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Abstract. We study a way of coding of irrational rotations, by which Denjoy systems are represented as
subshifts. First, we state the subshift generated by a coding sequence is conjugate to a Denjoy system. Next, by using
an adic model of a Denjoy system we give a sequence of substitutions to generate the coding sequence.

1. Introduction

Let A = {0, 1, . . . , d} be an alphabet and A∗ be the free monoid over A with respect to
the concatenation, having the empty word (identity element) ε∅. A substitution σ over A is
a map from an alphabet A to A∗ \ {ε∅}. It can be extended to a morphism of A∗ naturally.

The reversal of a finite word w = w1 · · ·wn is the word
↼
w = wn · · ·w1. The reversal of a

substitution σ is the substitution
↼
σ defined by

↼
σ (i) = ↼

σ(i) (i ∈ A) .

Notice
↼

σ(w) = ↼
σ (

↼
w). A word v is a prefix of a word u if u = vw for some w ∈ A∗.

The set of right infinite (resp. biinfinite) words over A is denoted by AZ+ (resp. AZ).
Let (σ1, σ2, . . .) be a sequence of substitutions over A. We say that (σn)n∈N generates

a right infinite word w = w0w1 · · · if for each n, there exists N such that w0w1 · · ·wn is a
common prefix of σ1σ2 · · · σN(i)’s, i ∈ A: or equivalently,

w = lim
n→∞ σ1σ2 · · · σn(i) for any i ∈ A .

We say that (σn)n∈N generates a biinfinite word · · ·w−1.w0w1 · · · if (σn)n∈N generates

w0w1 · · · and (
↼
σn)n∈N generates w−1w−2 · · · .

In this paper, we study a coding under an irrational rotation. Take α ∈ (0, 1) \ Q. Let

S1 = R/Z and Rα : S1 → S1 be the rotation Rα(ω) = ω + α (mod 1). Identify (0, 1]
with S1 naturally. Consider a partition {t (0), t (1)} of S1 = (0, 1] where t (0) = (0, α] and

t (1) = (α, 1]. Define a map Jα : (0, 1] → {0, 1}Z by Jα(ω)n = i if Rn
α(ω) ∈ t (i). A
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Sturmian sequence is given by Jα(ω) for some α and ω. (Precisely, we need to consider
another decomposition [0, 1) = [0, α) ∪ [α, 1) to see all Sturmian sequences.) Let α =
[0; a1, a2, a3, . . .] be the simple continued fraction expansion. The following is a folklore
theorem.

PROPOSITION 1. Let σn(0) = 0 1 · · · 1︸ ︷︷ ︸
an times

, σn(1) = 01 · · · 1︸ ︷︷ ︸
an − 1 times

for each n ∈ N. Then the

sequence (σ1,
↼
σ2, σ3,

↼
σ4, . . .) generates Jα(α).

PROOF. Let u(0) = [0, 1 − α) and u(1) = [1 − α, 1). Usually (for example, refer to

[5]), Sturmian sequences are given as Kα(ω), where Kα : [0, 1)→ {0, 1}Z is defined by

Kα(ω)n =
{

0 if Rn
α(ω) ∈ u(0)

1 if Rn
α(ω) ∈ u(1) .

It is well-known that (see [4])

the sequence (η1,
↼
η2, η3,

↼
η4, · · · ) generates Kα(0)

where ηn(0) = 0 · · · 0︸ ︷︷ ︸
an − 1 times

1 and ηn(1) = 0 · · · 0︸ ︷︷ ︸
an times

1.

Proposition 1 follows this fact immediately, because the following diagram

t (0) ⊂

��
u(1) ⊂

(0, 1]
·

��

Rα �� (0, 1]
·

��
[0, 1)

R−1
α �� [0, 1)

commutes (where · : (0, 1] → [0, 1) : x �→ x := 1 − x), we see Jα(α)n =
1−Kα(0)−n−1. �

In this paper, we pay attention to a generalization of Proposition 1. For each ω ∈ S1,
denote by Oω the orbit of ω under Rα , that is,

Oω = {Rn
α(ω) | n ∈ Z} .

A subset A ⊂ S1 is said to be non-coorbital if {Oω | ω ∈ A} is mutually disjoint. Take a
finite non-coorbital subset Λ with α ∈ Λ.
Let Λ = {ω0 < ω1 < · · · < ωd−1} and Λ1 = Λ ∪ {1}. So Λ1 gives a partition of S1, that is,

S1 =
⋃
i∈A

t0(i)

where t0(0) = (0, ω0] and t0(i) = (ωi−1, ωi ] (0 < i ≤ d , ωd = 1).



DENJOY SYSTEMS AND SUBSTITUTIONS 35

Define J : S1 → AZ by J (ω)n = i if Rn
α(ω) ∈ t0(i). Clearly, in the case of d = 1,

J (ω) is a Sturmian sequence. In this meaning, we can regard J (ω) as d + 1 letters Sturmian
sequences. The main goal of this paper is to construct a sequence of substitutions which
generates J (α).

First, we state that the subshift generated by J (α) is conjugate to a Denjoy system, which
is defined as follows. We call ϕ : S1 → S1 a Denjoy homeomorphism if ϕ is an orientation-
preserving homeomorphism with irrational rotation number which is not conjugate to a rota-
tion (see [2], §4). A Denjoy system is the unique minimal subsystem of some Denjoy home-
omorphism. In [6], an adic model (Bratteli-Vershik system) of a Denjoy system is concretely
constructed. Next, we observe that this adic system naturally corresponds to a sequence of
substitutions. We see that this sequence generates J (α).

We consider that Denjoy systems, generalized Sturmian sequences and adic systems have
close association each other, but it does not seem to have been clarified yet ([2]). We study a
link between them.

In Section 2, we state the main result. In Section 3, we show that a Denjoy system is
conjugate to a generalized Sturmian subshift in our sense. Section 4 is devoted to the natural
substitution system associated with an ordered Bratteli diagram of constant rank. In Section
5, we recall an HPS-adic presentation for a Denjoy system given in [6]. Section 6 is devoted
to proof.

We introduce some notations. Denote by N (resp. Z+) the set of positive integers (resp.
non-negative integers).
For i ∈ A, denote i · · · i︸ ︷︷ ︸

a times

by ia . Let Sn be a finite set. For s∗ = s1s2 · · · ∈ ∏
n∈N Sn,

slsl+1 · · · sm (resp. sl+1sl+2 · · · ) is denoted by s[l,m] (resp. s(l,∞)) and so on. A subset A ⊂∏
n∈N Sn is said to be non-cotail if for any distinct s∗, t∗ ∈ A, sn 
= tn for infinitely many

n. Let Sn be a totally ordered set. Put the total order (lexicographic order) <lex on
∏

n∈N Sn

defined by that s∗ <lex t∗ if sl < tl where l = min{n ∈ N | sn 
= tn}.
For distinct z,w ∈ S1, denote by (z,w] the left-open right-closed arc between z and w which
lies in the positive direction from z. Define the interior of (z,w] as int(z,w] = (z,w) =
(z,w] \ {w}. For an open arc I = (z,w), let inf I = z and sup I = w.

