Law of Large Numbers for Wiener Measure with Density Having Two Large Deviation Minimizers

Tatsushi OTOBE

University of Tokyo
(Communicated by H. Nakada)

Abstract

This paper discusses the situation that the large deviation rate functional has two distinct minimizers, for a model described by Wiener measures with certain densities involving a scaling. The motivation comes from the study of the so-called $\nabla \varphi$ interface model with weak self potentials. The pinned Wiener measures case was discussed by [3].

1. Introduction and results

In this paper, we are interested in the law of large numbers for a sequence of probability measures $\left\{\mu_{N}\right\}_{N=1,2, \ldots}$ on the space $\mathcal{C}=C(I, \mathbf{R}), I=[0,1]$, under the critical situation that the rate functional of the corresponding large deviation principle admits two minimizers. The sequence of probability measures $\left\{\mu_{N}\right\}_{N=1,2, \ldots}$ is defined from the Wiener measures involving a proper scaling with densities determined by a class of potentials W. Such measures naturally arise as a continuous analog of the $\nabla \varphi$ interface model with weak self potentials in one dimension. The relation to the $\nabla \varphi$ interface model was stated in section 3 in [3]. The large deviation principle (LDP) is easily established for $\left\{\mu_{N}\right\}$ and the (unnormalized) rate functional is given by Σ^{W}, see (3) below. The purpose of the present paper is to prove the law of large numbers (LLN) for $\left\{\mu_{N}\right\}$ under the situation that Σ^{W} admits two minimizers \bar{h} and \hat{h}. We shall specify the conditions for the potentials W, under which the limit points under μ_{N} are either \bar{h} or \hat{h} as $N \rightarrow \infty$.

We now formulate our problem more precisely. Let ν_{0} be the law on the space \mathcal{C} of the Brownian motion such that $x(0)=0$. The canonical coordinate of $x \in \mathcal{C}$ is described by $x=\{x(t) ; t \in I\}$. For $a \in \mathbf{R}, x \in \mathcal{C}$ and $N=1,2, \ldots$, we set

$$
\begin{equation*}
h^{N}(t)=\frac{1}{\sqrt{N}} x(t)+\bar{h}(t), \quad t \in I \tag{1}
\end{equation*}
$$

where $\bar{h}(t) \equiv a$. The law on \mathcal{C} of h^{N} with x distributed under ν_{0} is denoted by ν_{N}. Let $W=W(r)$ be a (measurable) function on \mathbf{R} satisfying the condition:

$$
\text { There exists } A>0 \text { such that } \lim _{r \rightarrow \infty} W(r)=0, \lim _{r \rightarrow-\infty} W(r)=-A
$$

$$
\begin{equation*}
\text { and } \quad-A \leq W(r) \leq 0 \quad \text { for every } r \in \mathbf{R} . \tag{W.1}
\end{equation*}
$$

We consider the distribution, indeed a finite volume Gibbs measure, μ_{N} on \mathcal{C} defined by

$$
\begin{equation*}
\mu_{N}(d h)=Z_{N}^{-1} \exp \left\{-N \int_{I} W(N h(t)) d t\right\} v_{N}(d h) \tag{2}
\end{equation*}
$$

where Z_{N} is the normalizing constant. Under μ_{N}, as $N \rightarrow \infty$, negative h has an advantage since the density factor becomes larger if it takes negative values. This causes a competition, especially when $a>0$, between the effect of the potential W pushing h to the negative side and the boundary condition $a>0$ keeping h at the positive side.

