $r$ .
Since

$\int_{0}^{2\pi}|f^{*}(e^{i\theta})h^{*}(e^{i\theta})-r^{*}(e^{i\theta})h^{*}(e^{i\theta})|^{q}d\theta=\int_{0}^{2\pi}|f^{*}(e^{i\theta})-r^{*}(e^{i\theta})|^{q}|h^{*}(e^{i\theta})|^{q}d\theta$

and {$rh$ : $r$ is a polynomial} is dense in $H^{q}$ ([5, p. 79]), we observe that $f$ belongs to the
$L^{q}(|h^{*}(e^{i\theta})|^{q}d\theta)$ -closure of the polynomials, i.e., $f\in H^{q}(|h|^{q})$ . q.e.d.

PROOF OF THEOREM 2.1. If $h\in H^{q}\cap(N^{p})^{-1}$ , then we have $|h^{*}(e^{i\theta})|^{q}\in W_{p}$ .
Therefore we observe one inclusion. On the other hand, let

$h(z)=\exp(\frac{1}{2\pi q}\int_{0}^{2\pi}\frac{e^{i\theta}+z}{e^{i\theta}-z}$ log $w(e^{i\theta})d\theta)$

where $w\in W_{p}$ . Then we see that $h\in H^{q}\cap(N^{p})^{-1}$ and $|h^{*}(e^{i\theta})|^{q}\in W_{p}$ . It follows that the
reverse inclusion is also true.

To show the first equality in (2.1), let $f\in N^{p}$ . From Lemma 1.1, $f=g/h$ with
$g,$

$h\in H^{q}$ and $h\in(N^{p})^{-1}$ , so that $fh=g\in H^{q}$ .
Since

$\int_{0}^{2\pi}|g^{*}(e^{i\theta})|^{q}d\theta=\int_{0}^{2\pi}|f^{*}(e^{i\theta})|^{q}|h^{*}(e^{i\theta})|^{q}d\theta$ ,

we have $f\in L^{q}(|h^{*}(e^{i\theta})|^{q}d\theta)$ . By Lemma 2.3, we get $f\in H^{q}(|h|^{q})$ . The converse inclu-
sion is clear.

The second equality in (2.1) is the consequence of $H^{q}(|h|^{q})=H^{q}(w)$ . q.e.d.

3. Equivalent topologies.

In the rest of this paper, we show that the metric topology on $N^{p},$ $ 1\leqq p<\infty$ , is
equivalent to another topology on $N^{p}$ .

Let $ 1\leqq p<\infty$ . Recall that the metric $d_{p}$ on $N^{p}$ is defined by

$d_{p}(f, g)=t^{\frac{1}{2\pi}\int_{0}^{2\pi}[\log(1+|f^{*}(e^{i\theta})-g^{*}(e^{i\theta})|)]^{p}d\theta}\}^{\frac{1}{p}}$ $(f, g\in N^{p})$ .
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We usually deal with the topological structure on $N^{p}$ of the metric topology $\tau_{p}induce($

by $d_{p}$ .
By virtue of Theorem 2.1, we can induce an inductive limit topology on $N^{p}$ . We defint

$V_{\lambda}$ , the neighborhood of zero in $N^{p}$ , as follows:

{ $V_{\lambda}|V_{\lambda}\cap H^{q}(w)$ is a neighborhood of zero in $H^{q}(w)$ for any $w\in W_{p}$ }.

This inductive limit topology is denoted by $I_{p,q}$ . We are inspired to generalize the resul
of McCarthy [6] and Eoff [2].

THEOREM 3.1. Let $ 1\leqq p<\infty$ and $ 0<q<\infty$ . Then $I_{p,q}$ and $\tau_{p}$ are equivalent $0$’
$N^{p}$ .

The proof of this theorem requires the following result, which is proved in [9, Theorerr
4.4].

