Denjoy Systems and Substitutions

Kenichi MASUI

Osaka City University
(Communicated by A. Tani)

Abstract

We study a way of coding of irrational rotations, by which Denjoy systems are represented as subshifts. First, we state the subshift generated by a coding sequence is conjugate to a Denjoy system. Next, by using an adic model of a Denjoy system we give a sequence of substitutions to generate the coding sequence.

1. Introduction

Let $\mathcal{A}=\{0,1, \ldots, d\}$ be an alphabet and \mathcal{A}^{*} be the free monoid over \mathcal{A} with respect to the concatenation, having the empty word (identity element) ε_{\emptyset}. A substitution σ over \mathcal{A} is a map from an alphabet \mathcal{A} to $\mathcal{A}^{*} \backslash\left\{\varepsilon_{\emptyset}\right\}$. It can be extended to a morphism of \mathcal{A}^{*} naturally. The reversal of a finite word $w=w_{1} \cdots w_{n}$ is the word $\bar{w}=w_{n} \cdots w_{1}$. The reversal of a substitution σ is the substitution $\stackrel{\delta}{\sigma}$ defined by

$$
\bar{\sigma}(i)=\overleftarrow{\sigma(i)} \quad(i \in \mathcal{A}) .
$$

Notice $\overline{\sigma(w)}=\overleftarrow{\sigma}(\overleftarrow{w})$. A word v is a prefix of a word u if $u=v w$ for some $w \in \mathcal{A}^{*}$. The set of right infinite (resp. biinfinite) words over \mathcal{A} is denoted by $\mathcal{A}^{\mathbf{Z}_{+}}$(resp. $\mathcal{A}^{\mathbf{Z}}$).

Let $\left(\sigma_{1}, \sigma_{2}, \ldots\right)$ be a sequence of substitutions over \mathcal{A}. We say that $\left(\sigma_{n}\right)_{n \in \mathbf{N}}$ generates a right infinite word $w=w_{0} w_{1} \cdots$ if for each n, there exists N such that $w_{0} w_{1} \cdots w_{n}$ is a common prefix of $\sigma_{1} \sigma_{2} \cdots \sigma_{N}(i)$'s, $i \in \mathcal{A}$: or equivalently,

$$
w=\lim _{n \rightarrow \infty} \sigma_{1} \sigma_{2} \cdots \sigma_{n}(i) \quad \text { for any } i \in \mathcal{A}
$$

We say that $\left(\sigma_{n}\right)_{n \in \mathbf{N}}$ generates a biinfinite word $\cdots w_{-1} \cdot w_{0} w_{1} \cdots$ if $\left(\sigma_{n}\right)_{n \in \mathbf{N}}$ generates $w_{0} w_{1} \cdots$ and $\left(\overleftarrow{\sigma_{n}}\right)_{n \in \mathbf{N}}$ generates $w_{-1} w_{-2} \cdots$.

In this paper, we study a coding under an irrational rotation. Take $\alpha \in(0,1) \backslash \mathbf{Q}$. Let $S^{1}=\mathbf{R} / \mathbf{Z}$ and $R_{\alpha}: S^{1} \rightarrow S^{1}$ be the rotation $R_{\alpha}(\omega)=\omega+\alpha(\bmod 1)$. Identify $(0,1]$ with S^{1} naturally. Consider a partition $\{t(0), t(1)\}$ of $S^{1}=(0,1]$ where $t(0)=(0, \alpha]$ and $t(1)=(\alpha, 1]$. Define a map $J_{\alpha}:(0,1] \rightarrow\{0,1\}^{\mathbf{Z}}$ by $J_{\alpha}(\omega)_{n}=i$ if $R_{\alpha}^{n}(\omega) \in t(i)$. A

[^0]Sturmian sequence is given by $J_{\alpha}(\omega)$ for some α and ω. (Precisely, we need to consider another decomposition $[0,1)=[0, \alpha) \cup[\alpha, 1)$ to see all Sturmian sequences.) Let $\alpha=$ $\left[0 ; a_{1}, a_{2}, a_{3}, \ldots\right]$ be the simple continued fraction expansion. The following is a folklore theorem.

Proposition 1. Let $\sigma_{n}(0)=0 \underbrace{1 \cdots 1}_{a_{n} \text { times }}, \sigma_{n}(1)=\underbrace{01 \cdots 1}_{a_{n}-1 \text { times }}$ for each $n \in \mathbf{N}$. Then the sequence $\left(\sigma_{1}, \overleftarrow{\sigma_{2}}, \sigma_{3}, \overleftarrow{\sigma_{4}}, \ldots\right)$ generates $J_{\alpha}(\alpha)$.