The large deviation principle (LDP) holds for μ_{N} on \mathcal{C} as $N \rightarrow \infty$ under the uniform topology. The speed is N and its (unnormalized) rate functional is given by

$$
\begin{equation*}
\Sigma^{W}(h)=\frac{1}{2} \int_{I} \dot{h}^{2}(t) d t-A|\{t \in I ; h(t) \leq 0\}| \tag{3}
\end{equation*}
$$

for $h \in H_{a, F}^{1}(I)$, i.e., for absolutely continuous h with derivatives $\dot{h}(t)=d h / d t \in L^{2}(I)$ satisfying $h(0)=a$, where $|\cdot|$ stands for the Lebesgue measure. For more precise formulation, cf. [4], [6] and Theorem 6.4 in [2] for a discrete model. The LDP immediately implies the concentration property for μ_{N} :

$$
\lim _{N \rightarrow \infty} \mu_{N}\left(\operatorname{dist}_{\infty}\left(h, \mathcal{H}^{W}\right) \leq \delta\right)=1
$$

for every $\delta>0$, where $\mathcal{H}^{W}=\left\{h^{*}\right.$; minimizers of $\left.\Sigma^{W}\right\}$ and dist ${ }_{\infty}$ denotes the distance under the uniform norm $\|\cdot\|_{\infty}$. In particular, if Σ^{W} has a unique minimizer h^{*}, then the law of large numbers (LLN) holds under μ_{N} :

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \mu_{N}\left(\left\|h-h^{*}\right\|_{\infty} \leq \delta\right)=1 \tag{4}
\end{equation*}
$$

for every $\delta>0$.
We consider the structure of \mathcal{H}^{W}. It is easy to see that $\mathcal{H}^{W}=\{\bar{h}\}$ when $a \leq 0$. We now assume that $a>0$. Let \hat{h} be the curve composed of two straight line segments connecting three points $(0, a), P(T, 0)$ and $(1,0)$ in this order. The angles at the corner P is equal to $\theta \in[0, \pi / 2]$, which is determined by the Young's relation (free boundary condition): $\tan \theta=\sqrt{2 A}$. More precisely saying, if $0<a \leq \sqrt{2 A}$ we have $T=a / \sqrt{2 A}$, and

$$
\hat{h}(t)= \begin{cases}a-\sqrt{2 A} t, & t \in I_{1}=[0, T], \\ 0, & t \in I_{2}=[T, 1]\end{cases}
$$

Moreover, we can see that $\mathcal{H}^{W}=\{\bar{h}\}$ when $a>\sqrt{2 A}$. Then, $\{\bar{h}, \hat{h}\}$ is the set of all critical points of Σ^{W} (cf. Section 6.3 in [2]), and this implies that $\mathcal{H}^{W} \subset\{\bar{h}, \hat{h}\}$.

This paper is concerned with the case where both \bar{h} and \hat{h} are minimizers of Σ^{W}, i.e. $\Sigma^{W}(\bar{h})=\Sigma^{W}(\hat{h})$; note that $\Sigma^{W}(\bar{h})=0$ and $\Sigma^{W}(\hat{h})=a(1+\sqrt{2 A}) / 2-A$. In fact, in the

following, we always assume the conditions (W.1) and

$$
\begin{equation*}
a>0 \quad \text { and } \quad \Sigma^{W}(\bar{h})=\Sigma^{W}(\hat{h}) \tag{W.2}
\end{equation*}
$$

If the condition (W.2) holds, we have $a=\sqrt{2 A} / 2$ and $T=1 / 2$.
We are now in a position to state our main results.
THEOREM 1 (Concentration on \bar{h}). In addition to the conditions (W.1) and (W.2), if

$$
\begin{equation*}
W(r)=0 \quad \text { for all } r \geq K \tag{W.3}
\end{equation*}
$$

is fulfilled for some $K \in \mathbf{R}$, then (4) holds with $h^{*}=\bar{h}$.
Theorem 2 (Concentration on \hat{h}). In addition to (W.1) and (W.2), if the following three conditions