ACKNOWLEDGMENT. The author appreciates the valuable suggestions of the referee.
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2. Main result

Let α = [0; a1, a2, a3, . . .] be the simple continued fraction expansion, and[
p−1 p0

q−1 q0

]
=

[
1 0
0 1

]
,

pn = anpn−1 + pn−2

qn = anqn−1 + qn−2
(n ∈ N) .

Now, we introduce the dual Ostrowski numeration system. Let

Mα =
{
x∗ = (xn)n∈N ∈

∏
n∈N

{0, 1, . . . , an}
∣∣∣ xn = an ⇒ xn+1 = 0

}
.

It is well-known ([3]) that for each ω ∈ [0, 1], there is x∗ ∈ Mα such that

ω =
∞∑

n=1

xn|qn−1α − pn−1| (dual Ostrowski expansion of ω) .

For each x∗ ∈ Mα , define

ν(x∗) =
∞∑

n=1

xn|qn−1α − pn−1| .

OBSERVATION 1. We can regard ν as a map from Mα to S1 where S1 is the set [0, 1]
identifying 0 and 1. Then the following hold.

(1) If ω ∈ Oα , then ν−1(ω) is a two-point-set of the form:

ν−1(ω) = {x(0,n]00 · · · , x(0,n)(xn − 1)an+10an+30 · · · } .
(Especially, ν−1(α) = {100 · · · , 0a20a4 · · · } and ν−1(1) = {00 · · · , a10a30 · · · }.)

If ω /∈ Oα , then ν−1(ω) is a singleton.
(2) Let {x∗, x ′∗} ⊂ Mα . If there is n ∈ Z+ such that x(n,∞) = x ′(n,∞), then ν(x ′∗) ∈

Oν(x∗). (Indeed, then ν(x∗)− ν(x ′∗) ∈ Oα.)

By Observation 1 (1), for each ω ∈ (0, 1], we can choose

x∗(ω) := x1(ω)x2(ω) · · · ∈ ν−1(ω) such that xn(ω) 
= 0 for infinitely many n

and regard x∗(·) as a map x∗ : (0, 1] → Mα : ω �→ x1(ω)x2(ω) · · · . So ν ◦ x∗ = id. By

Observation 1 (2), we see that if A ⊂ S1 is non-coorbital, then x∗(A) is non-cotail. Especially,
we have

x∗(α) = 0a20a4 · · · , x∗(1) = a10a30 · · · . (
)

DEFINITION 1 (n-tail and n-th comparison). Define

x(n,∞)(ω) = xn+1(ω)xn+2(ω) · · ·
for each n ∈ Z+. For each ω ∈ Λ1, let

Cn(ω) = #{λ ∈ Λ1 | x(n,∞)(λ) <lex x(n,∞)(ω)} .



DENJOY SYSTEMS AND SUBSTITUTIONS 37

We call Cn the n-th comparison.

Since x∗(Λ1) is non-cotail, Cn is a bijection from Λ1 to A. By the definition of Cn, we
see that x(n,∞)(Λ1) is arranged in the following way

x(n,∞) ◦ C−1
n (0) <lex x(n,∞) ◦ C−1

n (1) <lex · · · <lex x(n,∞) ◦ C−1
n (d) .

DEFINITION 2. For each (c, i) ∈ {0, . . . , an} ×A, define

�c, i�n = #{λ ∈ Λ1 | x(n−1,∞)(λ) <lex c x(n,∞) ◦ C−1
n (i)}

where c x(n,∞)(ω) = c xn+1(ω)xn+2(ω) · · · . For each n ∈ N and i ∈ A, define

σn(i) =
{
�0, i�n�1, i�n · · · �an, i�n if xn+1 ◦ C−1

n (i) = 0

�0, i�n�1, i�n · · · �an − 1, i�n otherwise.

Then σn is a substitution over A, and the main result is the following:

MAIN THEOREM. The sequence (σ1,
↼
σ2, σ3,

↼
σ4, . . .) generates the biinfinite sequence

J (α).

EXAMPLE 1 (d = 1). Let Λ1 = {α, 1}. Then by (
),

(Cn(α), Cn(1)) =
{

(1, 0) if n is odd

(0, 1) if n is even,
σn :

{
0 �→ 01an

1 �→ 01an−1 .

So Proposition 1 is a special case of Main Theorem.

EXAMPLE 2 (d = 2). Let Λ1 = {α,ω, 1} and xn = xn(ω). Then we have

(Cn(α), Cn(ω), Cn(1)) =


(2, 0, 1) if n is odd and xn+1 = 0

(2, 1, 0) if n is odd and xn+1 > 0

(1, 0, 2) if n is even and xn+1 = 0

(0, 1, 2) if n is even and xn+1 > 0

and

if xn = xn+1 = 0, then σn :


0 �→ 02an

1 �→ 12an ;
2 �→ 12an−1

if xn = 0 and xn+1 > 0, then σn :


0 �→ 02an

1 �→ 02an−1 ;
2 �→ 12an−1
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if xn > 0 and xn+1 = 0, then σn :


0 �→ 01xn2an−xn

1 �→ 01xn−12an−xn+1 ;
2 �→ 01xn−12an−xn

if xn > 0 and xn+1 > 0, then σn :


0 �→ 01xn2an−xn

1 �→ 01xn2an−xn−1 .

2 �→ 01xn−12an−xn

3. Denjoy system and Sturmian subshift

Let ϕ : S1 → S1 be a Denjoy homeomorphism, that is, an orientation-preserving
homeomorphism with irrational rotation number α ∈ (0, 1) \ Q, which is not conjugate to
any rotation. We review Poincare’s rotation number theorem. There exists a degree 1 map

F : S1 → S1 satisfying the following:

(1) Rα ◦ F = F ◦ ϕ.
(2) Let A = {z ∈ S1 | #F−1F(z) = 1} and X = cl A (the closure of A). Then X is

a Cantor set which is the unique minimal set under ϕ. Moreover F(X) = S1. A

connected component of S1 \ X is called a cutout interval (indeed, an open arc).
The set of endpoints of cutout intervals is X \ A.

(3) Let FX be the restriction of F to X. There exists an at most countable non-coorbital
subset Λ ⊂ S1 such that

FX(X \ A) =
⋃
ω∈Λ

Oω .

For each cutout interval I , F(cl I) is a singleton, and F−1
X (ω) is the set of endpoint

of a cutout interval for any ω ∈ FX(X \ A). We call FX(X \ A) the double point
set and Λ a transversal of the double point set.