LEMMA 3.2. Afunction $f\in N^{p},$ $p>1$ , is invertible ifand only $\iota ff(z)=\exp g(z)$

where $g(z)\in H^{p}$ .
PROOF OF THEOREM 3.1 (cf. [2, 6]). We restrict our attention to the case where $ 1\leqq$

$ q<\infty$ , because the proof is similar for $0<q<1$ .
Let $V\in\tau_{p}$ be the neighborhood of zero given by

$V=\{g\in N^{p}|d_{p}(g, 0)<4\epsilon\}$ ,

for an $\epsilon>0$ . We have to show that $V\cap H^{q}(|h|^{q})$ is a neighborhood of zero in $H^{q}(|h|^{q})fol$

any $h\in H^{q}\cap(N^{p})^{-1}$ . Since $h\in(N^{p})^{-1}$ , there exists a $\delta_{1}>0$ such that

$\frac{1}{2\pi}\int_{E}[\log^{+}|\frac{1}{h^{*}(e^{i\theta})}|]^{p}d\theta<\epsilon^{p}$

whenever $|E|<\delta_{1}$ . Let us define $\epsilon_{1},$ $\beta,$ $\delta_{2},$ $\delta$ and $U_{h}$ as follows:

$\epsilon_{1}=\min\{\epsilon, \delta_{1}\}$ , $\beta^{q}=\inf_{|E|=\epsilon_{1}}\{\frac{1}{2\pi}\int_{E}|h^{*}(e^{i\theta})|^{q}d\theta\}$ , $\delta_{2}=\epsilon_{1}\beta$ ,

$\delta=$ min $\{\delta_{2},$ $(\frac{e\epsilon q}{p})^{q}e\}$ , and $U_{h}=\{g\in N^{p}|||gh||_{q}<\delta\}$ .

Let $g\in U_{h}$ . Since

$\frac{1}{2\pi}\int_{0}^{2\pi}|g^{*}(e^{i\theta})|^{q}|h^{*}(e^{i\theta})|^{q}d\theta<\delta^{q}\leqq\epsilon_{1}^{q}\beta^{q}$ ,

we obtain that $|g|<\epsilon_{1}$ except on a set of measure less than $\epsilon_{1}$ .
Let us define $E_{1}$ and $E_{2}$ by

$E_{1}=\{e^{i\theta}\in T||g^{*}(e^{i\theta})|<\epsilon_{1}\}$ and $E_{2}=\{e^{i\theta}\in T||g^{*}(e^{i\theta})|\geqq\epsilon_{1}\}$ .



REPRESENTATIONS OF NEVANLINNA-TYPE SPACES 373

We may assume $T=E_{1}\cup E_{2}$ and $ E_{1}\cap E_{2}=\phi$ . In order to show $U_{h}\subset V$ , we utilize the
following elementary inequalities

$\log(1+x)\leqq x$ , $\log(1+x)\leqq\log 2+\log^{+}x$ , $\log^{+}x\leqq\frac{1}{qe}x^{q}$ ,

$\log^{+}xy\leqq\log^{+}x+\log^{+}y$ , and $(x+y)^{\frac{1}{p}}\leqq x^{\frac{1}{p}}+y$ fi

for $x,$ $y\geqq 0,$ $q>0,$ $p\geqq 1$ .
If $g\in U_{h}$ , then we obtain

$\{\frac{1}{2\pi}\int_{0}^{2\pi}[\log(1+|g^{*}(e^{i\theta})|)]^{p}d\theta\}^{\frac{1}{p}}$

$\leqq\{\frac{1}{2\pi}\int_{E_{1}}[\log(1+|g^{*}(e^{i\theta})|)]^{p}d\theta\}^{\frac{1}{p}}+\{\frac{1}{2\pi}\int_{E_{2}}[\log(1+|g^{*}(e^{i\theta})|)]^{p}d\theta\}^{\frac{1}{p}}$

It is easy to see that the first integral on the right-hand side satisfies

$\{\frac{1}{2\pi}\int_{E_{1}}[\log(1+|g^{*}(e^{i\theta})|)]^{p}d\theta\}^{\frac{1}{p}}<\epsilon$ .

Since $|E_{2}|<\epsilon_{1}\leqq\epsilon$ , we have

$\{\frac{1}{2\pi}\int_{E_{2}}[\log(1+|g^{*}(e^{i\theta})|)]^{p}d\theta\}^{\frac{1}{p}}$

$\leqq\{\frac{1}{2\pi}\int_{E_{2}}[\log 2+\log^{+}|g^{*}(e^{i\theta})h^{*}(e^{i\theta})|+\log^{+}|\frac{1}{h^{*}(e^{i\theta})}|]^{p}d\theta\}^{\frac{1}{p}}$

$\leqq\{\frac{1}{2\pi}\int_{E_{2}}(\log 2)^{p}d\theta\}^{\frac{1}{p}}+\{\frac{1}{2\pi}\int_{E_{2}}[\log^{+}|g^{*}(e^{i\theta})h^{*}(e^{i\theta})|]^{p}d\theta\}^{\frac{1}{p}}$

$+\{\frac{1}{2\pi}\int_{E_{2}}[\log^{+}|\frac{1}{h^{*}(e^{i\theta})}|]^{p}d\theta\}^{\frac{1}{p}}$

$<\epsilon+\{\frac{1}{2\pi}\int_{E_{2}}(p+\epsilon$

$<\epsilon+\epsilon+\epsilon=3\epsilon$ .