$$
\begin{align*}
& { }^{\exists} \lambda_{1}, \alpha_{1}>0 \text { such that } W(r) \sim-\lambda_{1} r^{-\alpha_{1}} \text { (i.e. the ratio tends to } 1 \text {) as } r \rightarrow \infty \tag{W.4}\\
& { }^{\exists} \lambda_{2}, \alpha_{2}>0 \text { such that } W(r) \leq-A+\lambda_{2}|r|^{-\alpha_{2}} \text { as } r \rightarrow-\infty \tag{W.5}\\
& 0<\alpha_{1}<\min \left\{\alpha_{2} /\left(\alpha_{2}+1\right), \alpha_{2} / 2\right\} \text { and } \int_{I_{1}} \hat{h}(t)^{-\alpha_{1}} d t>\int_{I} \bar{h}(t)^{-\alpha_{1}} d t \tag{W.6}
\end{align*}
$$

are fulfilled, then (4) holds with $h^{*}=\hat{h}$.
The rate functional Σ^{W} of the LDP is determined only from the limit values $W(\pm \infty)$, but for Theorems 1 and 2 we need more delicate information on the asymptotic properties of W as $r \rightarrow \pm \infty$ to control the next order. Let us try to explain the roles of the above conditions in a rather intuitive way. The condition (W.3) (with $K=0$) means that W is large at least for $r \geq 0$ so that the force pushing the interface (or the Brownian path) downward is weak and not enough to push it down to the level of \hat{h}. On the other hand, since the values of $N h(t)$ in (2) are very large for t close to 0 , compared with (W.3), the interface is pushed downward because of the condition (W.4) and, once it reaches near the level 0 , the condition (W.5) forces it to stay there. This makes the interface reach the level of \hat{h}. The second condition in (W.6) is fulfilled if $1 / 2<\alpha_{1}<1$, and such α_{1}, which simultaneously satisfies the first condition in (W.6), exists if $\alpha_{2}>1$.

The same kind of problem is discussed for weakly pinned Gaussian random walks in [1]. In one dimension, they proved the coexistence of \bar{h} and \hat{h} under the free boundary condition at
the right edge and the concentration on \hat{h} under the Dirichlet boundary condition at the right edge. The problem for the pinned Wiener measures with our densities is discussed by [3].

Section 2 gives the proofs of Theorems 1 and 2.

2. Proofs of results

We consider the following quantity:

$$
\begin{equation*}
\lim _{N \rightarrow \infty} \frac{\mu_{N}\left(\|h-\hat{h}\|_{\infty} \leq \delta\right)}{\mu_{N}\left(\|h-\bar{h}\|_{\infty} \leq \delta\right)} \tag{5}
\end{equation*}
$$

for arbitrary small $\delta>0$.
2.1. Proof of Theorem 1. If the limit of (5) is equal to 0 , then (4) holds with $h^{*}=\bar{h}$. In view of the scaling, we may assume $K=0$ in the condition (W.3) without loss of generality. Introduce the first hitting time $0 \leq \tau \leq 1$ of $h^{N}(t)$ to 0 on the event $\Omega_{0}=\left\{h^{N}\right.$ hits 0$\}$ by $\tau=\inf \left\{t \in I ; h^{N}(t)=0\right\}$. Then, from the condition (W.3) with $K=0$, the strong Markov property of $h^{N}(t)$ under v_{N} shows that

$$
\begin{aligned}
& Z_{N} \mu_{N}\left(\|h-\hat{h}\|_{\infty} \leq \delta\right) \\
& \quad \leq \int_{S \geq T-c} E^{\nu_{0}^{S}}\left[\exp \left\{-N \int_{S}^{1} W(\sqrt{N} x(s)) d s\right\}\right] v_{N}(\tau \in d S) \\
& \quad+v_{N}\left(\Omega_{0}^{c},\|h-\hat{h}\|_{\infty} \leq \delta\right)
\end{aligned}
$$

where v_{0}^{S} (more generally v_{α}^{S}) is the law on the space $C([S, 1], \mathbf{R})$ of the Brownian motion such that $x(S)=0($ or $x(S)=\alpha)$ and $c=\delta / \sqrt{2 A}$ arises from the condition $\|h-\hat{h}\|_{\infty} \leq \delta$. However, in the first term, the conditions (W.1) and (W.3) with $K=0$ imply that