Such F is unique up to rotation. Denote the restriction of ϕ to X by

T : X→ X ,

and the subsystem (X, T ) is called a Denjoy system. Notice that the cardinality #Λ of Λ is
independent of the choice of F . We call #Λ the double orbit number of (X, T ). By choosing
appropriate F , we can assume α ∈ Λ.

DEFINITION 3. For each ω ∈ FX(X \ A), there exists a cutout interval Iω such that
F−1(ω) = cl Iω. Pick ω̃ ∈ Iω.

From now on, we consider only the case of finite double orbit number.
Let Λ1 = Λ ∪ {1} = {ω0 < ω1 < · · · < ωd }. Then Λ1 induces a partition of X:
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X =
⋃
i∈A

z0(i)

where z0(0) = (ω̃d, ω̃0] ∩X, z0(i) = (ω̃i−1, ω̃i ] ∩X (1 ≤ i ≤ d).

REMARK 1. For each i ∈ A, z0(i) = cl F−1
X (int t0(i)).

Notice that z0(i) is closed and open (clopen) in X, and independent of the choice of ω̃i’s.

Define JX : X→ AZ by JX(x)n = i if T n(x) ∈ z0(i).

We can see the following relation between JX(x) and J (FX(x)).

PROPOSITION 2. (1) If x ∈ X \ {sup IRn
α(ω) | n ∈ Z, ω ∈ Λ}, then

JX(x) = J (FX(x)) .

Especially, JX(inf Iα) = J (α).
(2) If x = sup IRm

α (α), then

JX(x)−m−1 = 0, J (FX(x))−m−1 = d ,

JX(x)−m = J (FX(x))−m + 1 ,

JX(x)n = J (FX(x))n (n 
= −m,−m− 1) .

(3) If x = sup IRm
α (ω) with ω ∈ Λ \ {α}, then

JX(x)−m = J (FX(x))−m + 1 ,

JX(x)n = J (FX(x))n (n 
= −m) .

PROOF. Let ω−1 := ωd . Notice

FX(z0(i) \ {sup Iωi−1 }) = t0(i) (i ∈ A) .

So if x ∈ X \ {sup Iω | ω ∈ Λ1}, then x ∈ z0(i) and FX(x) ∈ t0(i) for some i.
If x ∈ X \ {sup IRn

α(ω) | n ∈ Z, ω ∈ Λ}, then T n(x) ∈ X \ {sup Iω | ω ∈ Λ1} for all n.
Hence (1) holds.
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Now, we show (2) and (3) in the case of m = 0. Let z0(d + 1) := z0(0). Notice

sup Iωi ∈ z0(i + 1), FX(sup Iωi ) = ωi ∈ t0(i) (i ∈ A) .

(2) When x = sup Iα ∈ z0(i + 1), we have FX(x) = α ∈ t0(i), T −1(x) = sup Iωd ∈
z0(0), R−1

α (FX(x)) = ωd ∈ t0(d), and T n(x) ∈ X \ {sup Iω | ω ∈ Λ1} if n 
= 0,−1.
(3) When x = sup Iω ∈ z0(i + 1) for some ω ∈ Λ \ {α}, we have FX(x) ∈ t0(i) and

T n(x) ∈ X \ {sup Iω | ω ∈ Λ1} if n 
= 0. �

PROPOSITION 3. A Denjoy system (X, T ) is conjugate to the subshift (JX(X), S) via
JX.

PROOF. Since X is compact and JX(X) is Hausdorff, it suffices to show that JX is
continuous and one-to-one. For each x ∈ X, the set

l⋂
n=−l

T −n
(
z0(JX(x)n)

)
= {y ∈ X | JX(y)n = JX(x)n (−l ≤ n ≤ l)}

is a neighborhood of x. Hence JX is continuous.
Let x, y ∈ X be distinct.

Consider the case of F(x) 
= F(y). Since Rα is a minimal isometry, there exists n ∈ Z such
that F(x) ∈ Rn

α(int t0(i)) and F(y) ∈ Rn
α(int t0(j)) with i 
= j . This implies T −n(x) ∈ z0(i)

and T −n(y) /∈ z0(j). So JX(x)−n 
= JX(y)−n.
Consider the case of F(x) = F(y). Then x, y are the endpoints of some cutout interval, that
is, there exists ωi ∈ Λ (0 ≤ i < d) and n ∈ Z such that

{x, y} = {inf IRn(ωi), sup IRn
α(ωi )} .

So T −n({x, y}) = {inf Iωi , sup Iωi }. Since inf Iωi ∈ z0(i) and sup Iωi ∈ z0(i + 1), we have
JX(x)−n 
= JX(y)−n. Anyway, JX(x) 
= JX(y). �

By Proposition 3, JX(X) is the orbit closure of JX(x) for any x ∈ X.

4. Natural substitution system

In this section, we shall introduce a main tool, that is, a substitution system (σn)n∈N via
an ordered Bratteli diagram of constant rank.

4.1. Ordered Bratteli diagram. A Bratteli diagram is an infinite directed graph B =
(V ,E), such that the vertex set V and the edge set E can be partitioned into finite sets

V =
⋃

n∈Z+
Vn and E =

⋃
n∈N

En

with the following properties: s(En) = Vn−1 and r(En) = Vn for all n, where s : E → V is
the source map and r : E→ V is the range map. For each n ∈ Z+, pick a bijection

vn : {0, 1, . . . , cn − 1} → Vn where cn = #Vn .
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So Vn = {vn(0), vn(1), . . . , vn(cn − 1)}. Let An be the cn × cn−1 matrix defined by

(An)ij = #(s−1(vn−1(j)) ∩ r−1(vn(i)))

and call An the n-th incidence matrix of B. Define the infinite path space XB of B by

XB =
{
e∗ = (en)n∈N ∈

∏
n∈N

En

∣∣∣ r(en) = s(en+1) for all n
}

.

An ordered Bratteli diagram B = (B,≤) is a Bratteli diagram B = (V ,E) together with
a partial order on E so that edges e, e′ ∈ E are comparable if and only if r(e) = r(e′). Then
we put the adic order on XB (partial order) by that e∗ < f∗ if there exists N ∈ N such that
eN < fN and en = fn for all n > N , and write XB = (XB,≤).
If there exist a unique minimal path emin∗ and a unique maximal path emax∗ , then B is said to be
properly ordered.
For a properly ordered Bratteli diagram B, define the adic transformation θB : XB → XB as

follows: if e∗ 
= emax∗ , then θB(e∗) = min{f∗ ∈ XB | f∗ > e∗}; and θB(emax∗ ) = emin∗ . The
system (XB, θB) is called a Bratteli-Vershik system or an adic system.

4.2. Natural substitution system. When P = {p1 < p2 < · · · < p#P } is a totally
ordered finite set, we denote the arrangement of the elements of P in its order, p1p2 · · ·p#P ,

by
−→
P . For a map η : P → Q, define η(

−→
P ) = η(p1) · · · η(p#P ).