Proof. Let $u(0)=[0,1-\alpha$) and $u(1)=[1-\alpha, 1)$. Usually (for example, refer to [5]), Sturmian sequences are given as $K_{\alpha}(\omega)$, where $K_{\alpha}:[0,1) \rightarrow\{0,1\}^{\mathbf{Z}}$ is defined by

$$
K_{\alpha}(\omega)_{n}= \begin{cases}0 & \text { if } R_{\alpha}^{n}(\omega) \in u(0) \\ 1 & \text { if } R_{\alpha}^{n}(\omega) \in u(1)\end{cases}
$$

It is well-known that (see [4])

$$
\begin{aligned}
& \text { the sequence }\left(\eta_{1}, \overleftarrow{\eta_{2}}, \eta_{3}, \overleftarrow{\eta_{4}}, \cdots\right) \text { generates } K_{\alpha}(0) \\
& \text { where } \eta_{n}(0)=\underbrace{0 \cdots 0}_{a_{n}-1 \text { times }} 1 \text { and } \eta_{n}(1)=\underbrace{0 \cdots 0}_{a_{n} \text { times }} 1
\end{aligned}
$$

Proposition 1 follows this fact immediately, because the following diagram

commutes (where $-:(0,1] \rightarrow[0,1): x \mapsto \bar{x}:=1-x)$, we see $J_{\alpha}(\alpha)_{n}=$ $1-K_{\alpha}(0)_{-n-1}$.

In this paper, we pay attention to a generalization of Proposition 1. For each $\omega \in S^{1}$, denote by \mathcal{O}_{ω} the orbit of ω under R_{α}, that is,

$$
\mathcal{O}_{\omega}=\left\{R_{\alpha}^{n}(\omega) \mid n \in \mathbf{Z}\right\}
$$

A subset $A \subset S^{1}$ is said to be non-coorbital if $\left\{\mathcal{O}_{\omega} \mid \omega \in A\right\}$ is mutually disjoint. Take a finite non-coorbital subset Λ with $\alpha \in \Lambda$.
Let $\Lambda=\left\{\omega_{0}<\omega_{1}<\cdots<\omega_{d-1}\right\}$ and $\Lambda_{1}=\Lambda \cup\{1\}$. So Λ_{1} gives a partition of S^{1}, that is,

$$
S^{1}=\bigcup_{i \in \mathcal{A}} t_{0}(i)
$$

where $t_{0}(0)=\left(0, \omega_{0}\right]$ and $t_{0}(i)=\left(\omega_{i-1}, \omega_{i}\right]\left(0<i \leq d, \omega_{d}=1\right)$.

Define $J: S^{1} \rightarrow \mathcal{A}^{\mathbf{Z}}$ by $J(\omega)_{n}=i$ if $R_{\alpha}^{n}(\omega) \in t_{0}(i)$. Clearly, in the case of $d=1$, $J(\omega)$ is a Sturmian sequence. In this meaning, we can regard $J(\omega)$ as $d+1$ letters Sturmian sequences. The main goal of this paper is to construct a sequence of substitutions which generates $J(\alpha)$.

First, we state that the subshift generated by $J(\alpha)$ is conjugate to a Denjoy system, which is defined as follows. We call $\varphi: S^{1} \rightarrow S^{1}$ a Denjoy homeomorphism if φ is an orientationpreserving homeomorphism with irrational rotation number which is not conjugate to a rotation (see [2], §4). A Denjoy system is the unique minimal subsystem of some Denjoy homeomorphism. In [6], an adic model (Bratteli-Vershik system) of a Denjoy system is concretely constructed. Next, we observe that this adic system naturally corresponds to a sequence of substitutions. We see that this sequence generates $J(\alpha)$.

We consider that Denjoy systems, generalized Sturmian sequences and adic systems have close association each other, but it does not seem to have been clarified yet ([2]). We study a link between them.

In Section 2, we state the main result. In Section 3, we show that a Denjoy system is conjugate to a generalized Sturmian subshift in our sense. Section 4 is devoted to the natural substitution system associated with an ordered Bratteli diagram of constant rank. In Section 5, we recall an HPS-adic presentation for a Denjoy system given in [6]. Section 6 is devoted to proof.