$$
-N \int_{S}^{1} W(\sqrt{N} x(s)) d s \leq A N X^{S, 1}
$$

where $X^{S, 1}=|\{s \in[S, 1] ; x(s)<0\}|$ is the occupation time of x on the negative side. Since $X^{S, 1}=(1-S) X^{0,1}$ in law and $v_{0}\left(X^{0,1} \in d s\right)=1 /\{\pi \sqrt{s(1-s)}\} d s$ (see Proposition 4.11 in [5], p. 273), we obtain that

$$
E^{\nu_{0}^{S}}\left[\exp \left\{-N \int_{S}^{1} W(\sqrt{N} x(s)) d s\right\}\right] \leq \int_{I} \frac{e^{A N(1-S) s}}{\pi \sqrt{s(1-s)}} d s
$$

Simple calculation yields that

$$
\begin{aligned}
\int_{I} \frac{e^{A N(1-S) s}}{\pi \sqrt{s(1-s)}} d s & =\frac{2}{\pi} \int_{0}^{\pi / 2} e^{A N(1-S) / 2} \cosh \left(\frac{A N(1-S)}{2} \sin \theta\right) d \theta \\
& \leq \frac{2}{\pi} \int_{0}^{\pi / 2} e^{A N(1-S)(1+\sin \theta) / 2} d \theta
\end{aligned}
$$

Then, by Laplace's method, we have

$$
\int_{I} \frac{e^{A N(1-S) s}}{\pi \sqrt{s(1-s)}} d s \leq \frac{2}{\sqrt{A(1-S) \pi}} \frac{1}{\sqrt{N}} e^{A N(1-S)}
$$

for sufficiently large N, see [7].
On the other hand, the distribution of τ under v_{N} is given by

$$
v_{N}(\tau \in d S)=\frac{a \sqrt{N}}{\sqrt{2 \pi S^{3}}} e^{-\frac{a^{2} N}{2 S}} d S
$$

for $0<S<1$, see (6.3) in [5], p. 80.
Combining these all facts, for N large enough, we have

$$
\begin{equation*}
Z_{N} \mu_{N}\left(\|h-\hat{h}\|_{\infty} \leq \delta\right) \leq \frac{2 a}{\sqrt{2 A} \pi} \int_{S \geq T-c} \frac{e^{-N f(S)}}{\sqrt{S^{3}(1-S)}} d S+v_{N}\left(\|h-\hat{h}\|_{\infty} \leq \delta\right), \tag{6}
\end{equation*}
$$

where

$$
f(S)=\frac{a^{2}}{2 S}-A(1-S)
$$

Since $f(S)=\Sigma^{W}\left(\hat{h}_{S}\right)-\Sigma^{W}(\hat{h})$ for the curve \hat{h}_{S} defined similarly to \hat{h} with T replaced by S, we see that $f(S) \geq 0$ and f attains its minimal value 0 at $S=T(=1 / 2)$. Furthermore, by the condition (W.2), it behaves near T as

$$
f(S)=\frac{2 a^{2}}{S}\left(S-\frac{1}{2}\right)^{2} \sim 4 a^{2}\left(S-\frac{1}{2}\right)^{2}
$$

This proves that the first term in the right hand side of (6) behaves as $O(1 / \sqrt{N})$ as $N \rightarrow \infty$. Therefore, for every $0<\delta<\|\bar{h}-\hat{h}\|_{\infty}$, by noting that $\nu_{N}\left(\|h-\hat{h}\|_{\infty} \leq \delta\right) \leq e^{-C N}$ for some $C>0$ (since the LDP holds for ν_{N} with speed N and the rate functional $\Sigma^{0}(h)$, which is defined by $A \equiv 0$ in (3)), we have that

$$
\lim _{N \rightarrow \infty} Z_{N} \mu_{N}\left(\|h-\hat{h}\|_{\infty} \leq \delta\right)=0
$$