A Bratteli diagram is said to be of constant rank if #Vn is independent of n ∈ Z+. We
call the number #Vn the rank of B, and denote it by rank(B).
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DEFINITION 4. Let d ∈ N and B = (B,≤) be an ordered Bratteli diagram of
rank(B) = d + 1. Define a substitution σn by

σn(i) = v−1
n−1 ◦ s(

−−−−−−→
r−1(vn(i))) .

We call the sequence of substitutions (σn)n∈N the natural substitution system of B.

Clearly, the n-th incidence matrix An of B is the “incidence matrix" of σn, that is, (An)ij

is the number of occurrences of j in σn(i).
Let B = (B,≤) be properly ordered of rank(B) = d + 1. Define

s : XB → V0 : e∗ �→ s(e1)

and define a map JB : XB → AZ by

JB(e∗)n = i if v−1
0 ◦ s(θn

B(e∗)) = i .

Then we have the following.

THEOREM 1. If (XB, θB) has no periodic points, then the natural substitution system

(σn)n∈N of B generates the biinfinite word JB(emin∗ ).

(For its proof, see Subsection 6.1.)

5. HPS-adic presentations of Denjoy systems

5.1. HPS-adic presentation. Let Y be a Cantor set and U : Y → Y be a homeo-
morphism. We call (Y,U) a Cantor system if U is minimal. For any Cantor system (Y,U),
Herman, Putnam and Skau ([1]) had shown that there exists a Bratteli-Vershik system which
is conjugate to (Y,U). We shall recall their construction.

A Kakutani-Rokhlin (KR) tower partition of (Y,U) is a partition of the form:

P = {Uk(Z(j)) | 0 ≤ j < c, 0 ≤ k < h(j)} where Z(j) is clopen and c, h(j) ∈ N.

Let P ′ = {Uk(Z′(i)) | 0 ≤ i < c′, 0 ≤ k < h′(i)} be another KR partition of (Y,U). If P ′ is
finer than P , then for each 0 ≤ i < c′, 0 ≤ j < c, there exists Hij ⊂ [0, h′(i)) ∩ Z such that

Z(j) =
⋃

0≤i<c′

⋃
ρ∈Hij

Uρ(Z′(i)) . (∗)

To visualize this refinement, it is convenient to consider a graph (W,E) with a partial order≤
on E, where the vertex set W = V ∪V ′: V = {v(0), . . . , v(c− 1)}, V ′ = {v′(0), . . . , v′(c′ −
1)}; and the edge set

E = {(v(j), ρ, v′(i)) | 0 ≤ j < c, 0 ≤ i < c′, ρ ∈ Hij }
and the partial order ≤ on E defined by

(v(j), ρ, v′(i)) ≤ (v(j ′), ρ′, v′(i ′)) if i = i ′ and ρ ≤ ρ′.
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Then by (∗) there is a correspondence between E and {p ∈ P ′ | p ⊂ ⋃
0≤j<c Z(j)} via

(v(j), ρ, v′(i))←→ p = Uρ(Z′(i)) with p ⊂ Z(j). If (v(j), ρ, v′(i)) ≤ (v(j ′), ρ′, v′(i ′)),
then Uρ′(Z′(i ′)) is a forward image of Uρ(Z′(i)) (indeed Z′(i ′) = Z′(i)).

Now, let (Pn)n∈Z+ be a refining sequence of KR partitions of (Y,U) where Pn =
{Uk(Zn(i)) | 0 ≤ i < cn, 0 ≤ k < hn(i)}. Then for each 0 ≤ i < cn and 0 ≤ j < cn−1,
there exists (Hn)ij ⊂ [0, hn(i)) ∩ Z such that

Zn−1(j) =
⋃

0≤i<cn

⋃
ρ∈(Hn)ij

Uρ(Zn(i)) .

We call {(Hn)ij } the hitting time sets of (Pn)n∈N.
From {(Hn)ij }, we construct an ordered Bratteli diagram B({Pn}) associated with

(Pn)n∈Z+ as follows:

Vn = {vn(0), . . . , vn(cn − 1)} ,
En = {(vn−1(j), ρ, vn(i)) | ρ ∈ (Hn)ij } ,
(vn−1(j), ρ, vn(i)) ≤ (vn−1(j

′), ρ′, vn(i
′)) if i = i ′ and ρ ≤ ρ′ ,

s(vn−1(j), ρ, vn(i)) = vn−1(j) ,

r(vn−1(j), ρ, vn(i)) = vn(i) .

PROPOSITION 4 ([1]). There exists a refining sequence of KR partitions (Pn)n∈Z+ ,

where Pn = {Uk(Zn(i)) | 0 ≤ i < cn, 0 ≤ k < hn(i)} and c0 = h0(0) = 1, Z0(0) = Y

such that B = B({Pn}) is properly ordered, and the corresponding Bratteli-Vershik system
(XB, θB) is conjugate to (Y,U). A conjugacy φ is given by

{φ((vn−1(in−1), ρn, vn(in))n∈N)} =
⋂
n∈N

Zn

(
in,

n∑
l=1

ρl

)
where Zn(in, k) := Uk(Zn(in)) .

Moreover,

{φ(emin∗ )} =
⋂
n∈N

⋃
0≤i<cn

Zn(i) .

We say (XB, θB) is an HPS-adic presentation of (Y,U), and call φ the natural conjugacy.

5.2. HPS-adic presentations of Denjoy systems. Consider a Denjoy system (X, T )

of rotation number α and double orbit number d . Let Λ be a transversal of its double point
set with α ∈ Λ, and Λ1 = Λ ∪ {1}. In [6], the author, Sugisaki and Yoshida constructed a
concrete HPS-adic presentation of (X, T ) (based on dual Ostrowski numeration system). We
shall introduce its construction.
First, we introduce a modification of dual Ostrowski numeration system. Let

α = [0; b1 + 1, b2, b3, . . .]
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be the simple continued fraction expansion of α, that is, b1 = a1 − 1, bn = an (n ≥ 2), and

Ms
α =

{
x∗ ∈

∏
n∈N

{−1, 0, 1, . . . , bn}
∣∣∣ xn = bn ⇐⇒ xn+1 = −1

}
.

Define the signed expansion xs∗ : (0, 1] → Ms
α by

xs
n(ω) =

{
xn(ω)− 1 if n = 1 or xn−1(ω) = an−1

xn(ω) otherwise .

Next, we define

Cs
n : Λ1 → A where Cs

n(ω) = #{λ ∈ Λ1 | xs
(n,∞)(λ) <lex xs

(n,∞)(ω)} .
DEFINITION 5. For each n ∈ N, let

ξn = xs
n ◦ (Cs

n−1)
−1 and gn = Cs

n ◦ (Cs
n−1)

−1 .