We introduce some notations. Denote by \mathbf{N} (resp. \mathbf{Z}_{+}) the set of positive integers (resp. non-negative integers).
For $i \in \mathcal{A}$, denote $\underbrace{i \cdots i}_{a \text { times }}$ by i^{a}. Let S_{n} be a finite set. For $s_{*}=s_{1} s_{2} \cdots \in \prod_{n \in \mathbf{N}} S_{n}$, $s_{l} s_{l+1} \cdots s_{m}$ (resp. $s_{l+1} s_{l+2} \cdots$) is denoted by $s_{[l, m]}\left(\right.$ resp. $\left.s_{(l, \infty)}\right)$ and so on. A subset $A \subset$ $\prod_{n \in \mathbf{N}} S_{n}$ is said to be non-cotail if for any distinct $s_{*}, t_{*} \in A, s_{n} \neq t_{n}$ for infinitely many n. Let S_{n} be a totally ordered set. Put the total order (lexicographic order) $<_{\text {lex }}$ on $\prod_{n \in \mathbf{N}} S_{n}$ defined by that $s_{*}<_{\operatorname{lex}} t_{*}$ if $s_{l}<t_{l}$ where $l=\min \left\{n \in \mathbf{N} \mid s_{n} \neq t_{n}\right\}$.
For distinct $z, w \in S^{1}$, denote by $(z, w]$ the left-open right-closed arc between z and w which lies in the positive direction from z. Define the interior of $(z, w]$ as $\operatorname{int}(z, w]=(z, w)=$ $(z, w] \backslash\{w\}$. For an open $\operatorname{arc} I=(z, w)$, let $\inf I=z$ and $\sup I=w$.

AcKnowledgment. The author appreciates the valuable suggestions of the referee.

2. Main result

Let $\alpha=\left[0 ; a_{1}, a_{2}, a_{3}, \ldots\right]$ be the simple continued fraction expansion, and

$$
\left[\begin{array}{cc}
p_{-1} & p_{0} \\
q_{-1} & q_{0}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right], \quad \begin{aligned}
& p_{n}=a_{n} p_{n-1}+p_{n-2} \\
& q_{n}=a_{n} q_{n-1}+q_{n-2}
\end{aligned} \quad(n \in \mathbf{N})
$$

Now, we introduce the dual Ostrowski numeration system. Let

$$
M_{\alpha}=\left\{x_{*}=\left(x_{n}\right)_{n \in \mathbf{N}} \in \prod_{n \in \mathbf{N}}\left\{0,1, \ldots, a_{n}\right\} \mid x_{n}=a_{n} \Rightarrow x_{n+1}=0\right\}
$$

It is well-known ([3]) that for each $\omega \in[0,1]$, there is $x_{*} \in M_{\alpha}$ such that

$$
\omega=\sum_{n=1}^{\infty} x_{n}\left|q_{n-1} \alpha-p_{n-1}\right|(\text { dual Ostrowski expansion of } \omega)
$$

For each $x_{*} \in M_{\alpha}$, define

$$
\nu\left(x_{*}\right)=\sum_{n=1}^{\infty} x_{n}\left|q_{n-1} \alpha-p_{n-1}\right| .
$$

ObSERVATION 1. We can regard v as a map from M_{α} to S^{1} where S^{1} is the set $[0,1]$ identifying 0 and 1 . Then the following hold.
(1) If $\omega \in \mathcal{O}_{\alpha}$, then $v^{-1}(\omega)$ is a two-point-set of the form:

$$
v^{-1}(\omega)=\left\{x_{(0, n]} 00 \cdots, x_{(0, n)}\left(x_{n}-1\right) a_{n+1} 0 a_{n+3} 0 \cdots\right\}
$$

(Especially, $v^{-1}(\alpha)=\left\{100 \cdots, 0 a_{2} 0 a_{4} \cdots\right\} \quad$ and $\quad v^{-1}(1)=\left\{00 \cdots, a_{1} 0 a_{3} 0 \cdots\right\}$.)
If $\omega \notin \mathcal{O}_{\alpha}$, then $v^{-1}(\omega)$ is a singleton.
(2) Let $\left\{x_{*}, x_{*}^{\prime}\right\} \subset M_{\alpha}$. If there is $n \in \mathbf{Z}_{+}$such that $x_{(n, \infty)}=x_{(n, \infty)}^{\prime}$, then $\nu\left(x_{*}^{\prime}\right) \in$ $\mathcal{O}_{\nu\left(x_{*}\right)}$. (Indeed, then $\left.v\left(x_{*}\right)-v\left(x_{*}^{\prime}\right) \in \mathcal{O}_{\alpha}.\right)$
By Observation 1 (1), for each $\omega \in(0,1]$, we can choose

$$
x_{*}(\omega):=x_{1}(\omega) x_{2}(\omega) \cdots \in v^{-1}(\omega) \text { such that } x_{n}(\omega) \neq 0 \text { for infinitely many } n
$$