On the other hand, the condition (W.3) implies for every $0<\delta<(a \wedge b)$ that

$$
\lim _{N \rightarrow \infty} Z_{N} \mu_{N}\left(\|h-\bar{h}\|_{\infty} \leq \delta\right)=\lim _{N \rightarrow \infty} v_{0}\left(\|x\|_{\infty} \leq \sqrt{N} \delta\right)=1
$$

Thus, the proof of Theorem 1 is concluded.
2.2. Proof of Theorem 2. We prove the limit of (5) is equal to ∞. From the definition (2) of μ_{N} and by recalling (1), we have

$$
\begin{aligned}
& Z_{N} \mu_{N}\left(\|h-\hat{h}\|_{\infty} \leq \delta\right) \\
& \quad=E^{\nu_{0}}\left[\exp \left\{-N \int_{I} W(\sqrt{N} x(t)+N \bar{h}(t)) d t\right\},\|x+\sqrt{N}(\bar{h}-\hat{h})\|_{\infty} \leq \sqrt{N} \delta\right]
\end{aligned}
$$

$$
=E^{\nu_{0}}\left[\exp \left\{\hat{F}_{N}(x)\right\},\|x\|_{\infty} \leq \sqrt{N} \delta\right],
$$

where
$\hat{F}_{N}(x)=-N \int_{I} W(\sqrt{N} x(t)+N \hat{h}(t)) d t+\sqrt{N} \int_{I}(\dot{\bar{h}}-\dot{\hat{h}})(t) d x(t)-\frac{N}{2} \int_{I}(\dot{\bar{h}}-\dot{\hat{h}})^{2}(t) d t$.
The third line follows by means of the Cameron-Martin formula for ν_{0} transforming $x+$ $\sqrt{N}(\bar{h}-\hat{h})$ into x. However, since $\dot{\bar{h}}(t) \equiv 0$ and $\int_{I} \dot{\hat{h}}(t) d t=\hat{h}(1)-\hat{h}(0)=-a$, we have

$$
\frac{1}{2} \int_{I}(\dot{\bar{h}}-\dot{\hat{h}})^{2}(t) d t=A T
$$

by the condition (W.2). Moreover, since $\dot{\hat{h}}=-\sqrt{2 A}$ on I_{1}° and 0 on I_{2}°,

$$
\int_{I}(\dot{\bar{h}}-\dot{\hat{h}})(t) d x(t)=\sqrt{2 A}(x(T)-x(0))=\sqrt{2 A} x(T)
$$

recall that $x(0)=0$ under v_{0}. Therefore, we can rewrite $\hat{F}_{N}(x)$ as

$$
\begin{aligned}
\hat{F}_{N}(x) & =-N \int_{I_{1}} W(\sqrt{N} x(t)+N \hat{h}(t)) d t+\sqrt{2 A N} x(T)-N \int_{I_{2}}\{W(\sqrt{N} x(t))+A\} d t \\
& =: F_{N}^{(1)}(x)+F_{N}^{(2)}(x)+F_{N}^{(3)}(x)
\end{aligned}
$$

To give a lower bound on $F_{N}^{(1)}$, we consider subinterval $\tilde{I}_{1}=[0, T-\sqrt{2 / A} \delta]$ of I_{1}. Then, since $\hat{h} \geq 2 \delta$ on \tilde{I}_{1}, on the event $\mathcal{A}_{1}=\left\{\|x\|_{\infty} \leq \sqrt{N} \delta\right\}$, we have for $t \in \tilde{I}_{1}$,

$$
\sqrt{N} x(t)+N \hat{h}(t) \geq-N \delta+N \hat{h}(t) \geq N \delta \rightarrow \infty \quad(\text { as } N \rightarrow \infty)
$$