Let (ξn, gn)(j) = (ξn(j), gn(j)). Associated with (ξn, gn), define

D(ξn, gn) = {(x, i) ∈ {−1, 0, . . . , bn} ×A | x = bn ⇔ i ≤ gn(d)} ,
and for each j ∈ A,

D(ξn, gn)j =
{
{(x, i) ∈ D(ξn, gn) | (x, i) ≤lex (ξn, gn)(0)} if j = 0

{(x, i) ∈ D(ξn, gn) | (ξn, gn)(j − 1) <lex (x, i) ≤lex (ξn, gn)(j)} otherwise

where (x, i) <lex (y, j) if x < y, or x = y and i < j .

(The definition of (ξn, gn) is different from the one in [6], but Prop. 8.2 in [6] ensures that
both are the same.)
Let

�c, i�sn = #{λ ∈ Λ1 | xs
(n−1,∞)(λ) <lex c xs

(n,∞) ◦ (Cs
n)
−1

(i)} .

LEMMA 1. (1) D(ξn, gn) =
⋃
j∈A

D(ξn, gn)j .

(2) If (c, i) ∈ D(ξn, gn), then (c, i) ∈ D(ξn, gn)�c,i�sn .

PROOF. First, we claim that

(ξn, gn)(j) <lex (ξn, gn)(j + 1) .

Indeed, notice that xs
(n,∞) ◦ (Cs

n)
−1(i) <lex xs

(n,∞) ◦ (Cs
n)
−1(j) ⇐⇒ i < j . So by the

definition of (ξn, gn), we have

xs
(n−1,∞) ◦ (Cs

n−1)
−1(j) <lex xs

(n−1,∞) ◦ (Cs
n−1)

−1(j + 1)

⇐⇒ ξn(j) < ξn(j + 1), or ξn(j) = ξn(j + 1) and
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xs
(n,∞) ◦ (Cs

n)
−1(gn(j)) <lex xs

(n,∞) ◦ (Cs
n)
−1(gn(j + 1))

⇐⇒ (ξn, gn)(j) <lex (ξn, gn)(j + 1) .

(1) By the definition of D(ξn, gn)j , clearly D(ξn, gn) ⊃ ⋃
j D(ξn, gn)j . It suffices

to show that (ξn, gn)(d) = (bn, gn(d)), that is, ξn(d) = bn. By the above claim, ξn(d) =
max{ξn(i) | i ∈ A} = max{xs

n(ω) | ω ∈ Λ1}. By (
) in Section 2, we see that max{xs
n(ω) |

ω ∈ Λ1} = bn.
(2) Let j = �c, i�sn. By the definition of �c, i�sn,

xs
(n−1,∞) ◦ (Cs

n−1)
−1(j − 1) <lex c xs

(n,∞) ◦ (Cs
n)
−1(i) ≤lex xs

(n−1,∞) ◦ (Cs
n−1)

−1(j) .

Notice that

c xs
(n,∞) ◦ (Cs

n)
−1(i) ≤lex xs

(n−1,∞) ◦ (Cs
n−1)

−1(j)

⇐⇒ c < ξn(j), or c = ξn(j) and xs
(n,∞) ◦ (Cs

n)
−1(i) ≤lex xs

(n,∞) ◦ (Cs
n)
−1(gn(j))

⇐⇒ (c, i) ≤lex (ξn, gn)(j) ,

Similarly, we can see that

xs
(n−1,∞) ◦ (Cs

n−1)
−1(j − 1) <lex c xs

(n,∞) ◦ (Cs
n)
−1(i)⇐⇒ (ξn, gn)(j − 1) <lex (c, i) .

�

For each n ∈ Z, let n+ = max{n, 0} and

εn =
{

0 if n is odd

1 if n is even .

Define

sn(x) =
{

(−εn+1(−1)nqn + (x − bn + εn)(−1)n−1qn−1)+ if −1 ≤ x < bn

0 if x = bn .

Hence we see that

if n is odd, then sn(−1) < sn(0) < · · · < sn(bn − 1) ;
if n is even, then sn(−1) > sn(0) > · · · > sn(bn − 1) .

The next proposition follows Th. 5.1, Lem. 7.1, Cor. 7.1 and Cor. 7.2 in [6].

PROPOSITION 5. For a Denjoy system (X, T ) of finite double orbit number d and
rotation number α, there exists a refining sequence of KR partitions (PX

n )n∈Z+ whose form is

PX
n = {T k(zn(i)) | i ∈ A, 0 ≤ k < hn(i)} (n ≥ 1), with hitting time sets given by

(H1)i0 = {s1(x) | (x, i) ∈ D(ξ1, g1)} ,
(Hn)ij = {sn(x) | (x, i) ∈ D(ξn, gn)j } (n ≥ 2) ,
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such that B = B({PX
n }) is properly ordered, and the associated Bratteli-Vershik system

(XB, θB) is conjugate to (Y, S). Moreover φ(emin∗ ) = inf Iα where φ is the natural conju-
gacy, and

z0(j) =
⋃
i∈A

⋃
(x,i)∈D(ξ1,g1)j

T s1(x)(z1(i)) .

(z0(j)’s are defined in Section 3.)

6. Proof

6.1. Proof of Theorem 1. First, we prepare some lemmas to prove Theorem 1. Let B
be an ordered Bratteli diagram. Let P[l,m](v) (1 ≤ l ≤ m, v ∈ Vm) be the set of finite paths
from Vl−1 to v, that is,

P[l,m](v) =
{
e[l,m] ∈

m∏
n=l

En | r(en) = s(en+1) (l ≤ n < m), r(em) = v
}

.

Naturally the order of Bratteli diagram induces a total order on P[l,m](v): e[l,m] < f[l,m] if
there exists l ≤ N ≤ m such that eN < fN and en = fn for all N < n ≤ m.
For each e[l,m] ∈ P[l,m](v), define s(e[l,m]) = s(el).

LEMMA 2. (1) XB has a unique minimal path if and only if for each n ≥ 2, there
exists N ≥ n such that s(min P[n,N](v)) is independent of v. In this case, s(min P[n,N](v)) =
s(emin

n ).
(2) XB has a unique maximal path if and only if for each n ≥ 2, there exists N ≥ n

such that s(max P[n,N](v)) is independent of v. In this case, s(max P[n,N](v)) = s(emax
n ).

PROOF. We prove (1). Note XB is compact. For each n ∈ N, let

Xn = {e∗ ∈ XB | e[1,n] = min P[1,n](r(en))} .
Then

⋂
n Xn is the set of minimal paths. Observe Xn ⊃ Xn+1 and Xn is non-empty closed.

Therefore
⋂

n Xn is non-empty, that is, there exist minimal paths.

Suppose emin∗ is the unique minimal path of XB, that is,
⋂

n Xn = {emin∗ }. Then for each
n ≥ 2, ⋂

N∈N

XN ∩ {e∗ ∈ XB | e[1,n−1] 
= emin[1,n−1]} = ∅ ,

Therefore for any n ≥ 2, there exists N ≥ n such that

XN ⊂ {e∗ ∈ XB | e[1,n−1] = emin[1,n−1]} .