and regard $x_{*}(\cdot)$ as a map $x_{*}:(0,1] \rightarrow M_{\alpha}: \omega \mapsto x_{1}(\omega) x_{2}(\omega) \cdots$. So $v \circ x_{*}=$ id. By Observation 1 (2), we see that if $A \subset S^{1}$ is non-coorbital, then $x_{*}(A)$ is non-cotail. Especially, we have

$$
x_{*}(\alpha)=0 a_{2} 0 a_{4} \cdots, x_{*}(1)=a_{1} 0 a_{3} 0 \cdots
$$

DEFINITION 1 (n-tail and n-th comparison). Define

$$
x_{(n, \infty)}(\omega)=x_{n+1}(\omega) x_{n+2}(\omega) \cdots
$$

for each $n \in \mathbf{Z}_{+}$. For each $\omega \in \Lambda_{1}$, let

$$
C_{n}(\omega)=\#\left\{\lambda \in \Lambda_{1} \mid x_{(n, \infty)}(\lambda)<_{\operatorname{lex}} x_{(n, \infty)}(\omega)\right\}
$$

We call C_{n} the n-th comparison.
Since $x_{*}\left(\Lambda_{1}\right)$ is non-cotail, C_{n} is a bijection from Λ_{1} to \mathcal{A}. By the definition of C_{n}, we see that $x_{(n, \infty)}\left(\Lambda_{1}\right)$ is arranged in the following way

$$
x_{(n, \infty)} \circ C_{n}^{-1}(0)<_{\operatorname{lex}} x_{(n, \infty)} \circ C_{n}^{-1}(1)<_{\operatorname{lex}} \cdots<_{\operatorname{lex}} x_{(n, \infty)} \circ C_{n}^{-1}(d) .
$$

Definition 2. For each $(c, i) \in\left\{0, \ldots, a_{n}\right\} \times \mathcal{A}$, define

$$
\lceil c, i\rceil_{n}=\#\left\{\lambda \in \Lambda_{1} \mid x_{(n-1, \infty)}(\lambda)<_{\operatorname{lex}} c x_{(n, \infty)} \circ C_{n}^{-1}(i)\right\}
$$

where $c x_{(n, \infty)}(\omega)=c x_{n+1}(\omega) x_{n+2}(\omega) \cdots$. For each $n \in \mathbf{N}$ and $i \in \mathcal{A}$, define

$$
\sigma_{n}(i)= \begin{cases}\lceil 0, i\rceil_{n}\lceil 1, i\rceil_{n} \cdots\left\lceil a_{n}, i\right\rceil_{n} & \text { if } x_{n+1} \circ C_{n}^{-1}(i)=0 \\ \lceil 0, i\rceil_{n}\lceil 1, i\rceil_{n} \cdots\left\lceil a_{n}-1, i\right\rceil_{n} & \text { otherwise. }\end{cases}
$$

Then σ_{n} is a substitution over \mathcal{A}, and the main result is the following:
MAIN THEOREM. The sequence $\left(\sigma_{1}, \overleftarrow{\sigma_{2}}, \sigma_{3}, \overleftarrow{\sigma_{4}}, \ldots\right)$ generates the biinfinite sequence $J(\alpha)$.

Example $1(d=1)$. Let $\Lambda_{1}=\{\alpha, 1\}$. Then by (\sharp),

$$
\left(C_{n}(\alpha), C_{n}(1)\right)=\left\{\begin{array}{ll}
(1,0) & \text { if } n \text { is odd } \\
(0,1) & \text { if } n \text { is even, }
\end{array} \quad \sigma_{n}:\left\{\begin{array}{l}
0 \mapsto 01^{a_{n}} \\
1 \mapsto 01^{a_{n}-1}
\end{array}\right.\right.
$$

So Proposition 1 is a special case of Main Theorem.
EXAMPLE $2(d=2)$. Let $\Lambda_{1}=\{\alpha, \omega, 1\}$ and $x_{n}=x_{n}(\omega)$. Then we have

$$
\left(C_{n}(\alpha), C_{n}(\omega), C_{n}(1)\right)= \begin{cases}(2,0,1) & \text { if } n \text { is odd and } x_{n+1}=0 \\ (2,1,0) & \text { if } n \text { is odd and } x_{n+1}>0 \\ (1,0,2) & \text { if } n \text { is even and } x_{n+1}=0 \\ (0,1,2) & \text { if } n \text { is even and } x_{n+1}>0\end{cases}
$$