and also $\sqrt{N} x(t)+N \hat{h}(t) \leq N(\hat{h}(t)+\delta)$. Accordingly, by the condition (W.4), for every sufficiently small $\varepsilon>0$, the integrand of $F_{N}^{(1)}$ times $-N$ is bounded from below as

$$
-N W(\sqrt{N} x(t)+N \hat{h}(t)) \geq\left(\lambda_{1}-\varepsilon\right) N^{1-\alpha_{1}}(\hat{h}(t)+\delta)^{-\alpha_{1}}
$$

which implies, by recalling $-W \geq 0$, that

$$
F_{N}^{(1)} \geq\left(\lambda_{1}-\varepsilon\right) N^{1-\alpha_{1}} \int_{\tilde{I}_{1}}(\hat{h}(t)+\delta)^{-\alpha_{1}} d t=:\left(\lambda_{1}-\varepsilon\right) C_{1}(\delta) N^{1-\alpha_{1}}
$$

on \mathcal{A}_{1} for sufficiently large N.
To give lower bounds on $F_{N}^{(2)}$ and $F_{N}^{(3)}$, we introduce two more events

$$
\begin{aligned}
& \mathcal{A}_{2}=\{x(T) \geq 0\} \\
& \mathcal{A}_{3}=\left\{x(t) \leq-N^{-\kappa} \text { for all } t \in \tilde{I}_{2}:=\left[T+N^{-\frac{1}{2}-\kappa}, 1\right]\right\}
\end{aligned}
$$

where $0<\kappa<1 / 2$ will be chosen later. Then, obviously $F_{N}^{(2)} \geq 0$ on \mathcal{A}_{2}. If $x \in \mathcal{A}_{3}$, noting that $-W(r)-A \geq-A$ for all $r \in \mathbf{R}$, we have from (W.5)

$$
\begin{aligned}
F_{N}^{(3)} & \geq-A N^{\frac{1}{2}-\kappa}+N \int_{\tilde{I}_{2}}\{-W(\sqrt{N} x(t))-A\} d t \\
& \geq-A N^{\frac{1}{2}-\kappa}-\lambda_{2} N^{1-\alpha_{2}\left(\frac{1}{2}-\kappa\right)}\left|\tilde{I}_{2}\right|
\end{aligned}
$$

for sufficiently large N. These estimates on $F_{N}^{(1)}, F_{N}^{(2)}$ and $F_{N}^{(3)}$ are summarized into

$$
\begin{equation*}
\hat{F}_{N} \geq\left(\lambda_{1}-\varepsilon\right) C_{1}(\delta) N^{1-\alpha_{1}}-A N^{\frac{1}{2}-\kappa}-\lambda_{2} N^{1-\alpha_{2}\left(\frac{1}{2}-\kappa\right)}\left|\tilde{I}_{2}\right| \tag{7}
\end{equation*}
$$

on $\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}$ for sufficiently large N.
The next lemma gives a lower bound on the probability $v_{0}\left(\mathcal{A}_{2} \cap \mathcal{A}_{3}\right)$.
Lemma 1. There exists $C>0$ such that

$$
\nu_{0}\left(\mathcal{A}_{2} \cap \mathcal{A}_{3}\right) \geq C N^{-\frac{1}{4}-\frac{3}{2} \kappa} \exp \left\{-18 N^{\frac{1}{2}-\kappa}\right\}
$$

Proof. Consider an auxiliary event

$$
\mathcal{A}_{4}=\left\{-3 N^{-\kappa} \leq x\left(T+N^{-\frac{1}{2}-\kappa}\right) \leq-2 N^{-\kappa}\right\} .
$$