This implies that s
(
min P[n,N](v)

) = r(emin
n−1) = s(emin

n ) for any v ∈ VN .
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Conversely, suppose that for each n ≥ 2, there exists N ≥ n such that s(min P[n,N](v))

is independent of v. Let e∗, f∗ be minimal paths and n ≥ 2. Since e∗, f∗ ∈ XN , we see that
s(en) = s(fn) = s(min P[n,N](v)) and

e[1,n−1] = f[1,n−1] = min P[1,n−1](s(min P[n,N](v))) .

Since n is arbitrary, this implies e∗ = f∗. �

Let B be a properly ordered Bratteli diagram. By the definition of θB, we have the
following.

REMARK 2. If e∗ 
= emax∗ , then there exists N such that for any n > N , en = θB(e∗)n.

LEMMA 3. Let B be a properly ordered Bratteli diagram. Then (XB, θB) has a peri-
odic point if and only if

lim
n→∞ min

v∈Vn

#P[1,n](v) <∞ .

PROOF. Notice that minv∈Vn #P[1,n](v) ≤ minv∈Vn+1 #P[1,n+1](v).

Suppose θ
p

B (e∗) = e∗ (p ∈ N). If e∗ 
= emax∗ then θB(e∗) > e∗. So there exists

0 ≤ q < p such that θ
q

B(e∗) = emax∗ . Then emax∗ = θ
p−1
B (emin∗ ). By Remark 2, there exists N

such that for all n > N , emax
n = emin

n . Let n > N . Since min r−1(r(emin
n )) = emin

n = emax
n =

max r−1(r(emax
n )), we see r−1(r(emin

n )) = {emin
n }. Then

#P[1,n](r(emin
n )) = #P[1,n−1](r(emin

n−1)) .

Therefore lim
n→∞ min

v∈Vn

#P[1,n](v) <∞.

Conversely, suppose lim
n→∞ min

v∈Vn

#P[1,n](v) <∞. There exist N,p ∈ N such that

min
v∈Vn

#P[1,n](v) = p for any n ≥ N .

To prove the existence of a periodic point, we show the following claims.

Claim 1. There exists f∗ ∈ XB such that r−1(r(fn)) = {fn} for all n > N .
For each n ≥ N , let Yn = {e∗ ∈ XB | #P[1,n](r(en)) = p}. For e∗ ∈ Yn+1, we have

p = #P[1,n+1](r(en+1)) =
∑

e∈r−1(r(en+1))

#P[1,n](s(e)) ≥ #P[1,n](r(en)) ≥ p ,

hence r−1(r(en+1)) = {en+1} and e∗ ∈ Yn. In particular, Yn+1 ⊂ Yn. Since Yn is non-empty
and closed,

⋂
n≥N Yn is non-empty. Let f∗ ∈ ⋂

n≥N Yn, then f∗ is the desired one.

Claim 2. Let Z = {e∗ ∈ XB | en = fn for all n > N}. Then θB(Z) ⊂ Z.
For each n > N , let Zn = {e∗ ∈ XB | en = fn}. So Z = ⋂

n>N Zn. For e∗ ∈ Zn+1,

en ∈ r−1(s(en+1)) = r−1(s(fn+1)) = r−1(r(fn)) = {fn}. Hence Zn+1 ⊂ Zn.
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For each n ∈ N, let Xn = {e∗ ∈ XB | e[1,n] = min P[1,n](r(en))}. Then Xn+1 ⊂ Xn and⋂
n∈N Xn = {emin∗ }. For each n > N , min P[1,n](r(fn))f(n,∞) ∈ Xn ∩Zn since r−1(r(fn)) =
{fn}. So Xn ∩ Zn is non-empty and closed. Clearly Xn+1 ∩ Zn+1 ⊂ Xn ∩ Zn. Therefore

∅ 
=
⋂
n>N

Xn ∩ Zn ⊂
⋂
n>N

Xn = {emin∗ } .

Thus emin∗ ∈ Z.

Let e∗ ∈ Z. If e∗ = emax∗ , then θB(e∗) = emin∗ ∈ Z. If e∗ 
= emax∗ , then by Remark 2,
there exists N ′ such that for any n > N ′, θB(e∗)n = en. If N ′ ≤ N , then θB(e∗) ∈ Z. If
N ′ > N , then θB(e∗) ∈⋂

n>N ′ Zn. Since Zn+1 ⊂ Zn, θB(e∗) ∈ Z.
The existence of a periodic point follows Claim 2 and #Z <∞. �

LEMMA 4. Let B be an ordered Bratteli diagram of constant rank and (σn)n∈N be the
natural substitution system of B. Then

v−1
l−1 ◦ s(

−−−−−−−−→
P[l,m](vm(i))) = σlσl+1 · · · σm(i) .

PROOF. Fix l ∈ N. We use induction on m (≥ l). It is clear for m = l. Suppose the
claim holds for m. Here we have the following partition

P[l,m+1](vm+1(i)) =
⋃

em+1∈r−1(vm+1(i))

{e[l,m]em+1 | e[l,m] ∈ P[l,m](s(em+1))} .

Let e[l,m+1], f[l,m+1] ∈ P[l,m+1](vm+1(i)). If em+1 < fm+1, or em+1 = fm+1 and e[l,m] <

f[l,m], then e[l,m+1] < f[l,m+1]. Hence when

−−−−−−−−→
r−1(vm+1(i)) = e1

m+1e
2
m+1 · · · ek

m+1 (where k = #r−1(vm+1(i))) ,

we see that

v−1
l−1 ◦ s(

−−−−−−−−−−−→
P[l,m+1](vm+1(i))) = v−1

l−1 ◦ s(
−−−−−−−−−−→
P[l,m](s(e1

m+1))) · · · v−1
l−1 ◦ s(

−−−−−−−−−−→
P[l,m](s(ek

m+1)))

= σl · · · σm(v−1
m ◦ s(e1

m+1)) . . . σl · · · σm(v−1
m ◦ s(ek

m+1))

= σl · · · σm+1(i) . �

By the definition of θB, we have the following.

OBSERVATION 2. Suppose that B is a properly ordered Bratteli diagram. Let e∗ ∈ XB

and P = P[1,l](r(el)). If e[1,l] = min P , then

θ0
B(e∗)[1,l]θ1

B(e∗)[1,l] · · · θ#P−1
B (e∗)[1,l] = −→P .

PROOF OF THEOREM 1. Let e∗ ∈ XB and P = P[1,l](r(el)). If e[1,l] = min P , then by
Observation 2 and Lemma 4,

JB(e∗)0JB(e∗)1 · · · JB(e∗)#P−1 = σ1σ2 · · · σl(v
−1
l ◦ r(el)) .
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Let n ≥ 2 and Q = P[1,n−1](r(emin
n−1)). Notice that emin

[1,n−1] = min Q. By Lemma 2 and 4,

there exists N such that

v−1
n−1 ◦ s(emin

n ) = v−1
n−1 ◦ s(min P[n,N](vN(i))) = (σnσn+1 · · · σN(i))1 (i ∈ A) .