and

$$
\begin{array}{r}
\text { if } x_{n}=x_{n+1}=0 \text {, then } \quad \sigma_{n}:\left\{\begin{array}{l}
0 \mapsto 02^{a_{n}} \\
1 \mapsto 12^{a_{n}} ; \\
2 \mapsto 12^{a_{n}-1}
\end{array}\right. \\
\text { if } x_{n}=0 \text { and } x_{n+1}>0, \text { then } \quad \sigma_{n}:\left\{\begin{array}{l}
0 \mapsto 02^{a_{n}} \\
1 \mapsto 02^{a_{n}-1} \\
2 \mapsto 12^{a_{n}-1}
\end{array} ;\right.
\end{array}
$$

$$
\begin{aligned}
& \text { if } x_{n}>0 \text { and } x_{n+1}=0 \text {, then } \sigma_{n}:\left\{\begin{array}{l}
0 \mapsto 01^{x_{n}} 2^{a_{n}-x_{n}} \\
1 \mapsto 01^{x_{n}-1} 2^{a_{n}-x_{n}+1} \\
2 \mapsto 01^{x_{n}-1} 2^{a_{n}-x_{n}}
\end{array} ;\right. \\
& \text { if } x_{n}>0 \text { and } x_{n+1}>0 \text {, then } \sigma_{n}:\left\{\begin{array}{l}
0 \mapsto 01^{x_{n}} 2^{a_{n}-x_{n}} \\
1 \mapsto 01^{x_{n}} 2^{a_{n}-x_{n}-1} \\
2 \mapsto 01^{x_{n}-1} 2^{a_{n}-x_{n}}
\end{array}\right.
\end{aligned}
$$

3. Denjoy system and Sturmian subshift

Let $\varphi: S^{1} \rightarrow S^{1}$ be a Denjoy homeomorphism, that is, an orientation-preserving homeomorphism with irrational rotation number $\alpha \in(0,1) \backslash \mathbf{Q}$, which is not conjugate to any rotation. We review Poincare's rotation number theorem. There exists a degree 1 map $F: S^{1} \rightarrow S^{1}$ satisfying the following:
(1) $R_{\alpha} \circ F=F \circ \varphi$.
(2) Let $A=\left\{z \in S^{1} \mid \# F^{-1} F(z)=1\right\}$ and $X=\operatorname{cl} A$ (the closure of A). Then X is a Cantor set which is the unique minimal set under φ. Moreover $F(X)=S^{1}$. A connected component of $S^{1} \backslash X$ is called a cutout interval (indeed, an open arc). The set of endpoints of cutout intervals is $X \backslash A$.
(3) Let F_{X} be the restriction of F to X. There exists an at most countable non-coorbital subset $\Lambda \subset S^{1}$ such that

$$
F_{X}(X \backslash A)=\bigcup_{\omega \in \Lambda} \mathcal{O}_{\omega}
$$

For each cutout interval $I, F(\mathrm{cl} I)$ is a singleton, and $F_{X}^{-1}(\omega)$ is the set of endpoint of a cutout interval for any $\omega \in F_{X}(X \backslash A)$. We call $F_{X}(X \backslash A)$ the double point set and Λ a transversal of the double point set.
Such F is unique up to rotation. Denote the restriction of φ to X by

$$
T: X \rightarrow X
$$

and the subsystem (X, T) is called a Denjoy system. Notice that the cardinality $\# \Lambda$ of Λ is independent of the choice of F. We call \# Λ the double orbit number of (X, T). By choosing appropriate F, we can assume $\alpha \in \Lambda$.

Definition 3. For each $\omega \in F_{X}(X \backslash A)$, there exists a cutout interval I_{ω} such that $F^{-1}(\omega)=\operatorname{cl} I_{\omega}$. Pick $\widetilde{\omega} \in I_{\omega}$.

From now on, we consider only the case of finite double orbit number.
Let $\Lambda_{1}=\Lambda \cup\{1\}=\left\{\omega_{0}<\omega_{1}<\cdots<\omega_{d}\right\}$. Then Λ_{1} induces a partition of X :

$$
X=\bigcup_{i \in \mathcal{A}} z_{0}(i)
$$

where $z_{0}(0)=\left(\widetilde{\omega}_{d}, \widetilde{\omega}_{0}\right] \cap X, z_{0}(i)=\left(\widetilde{\omega}_{i-1}, \widetilde{\omega}_{i}\right] \cap X(1 \leq i \leq d)$.
Remark 1. For each $i \in \mathcal{A}, z_{0}(i)=\operatorname{cl} F_{X}^{-1}\left(\operatorname{int} t_{0}(i)\right)$.