Then, by the Markov property, we have

$$
\begin{aligned}
& \nu_{0}\left(\mathcal{A}_{2} \cap \mathcal{A}_{3}\right) \geq \nu_{0}\left(\mathcal{A}_{2} \cap \mathcal{A}_{3} \cap \mathcal{A}_{4}\right) \\
& \quad=E^{\nu_{0}}\left[\nu_{0, \alpha}^{0, T+N^{-\frac{1}{2}-\kappa}}(x(T) \geq 0) \cdot v_{\alpha}^{T+N^{-\frac{1}{2}-\kappa}}\left(x(t) \leq-N^{-\kappa},{ }^{\forall} t \in \tilde{I}_{2}\right), \mathcal{A}_{4}\right]
\end{aligned}
$$

where $\alpha=x\left(T+N^{-\frac{1}{2}-\kappa}\right)$ and $v_{0, \alpha}^{0, T+N^{-\frac{1}{2}-\kappa}}$ is the law on the space $C\left(\left[0, T+N^{-\frac{1}{2}-\kappa}\right], \mathbf{R}\right)$ of the Brownian bridge such that $x(0)=0, x\left(T+N^{-\frac{1}{2}-\kappa}\right)=\alpha$. However,

$$
v_{0, \alpha}^{0, T+N^{-\frac{1}{2}-\kappa}}(x(T) \geq 0) \geq C_{1} N^{\frac{\kappa}{2}-\frac{1}{4}} \exp \left\{-18 N^{\frac{1}{2}-\kappa}\right\}-C_{2} N^{-\frac{1}{2}} \exp \{-2 T N\}
$$

for sufficiently large N with $C_{1}, C_{2}>0$, see the proof of Lemma 2.2 in [3]. On \mathcal{A}_{4}, we have

$$
\nu_{\alpha}^{T+N^{-\frac{1}{2}-\kappa}}\left(x(t) \leq-N^{-\kappa},{ }^{\forall} t \in \tilde{I}_{2}\right) \geq P_{0}\left(\max _{t \in I}|B(t)| \leq \bar{t}^{-1 / 2} N^{-\kappa}\right) \geq C_{3} N^{-\kappa}
$$

where $\bar{t}=1-T-N^{-\frac{1}{2}-\kappa}$ and $C_{3}>0$. Therefore, we obtain

$$
v_{0}\left(\mathcal{A}_{2} \cap \mathcal{A}_{3}\right) \geq C_{4} N^{\frac{\kappa}{2}-\frac{1}{4}} \cdot N^{-\kappa} \cdot \exp \left\{-18 N^{\frac{1}{2}-\kappa}\right\} \cdot v_{0}\left(\mathcal{A}_{4}\right)
$$

for sufficiently large N with $C_{4}>0$. However, we obtain $v_{0}\left(\mathcal{A}_{4}\right) \geq N^{-\kappa}$, see the proof of Lemma 2.2 in [3]. This completes the proof of the lemma.

Since Lemma 1 shows

$$
\begin{aligned}
v_{0}\left(\mathcal{A}_{1} \cap \mathcal{A}_{2} \cap \mathcal{A}_{3}\right) & \geq v_{0}\left(\mathcal{A}_{2} \cap \mathcal{A}_{3}\right)-v_{0}\left(\mathcal{A}_{1}^{c}\right) \\
& \geq v_{0}\left(\mathcal{A}_{2} \cap \mathcal{A}_{3}\right)-e^{-\delta^{2} N / 4} \geq \exp \left\{-20 N^{\frac{1}{2}-\kappa}\right\},
\end{aligned}
$$

for sufficiently large N (recall $\frac{1}{2}-\kappa<1$), we have from (7)

$$
\begin{align*}
& Z_{N} \mu_{N}\left(\|h-\hat{h}\|_{\infty} \leq \delta\right) \tag{8}\\
& \quad \geq \exp \left\{\left(\lambda_{1}-\varepsilon\right) C_{1}(\delta) N^{1-\alpha_{1}}-A N^{\frac{1}{2}-\kappa}-\lambda_{2} N^{1-\alpha_{2}\left(\frac{1}{2}-\kappa\right)}\left|\tilde{I}_{2}\right|-20 N^{\frac{1}{2}-\kappa}\right\} \\
& \quad \geq \exp \left\{\left(\lambda_{1}-2 \varepsilon\right) C_{1}(\delta) N^{1-\alpha_{1}}\right\},
\end{align*}
$$