Hence

JB(emin∗ )0JB(emin∗ )1 · · · JB(emin∗ )#Q−1 = σ1σ2 · · · σn−1((σnσn+1 · · · σN(i))1) .

By Lemma 3, #Q→∞. So (σn)n∈N generates JB(emin∗ )0JB(emin∗ )1 · · · .
Similarly, we can see that (

↼
σn)n∈N generates JB(emin∗ )−1JB(emin∗ )−2 · · · . �

6.2. Proof of Main Theorem. By Proposition 5, we have a properly ordered Bratteli

diagram B = B({PX
n }) and an HPS-adic presentation of (X, T ): (XB, θB). But B is not of

constant rank (c0 = 1, cn = d + 1 (n ≥ 1)). Here, define a properly ordered Bratteli diagram
D of constant rank by

Vn = {wn(0),wn(1), . . . , wn(d)} ,
En = {(wn−1(j), sn(x),wn(i)) | (x, i) ∈ D(ξn, gn)j } ,
(wn−1(j), ρ,wn(i)) ≤ (wn−1(j

′), ρ′, wn(i
′)) if i = i ′ and ρ ≤ ρ′ .

Moreover define Ψ : D→ B by

Ψ ((w0(j), ρ,w1(i))) = (v0(0), ρ, v1(i)) ,

Ψ ((wn−1(j), ρ,wn(i))) = (vn−1(j), ρ, vn(i)) (n ≥ 2) .

Then by Lemma 1 (1), Ψ induces a conjugacy Ψ : (XD, θD)→ (XB, θB) with Ψ (emin∗ ) = emin∗ .

PROPOSITION 6. JD(emin∗ ) = JX(inf Iα).

PROOF. By Proposition 5, φ ◦ Ψ (emin∗ ) = inf Iα . Note

Ψ ({e∗ ∈ XD | s(e∗) = j }) = {e∗ ∈ XB | e1 = (v0(0), s1(x), v1(i)), (x, i) ∈ D(ξ1, g1)j } .
By Proposition 5,

φ ◦ Ψ ({e∗ ∈ XD | s(e∗) = j }) ⊂ z0(j) .

This completes the proof. �

So we will study the natural substitution system of D.

LEMMA 5. i ≤ gn(d)⇐⇒ ξn+1(i) = −1.

PROOF. By (
) in Section 2, notice that

(Cs
n)
−1(d) =

{
α if n is odd

1 if n is even.
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Therefore

i ≤ gn(d)⇐⇒ xs
(n,∞) ◦ (Cs

n)
−1(i) ≤lex (−1)bn+2(−1)bn+4 · · · ⇐⇒ ξn+1(i) = −1

�

PROPOSITION 7. Let

τn(i) =
{
�bn, i�sn if xs

n+1 ◦ (Cs
n)
−1(i) = −1

�−1, i�sn�0, i�sn · · · �bn − 1, i�sn otherwise.

Then the natural substitution system of D is (τ1,
↼
τ2, τ3,

↼
τ4, . . .).

PROOF. By Lemma 1,

r−1(wn(i)) =


{
(wn−1(�an, i�sn), sn(bn),wn(i))

}
if i ≤ gn(d){

(wn−1(�x, i�sn), sn(x),wn(i)) | − 1 ≤ x < bn

}
otherwise.

By Lemma 5, i ≤ gn(d) is equivalent to xs
n+1 ◦ (Cs

n)
−1(i) = −1.

Let i ≤ gn(d). Then

σn(i) = w−1
n−1 ◦ s(wn−1(�bn, i�sn), sn(bn),wn(i)) = �bn, i�sn = τn(i) = ↼

τn(i) .

Let i > gn(d) and n be odd. Since sn is increasing on {−1, 0, . . . , bn − 1}, we see that

−−−−−−−→
r−1(wn(i)) = (wn−1(�−1, i�sn), sn(−1),wn(i))(wn−1(�0, i�sn), sn(0),wn(i))

· · · (wn−1(�bn − 1, i�sn), sn(bn − 1),wn(i)) .

Therefore

w−1
n−1

(−−−−−−−→
r−1(wn(i))

)
= �−1, i�sn�0, i�sn · · · �bn − 1, i�sn = τn(i) .

Let i > gn(d) and n be even. Since sn is decreasing on {−1, 0, . . . , bn− 1}, similarly, we can

see that w−1
n−1

(−−−−−−−→
r−1(wn(i))

)
= ↼

τn(i). �

Combining Proposition 2 (1), 6, 7 and Theorem 1, we get the following.

PROPOSITION 8. The sequence (τ1,
↼
τ2, τ3,

↼
τ4, · · · ) generates J (α).

To complete the proof of Main Theorem, we observe the relation between (τ1,
↼
τ2, · · · )

and (σ1,
↼
σ2, · · · ). Indeed, it suffices to show that

σ1
↼
σ2σ3

↼
σ4 · · · = τ1

↼
τ2τ3

↼
τ4 · · · .

To show this, we prepare some definitions. Let

τ ′n(i) =
{
�an, i

′�n if xs
n+1 ◦ (Cs

n)
−1(i) = −1

�0, i ′�n�1, i ′�n · · · �an − 1, i ′�n otherwise
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where i ′ = Cn ◦ (Cs
n)
−1(i). Moreover define in, i

s
n,∆ by

Mn = {x(n,∞) | x∗ ∈ Mα} , in : Mn → A, in(x(n,∞)) = #{λ ∈ Λ1 | x(n,∞)(λ) <lex x(n,∞)};

Ms
n = {y(n,∞) | y∗ ∈ Ms

α} , isn : Ms
n → A, isn(y(n,∞)) = #{λ ∈ Λ1 | xs

(n,∞)(λ) <lex y(n,∞)};

∆ :
∞⋃

n=1

Ms
n →

∞⋃
n=1

Mn, ∆(x(n,∞)) = (xn+1)+(xn+2)+ · · · .

We have the following:

• For each i ∈ A, there exist x(n,∞) ∈ Mn, y(n,∞) ∈ Ms
n such that in(x(n,∞)) =

isn(y(n,∞)) = i.
• x(n,∞) = ∆ ◦ xs

(n,∞)
.

• For y(n,∞), y
′
(n,∞) ∈ Ms

n, if yn+1 = y ′n+1 = −1, or yn+1, y
′
n+1 ≥ 0, then

y(n,∞) <lex y ′(n,∞) ⇐⇒ ∆(y(n,∞)) <lex ∆(y ′(n,∞)) .

The following formula gives characterizations of σn, τn and τ ′n.