Notice that $z_{0}(i)$ is closed and open (clopen) in X, and independent of the choice of $\widetilde{\omega}_{i}$'s.

$$
\text { Define } J_{X}: X \rightarrow \mathcal{A}^{\mathbf{Z}} \text { by } J_{X}(x)_{n}=i \text { if } T^{n}(x) \in z_{0}(i)
$$

We can see the following relation between $J_{X}(x)$ and $J\left(F_{X}(x)\right)$.
Proposition 2. (1) If $x \in X \backslash\left\{\sup I_{R_{\alpha}^{n}(\omega)} \mid n \in \mathbf{Z}, \omega \in \Lambda\right\}$, then

$$
J_{X}(x)=J\left(F_{X}(x)\right)
$$

Especially, $J_{X}\left(\inf I_{\alpha}\right)=J(\alpha)$.
(2) If $x=\sup I_{R_{\alpha}^{m}(\alpha)}$, then

$$
\begin{aligned}
& J_{X}(x)_{-m-1}=0, J\left(F_{X}(x)\right)_{-m-1}=d \\
& J_{X}(x)_{-m}=J\left(F_{X}(x)\right)_{-m}+1 \\
& J_{X}(x)_{n}=J\left(F_{X}(x)\right)_{n} \quad(n \neq-m,-m-1) .
\end{aligned}
$$

(3) If $x=\sup I_{R_{\alpha}^{m}(\omega)}$ with $\omega \in \Lambda \backslash\{\alpha\}$, then

$$
\begin{aligned}
& J_{X}(x)_{-m}=J\left(F_{X}(x)\right)_{-m}+1 \\
& J_{X}(x)_{n}=J\left(F_{X}(x)\right)_{n} \quad(n \neq-m)
\end{aligned}
$$

Proof. Let $\omega_{-1}:=\omega_{d}$. Notice

$$
F_{X}\left(z_{0}(i) \backslash\left\{\sup I_{\omega_{i-1}}\right\}\right)=t_{0}(i) \quad(i \in \mathcal{A})
$$

So if $x \in X \backslash\left\{\sup I_{\omega} \mid \omega \in \Lambda_{1}\right\}$, then $x \in z_{0}(i)$ and $F_{X}(x) \in t_{0}(i)$ for some i.
If $x \in X \backslash\left\{\sup I_{R_{\alpha}^{n}(\omega)} \mid n \in \mathbf{Z}, \omega \in \Lambda\right\}$, then $T^{n}(x) \in X \backslash\left\{\sup I_{\omega} \mid \omega \in \Lambda_{1}\right\}$ for all n.
Hence (1) holds.

Now, we show (2) and (3) in the case of $m=0$. Let $z_{0}(d+1):=z_{0}(0)$. Notice
$\sup I_{\omega_{i}} \in z_{0}(i+1), F_{X}\left(\sup I_{\omega_{i}}\right)=\omega_{i} \in t_{0}(i) \quad(i \in \mathcal{A})$.
(2) When $x=\sup I_{\alpha} \in z_{0}(i+1)$, we have $F_{X}(x)=\alpha \in t_{0}(i), T^{-1}(x)=\sup I_{\omega_{d}} \in$ $z_{0}(0), R_{\alpha}^{-1}\left(F_{X}(x)\right)=\omega_{d} \in t_{0}(d)$, and $T^{n}(x) \in X \backslash\left\{\sup I_{\omega} \mid \omega \in \Lambda_{1}\right\}$ if $n \neq 0,-1$.
(3) When $x=\sup I_{\omega} \in z_{0}(i+1)$ for some $\omega \in \Lambda \backslash\{\alpha\}$, we have $F_{X}(x) \in t_{0}(i)$ and $T^{n}(x) \in X \backslash\left\{\sup I_{\omega} \mid \omega \in \Lambda_{1}\right\}$ if $n \neq 0$.

Proposition 3. A Denjoy system (X, T) is conjugate to the subshift $\left(J_{X}(X), S\right)$ via J_{X}.

Proof. Since X is compact and $J_{X}(X)$ is Hausdorff, it suffices to show that J_{X} is continuous and one-to-one. For each $x \in X$, the set

$$
\bigcap_{n=-l}^{l} T^{-n}\left(z_{0}\left(J_{X}(x)_{n}\right)\right)=\left\{y \in X \mid J_{X}(y)_{n}=J_{X}(x)_{n}(-l \leq n \leq l)\right\}
$$

is a neighborhood of x. Hence J_{X} is continuous.
Let $x, y \in X$ be distinct.
Consider the case of $F(x) \neq F(y)$. Since R_{α} is a minimal isometry, there exists $n \in \mathbf{Z}$ such that $F(x) \in R_{\alpha}^{n}\left(\operatorname{int} t_{0}(i)\right)$ and $F(y) \in R_{\alpha}^{n}\left(\operatorname{int} t_{0}(j)\right)$ with $i \neq j$. This implies $T^{-n}(x) \in z_{0}(i)$ and $T^{-n}(y) \notin z_{0}(j)$. So $J_{X}(x)_{-n} \neq J_{X}(y)_{-n}$.
Consider the case of $F(x)=F(y)$. Then x, y are the endpoints of some cutout interval, that is, there exists $\omega_{i} \in \Lambda(0 \leq i<d)$ and $n \in \mathbf{Z}$ such that

$$
\{x, y\}=\left\{\inf I_{R^{n}\left(\omega_{i}\right)}, \sup I_{R_{\alpha}^{n}\left(\omega_{i}\right)}\right\}
$$