Consequently, we have

$\{\frac{1}{2\pi}\int_{0}^{2\pi}[\log(1+|g^{*}(e^{i\theta})|)]^{p}d\theta\}^{\frac{1}{p}}<\epsilon+3\epsilon=4\epsilon$ .

Therefore, $U_{h}\subset V$ ; that is, $V\cap H^{q}(|h|^{q})$ is a neighborhood of zero in $H^{q}(|h|^{q})$ , and
thus $V\in I_{p,q}$ .

Conversely, let $W\subset I_{p,q}$ . We shall show that $W$ contains a set $V$ of the form

$V=\{g\in N^{p}|d_{p}(g, 0)<\delta\}$
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for some $\delta>0$ . Suppose to a contrary that there exists a sequence $\{f_{n}\}\subset N^{p}$ such $th^{\Gamma}$

$d_{p}(f_{n}, 0)<2^{-n}$ and $f_{n}\not\in W$ for each $n$ . We may assume, passing to a subsequence, $i$

necessary, that $\lim_{n\rightarrow\infty}f_{n}^{*}(e^{i\theta})=0$ (a.e. $e^{i\theta}\in T$). Put $w_{m}=\prod_{n=1}^{m}(1+|f_{n}^{*}(e^{i\theta})|)$ . Now $i$

$m>k$ ,

$\Vert$ log $w_{m}-\log w_{k}\Vert_{p}=\Vert\log\prod_{n=k+1}^{m}(1+|f_{n}^{*}|)\Vert_{p}=\Vert\sum_{n=k+1}^{m}\log(1+|f_{n}^{*}|)\Vert_{p}$

$\leqq\sum_{n=k+1}^{m}||\log(1+|f_{n}^{*}|)||_{p}\leqq\sum_{n=k+1}^{\infty}2^{-n}<2^{-k}$

so that $\{\log w_{k}\}$ is a Cauchy sequence in $L^{p}(T),$ $p\geqq 1$ . Therefore there exists some log $w($

$L^{p}(T)$ such that log $w_{k}\rightarrow\log w(k\rightarrow\infty)$ in $L^{p}(T)$ .
Now set

We obtain

$|h^{*}(e^{i\theta})|=w(e^{i\theta})fora.e.e^{i}\in T,thush\in(N^{p})^{-1}byLh(z)=\exp(\frac{1}{2\pi}\oint^{2\pi}\frac{e^{i\theta}+z}{e^{i\theta}-z}\log w(e^{i\theta})d\theta)$

emma 2.2 and Lemm
3.2. Even more, since $w_{m}\geqq 1$ is clear, so log $w\geqq 0$ . Therefore $1/h$ is bounded, i.e., $1/h($

$H^{\infty}$ . Moreover it is true that $|h^{*}(e^{i\theta})|=\prod_{n=1}^{\infty}(1+|f_{n}^{*}(e^{i\theta})|)$ with $|f_{n}^{*}(e^{i\theta})|\leqq|h^{*}(e^{i\theta})|,$ $s|$

that $|f_{n}^{*}(e^{i\theta})/h^{*}(e^{i\theta})|^{q}\leqq 1$ holds. Set $h_{1}=1/h$ . Then $h_{1}\in H^{\infty}\subset H^{q}$ .
By the bounded convergence theorem,

$\frac{1}{2\pi}\int_{0}^{2\pi}|h_{1}^{*}(e^{i\theta})f_{n}^{*}(e^{i\theta})|^{q}d\theta\rightarrow 0$ $(n\rightarrow\infty)$ ,

i.e., $f_{n}\rightarrow 0$ in $H^{q}(|h_{1}|^{q})$ . Since $W\cap H^{q}(|h_{1}|^{q})$ is a neighborhood of zero, we have
contradiction. Thus $W$ must contain a metric ball centered at zero, therefore $W\in\tau_{p}$ . q.e.c
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