for sufficiently large N if $1-\alpha_{1}>0$ (i.e. $\alpha_{1}<1$), $\frac{1}{2}-\kappa<1-\alpha_{1}$ (i.e. $\kappa>\alpha_{1}-\frac{1}{2}$) and $1-\alpha_{2}\left(\frac{1}{2}-\kappa\right)<1-\alpha_{1}$ (i.e. $\kappa<\frac{1}{2}-\frac{\alpha_{1}}{\alpha_{2}}$). One can choose such $\kappa: \alpha_{1}-\frac{1}{2}<\kappa<\frac{1}{2}-\frac{\alpha_{1}}{\alpha_{2}}$ under the first condition in (W.6), which implies that $\alpha_{1}\left(1+\frac{1}{\alpha_{2}}\right)<1$ and $\frac{1}{2}-\frac{\alpha_{1}}{\alpha_{2}}>0$.

On the other hand, we have

$$
\begin{equation*}
Z_{N} \mu_{N}\left(\|h-\bar{h}\|_{\infty} \leq \delta\right)=E^{\nu_{0}}\left[\exp \left\{\bar{F}_{N}(x)\right\},\|x\|_{\infty} \leq \sqrt{N} \delta\right] \tag{9}
\end{equation*}
$$

where

$$
\bar{F}_{N}(x)=-N \int_{I} W(\sqrt{N} x(t)+N \bar{h}(t)) d t
$$

However, since $\sqrt{N} x(t)+N \bar{h}(t) \geq N(\bar{h}(t)-\delta)$ on the event \mathcal{A}_{1}, the condition (W.4) shows

$$
\begin{equation*}
\bar{F}_{N} \leq\left(\lambda_{1}+\varepsilon\right) N^{1-\alpha_{1}} \int_{I}(\bar{h}(t)-\delta)^{-\alpha_{1}} d t=:\left(\lambda_{1}+\varepsilon\right) C_{2}(\delta) N^{1-\alpha_{1}} \tag{10}
\end{equation*}
$$

Comparing (8) and (9) with (10), since $\left(\lambda_{1}-2 \varepsilon\right) C_{1}(\delta)>\left(\lambda_{1}+\varepsilon\right) C_{2}(\delta)$ for sufficiently small δ and $\varepsilon>0$ by the second condition in (W.6), the proof of Theorem 2 is concluded.

References

[1] E. Bolthausen, T. Funaki and T. Otobe, Concentration under scaling limits for weakly pinned Gaussian random walks, Probab. Theory Relat. Fields 143 (2009), 441-480.
[2] T. Funaki, Stochastic Interface Models, in Lectures on Probability Theory and Statistics, Ecole d'Eté de Probabilités de Saint-Flour XXXIII-2003, ed. J. Picard, Lect. Notes Math. 1869, Springer, 2005, 103274.
[3] T. FUnAKI, Dichotomy in a scaling limit under Wiener measure with density, Electron. Comm. Probab. 12 (2007), 173-183.
[4] T. FUNAKI and H. SAKAGAWA, Large deviations for $\nabla \varphi$ interface model and derivation of free boundary problems, Proceedings of Shonan/Kyoto meetings "Stochastic Analysis on Large Scale Interacting Systems" (2002, eds. Funaki and Osada), Adv. Stud. Pure Math. 39 Math. Soc. Japan, 2004, 173-211.
[5] I. KARATZAS and S. E. Shreve, Brownian motion and stochastic calculus, (2nd edition), Springer, 1991.
[6] T. Otobe, Large deviations for the $\nabla \varphi$ interface model with self potentials, Proc. Japan Acad. Ser. A 85 (2009), 31-36.
[7] L. Sirovich, Techniques of Asymptotic Analysis, Applied Mathematical Sciences 2, Springer, 1971.