So $T^{-n}(\{x, y\})=\left\{\inf I_{\omega_{i}}, \sup I_{\omega_{i}}\right\}$. Since inf $I_{\omega_{i}} \in z_{0}(i)$ and $\sup I_{\omega_{i}} \in z_{0}(i+1)$, we have $J_{X}(x)_{-n} \neq J_{X}(y)_{-n}$. Anyway, $J_{X}(x) \neq J_{X}(y)$.

By Proposition 3, $J_{X}(X)$ is the orbit closure of $J_{X}(x)$ for any $x \in X$.

4. Natural substitution system

In this section, we shall introduce a main tool, that is, a substitution system $\left(\sigma_{n}\right)_{n \in \mathbf{N}}$ via an ordered Bratteli diagram of constant rank.
4.1. Ordered Bratteli diagram. A Bratteli diagram is an infinite directed graph $B=$ (V, E), such that the vertex set V and the edge set E can be partitioned into finite sets

$$
V=\bigcup_{n \in \mathbf{Z}_{+}} V_{n} \quad \text { and } \quad E=\bigcup_{n \in \mathbf{N}} E_{n}
$$

with the following properties: $s\left(E_{n}\right)=V_{n-1}$ and $r\left(E_{n}\right)=V_{n}$ for all n, where $s: E \rightarrow V$ is the source map and $r: E \rightarrow V$ is the range map. For each $n \in \mathbf{Z}_{+}$, pick a bijection

$$
v_{n}:\left\{0,1, \ldots, c_{n}-1\right\} \rightarrow V_{n} \text { where } c_{n}=\# V_{n}
$$

So $V_{n}=\left\{v_{n}(0), v_{n}(1), \ldots, v_{n}\left(c_{n}-1\right)\right\}$. Let A_{n} be the $c_{n} \times c_{n-1}$ matrix defined by

$$
\left(A_{n}\right)_{i j}=\#\left(s^{-1}\left(v_{n-1}(j)\right) \cap r^{-1}\left(v_{n}(i)\right)\right)
$$

and call A_{n} the n-th incidence matrix of B. Define the infinite path space X_{B} of B by

$$
X_{B}=\left\{e_{*}=\left(e_{n}\right)_{n \in \mathbf{N}} \in \prod_{n \in \mathbf{N}} E_{n} \mid r\left(e_{n}\right)=s\left(e_{n+1}\right) \text { for all } n\right\}
$$

An ordered Bratteli diagram $\mathbf{B}=(B, \leq)$ is a Bratteli diagram $B=(V, E)$ together with a partial order on E so that edges $e, e^{\prime} \in E$ are comparable if and only if $r(e)=r\left(e^{\prime}\right)$. Then we put the adic order on X_{B} (partial order) by that $e_{*}<f_{*}$ if there exists $N \in \mathbf{N}$ such that $e_{N}<f_{N}$ and $e_{n}=f_{n}$ for all $n>N$, and write $X_{\mathbf{B}}=\left(X_{B}, \leq\right)$.
If there exist a unique minimal path $e_{*}^{\min }$ and a unique maximal path $e_{*}^{\max }$, then \mathbf{B} is said to be properly ordered.
For a properly ordered Bratteli diagram \mathbf{B}, define the adic transformation $\theta_{\mathbf{B}}: X_{\mathbf{B}} \rightarrow X_{\mathbf{B}}$ as follows: if $e_{*} \neq e_{*}^{\max }$, then $\theta_{\mathbf{B}}\left(e_{*}\right)=\min \left\{f_{*} \in X_{\mathbf{B}} \mid f_{*}>e_{*}\right\}$; and $\theta_{\mathbf{B}}\left(e_{*}^{\max }\right)=e_{*}^{\min }$. The system ($X_{\mathbf{B}}, \theta_{\mathbf{B}}$) is called a Bratteli-Vershik system or an adic system.

4.2. Natural substitution system. When $P=\left\{p_{1}<p_{2}<\cdots<p_{\# P}\right\}$ is a totally ordered finite set, we denote the arrangement of the elements of P in its order, $p_{1} p_{2} \cdots p_{\# P}$, by \vec{P}. For a map $\eta: P \rightarrow Q$, define $\eta(\vec{P})=\eta\left(p_{1}\right) \cdots \eta\left(p_{\# P}\right)$.