FORMULA 1. The following holds.

(1) σn(in(x(n,∞))) =
{

in−1(0x(n,∞)) · · · in−1(anx(n,∞)) if xn+1 = 0

in−1(0x(n,∞)) · · · in−1((an − 1)x(n,∞)) otherwise.

(2) τn(i
s
n(y(n,∞))) =

{
isn−1(bny(n,∞)) if yn+1 = −1

isn−1((−1)y(n,∞)) · · · isn−1((bn − 1)y(n,∞)) otherwise.

(3) τ ′n(isn(y(n,∞))) =
{

in−1(an∆(y(n,∞))) if yn+1 = −1

in−1(0∆(y(n,∞))) · · · in−1((an − 1)∆(y(n,∞))) otherwise.

PROOF. (1) Let x(n,∞) ∈ Mn. Since 0an+20an+4 · · · ∈ x(n,∞)(Λ1), we have

xn+1 = 0⇐⇒ xn+1C
−1
n in(x(n,∞)) = 0 .

Assume that there exist λ ∈ Λ1 and 0 ≤ c ≤ an such that

c x(n,∞) ≤lex x(n−1,∞)(λ) <lex c x(n,∞)C
−1
n (in(x(n,∞))) .

Then we can see

x(n,∞) ≤lex x(n,∞)(λ) <lex x(n,∞)C
−1
n (in(x(n,∞))) .

This contradicts the definition of in and Cn. Therefore we have

�c, in(x(n,∞))�n = in−1(c x(n,∞)) .

This completes the proof of (1). Similarly we can show (2).
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(3) Let y(n,∞) ∈ Ms
n. Since (−1)bn+2(−1)bn+4 · · · ∈ xs

(n,∞)(Λ1), we have

yn+1 = −1⇐⇒ xs
n+1(C

s
n)
−1(isn(y(n,∞))) = −1 .

First, consider the case of yn+1 = −1. Assume that there exists λ ∈ Λ1 such that

an ∆(y(n,∞)) ≤lex x(n−1,∞)(λ) <lex an x(n,∞)(C
s
n)
−1(isn(y(n,∞))) .

Then we can see

y(n,∞) ≤lex xs
(n,∞)(λ) <lex xs

(n,∞)(C
s
n)
−1(isn(y(n,∞))) .

This contradicts the definitions of isn and Cs
n. Therefore we have

�an, Cn(C
s
n)
−1(isn(y(n,∞)))�n = in−1(an ∆(y(n,∞))) .

Next, consider the case of yn+1 ≥ 0. Assume there exist λ ∈ Λ1 and 0 ≤ c < an such that

c ∆(y(n,∞)) ≤lex x(n−1,∞)(λ) <lex c x(n,∞)(C
s
n)
−1(isn(y(n,∞))) .

Then we can see

y(n,∞) ≤lex xs
(n,∞)(λ) <lex xs

(n,∞)(C
s
n)
−1(isn(y(n,∞))) .

This contradicts the definitions of isn and Cs
n. Therefore we have

�c, Cn(C
s
n)
−1(isn(y(n,∞)))�n = in−1(c ∆(y(n,∞))) . �

By Formula 1, τ1 = τ ′1. Moreover τ ′n
↼

τn+1 = σn

↼

τ ′n+1 (equivalently,
↼

τ ′nτn+1 = ↼
σnτ
′
n+1).

Indeed, if yn+2 = −1,

τ ′n
↼

τn+1(i
s
n+1(y(n+1,∞)))) = τ ′n(isn(bn+1 y(n+1,∞)))

= in−1(0∆(bn+1 y(n+1,∞))) · · · in−1((an − 1)∆(bn+1 y(n+1,∞)))

= in−1(0an+1∆(y(n+1,∞))) · · · in−1((an − 1)an+1∆(y(n+1,∞)))

= σn(in(an+1∆(y(n+1,∞)))) = σn

↼

τ ′n+1(i
s
n+1(y(n+1,∞)))) .

If yn+2 
= −1,

τ ′n
↼

τn+1(i
s
n+1(y(n+1,∞)))) = τ ′n(isn((bn+1 − 1) y(n+1,∞)) · · · isn((−1) y(n+1,∞)))

= in−1(0∆((bn+1 − 1) y(n+1,∞))) · · · in−1((an − 1)∆((bn+1 − 1) y(n+1,∞)))︸ ︷︷ ︸
· · ·
in−1(0∆(0 y(n+1,∞))) · · · in−1((an − 1)∆(0 y(n+1,∞)))︸ ︷︷ ︸ in−1(an∆((−1) y(n+1,∞)))

= in−1(0(an+1 − 1)∆(y(n+1,∞))) · · · in−1((an − 1)(an+1 − 1)∆(y(n+1,∞)))︸ ︷︷ ︸
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· · ·
in−1(00∆(y(n+1,∞))) · · · in−1((an − 1)0∆(y(n+1,∞))) in−1(an0∆(y(n+1,∞)))︸ ︷︷ ︸
= σn(in((an+1 − 1)∆(y(n+1,∞))) · · · in(0∆(y(n+1,∞)))) = σn

↼

τ ′n+1(i
s
n+1(y(n+1,∞)))) .

Therefore we have

τ1
↼
τ2τ3

↼
τ4 · · · = τ ′1

↼
τ2τ3

↼
τ4 · · · = σ1

↼

τ ′2τ3
↼
τ4 · · · = σ1

↼
σ2τ
′
3
↼
τ4 · · · = · · · = σ1

↼
σ2σ3

↼
σ4 · · · .

This completes the proof of Main Theorem.

References

[ 1 ] R. H. HERMAN, I. F. PUTNAM and C. F. SKAU, Ordered Bratteli diagrams, Dimension groups and topological
dynamics, Intern. J. Math. 3 (1992), 827–864.

[ 2 ] D. HERRMANN, Quasicrystals and Denjoy homeomorphisms, J. Phys. A 33 (2000), no. 33, 5867–5878.
[ 3 ] S. ITO, Some skew product transformations associated with continued fractions and their invariant measures,

Tokyo J. Math. 9 (1986), no. 1, 115–133.
[ 4 ] S. ITO and S. YASUTOMI, On continued fractions, substitutions and characteristic sequences [nx+ y]− [(n−

1)x + y], Japan. J. Math. (N.S.) 16 (1990), no. 2, 287–306.
[ 5 ] M. LOTHAIRE, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, 90.

Cambridge University Press, Cambridge, 2002.
[ 6 ] K. MASUI, F. SUGISAKI and M. YOSHIDA, Denjoy systems and Dimension groups, to appear in Ergodic

Theory Dynam. Systems.

Present Address:
DEPARTMENT OF MATHEMATICS,
OSAKA CITY UNIVERSITY,
SUGIMOTO, SUMIYOSHI-KU, OSAKA, 558–8585 JAPAN.
e-mail: masuikenichi@yahoo.co.jp