A Bratteli diagram is said to be of constant rank if $\# V_{n}$ is independent of $n \in \mathbf{Z}_{+}$. We call the number \# V_{n} the rank of B, and denote it by $\operatorname{rank}(B)$.

Definition 4. Let $d \in \mathbf{N}$ and $\mathbf{B}=(B, \leq)$ be an ordered Bratteli diagram of $\operatorname{rank}(B)=d+1$. Define a substitution σ_{n} by

$$
\sigma_{n}(i)=v_{n-1}^{-1} \circ s\left(\overrightarrow{r^{-1}\left(v_{n}(i)\right)}\right)
$$

We call the sequence of substitutions $\left(\sigma_{n}\right)_{n \in \mathbf{N}}$ the natural substitution system of \mathbf{B}.
Clearly, the n-th incidence matrix A_{n} of B is the "incidence matrix" of σ_{n}, that is, $\left(A_{n}\right)_{i j}$ is the number of occurrences of j in $\sigma_{n}(i)$.

Let $\mathbf{B}=(B, \leq)$ be properly ordered of $\operatorname{rank}(B)=d+1$. Define

$$
s: X_{B} \rightarrow V_{0}: e_{*} \mapsto s\left(e_{1}\right)
$$

and define a map $J_{\mathbf{B}}: X_{\mathbf{B}} \rightarrow \mathcal{A}^{\mathbf{Z}}$ by

$$
J_{\mathbf{B}}\left(e_{*}\right)_{n}=i \quad \text { if } v_{0}^{-1} \circ s\left(\theta_{\mathbf{B}}^{n}\left(e_{*}\right)\right)=i
$$

Then we have the following.
THEOREM 1. If $\left(X_{\mathbf{B}}, \theta_{\mathbf{B}}\right)$ has no periodic points, then the natural substitution system $\left(\sigma_{n}\right)_{n \in \mathbf{N}}$ of \mathbf{B} generates the biinfinite word $J_{\mathbf{B}}\left(e_{*}^{\mathrm{min}}\right)$.
(For its proof, see Subsection 6.1.)

5. HPS-adic presentations of Denjoy systems

5.1. HPS-adic presentation. Let Y be a Cantor set and $U: Y \rightarrow Y$ be a homeomorphism. We call (Y, U) a Cantor system if U is minimal. For any Cantor system (Y, U), Herman, Putnam and Skau ([1]) had shown that there exists a Bratteli-Vershik system which is conjugate to (Y, U). We shall recall their construction.

A Kakutani-Rokhlin (KR) tower partition of (Y, U) is a partition of the form:

$$
\mathcal{P}=\left\{U^{k}(Z(j)) \mid 0 \leq j<c, 0 \leq k<h(j)\right\} \quad \text { where } Z(j) \text { is clopen and } c, h(j) \in \mathbf{N}
$$

Let $\mathcal{P}^{\prime}=\left\{U^{k}\left(Z^{\prime}(i)\right) \mid 0 \leq i<c^{\prime}, 0 \leq k<h^{\prime}(i)\right\}$ be another KR partition of (Y, U). If \mathcal{P}^{\prime} is finer than \mathcal{P}, then for each $0 \leq i<c^{\prime}, 0 \leq j<c$, there exists $H_{i j} \subset\left[0, h^{\prime}(i)\right) \cap \mathbf{Z}$ such that

$$
\begin{equation*}
Z(j)=\bigcup_{0 \leq i<c^{\prime}} \bigcup_{\rho \in H_{i j}} U^{\rho}\left(Z^{\prime}(i)\right) \tag{*}
\end{equation*}
$$

To visualize this refinement, it is convenient to consider a graph (W, E) with a partial order \leq on E, where the vertex set $W=V \cup V^{\prime}: V=\{v(0), \ldots, v(c-1)\}, V^{\prime}=\left\{v^{\prime}(0), \ldots, v^{\prime}\left(c^{\prime}-\right.\right.$ $1)\}$; and the edge set

$$
E=\left\{\left(v(j), \rho, v^{\prime}(i)\right) \mid 0 \leq j<c, 0 \leq i<c^{\prime}, \rho \in H_{i j}\right\}
$$

and the partial order \leq on E defined by

$$
\left(v(j), \rho, v^{\prime}(i)\right) \leq\left(v\left(j^{\prime}\right), \rho^{\prime}, v^{\prime}\left(i^{\prime}\right)\right) \text { if } i=i^{\prime} \text { and } \rho \leq \rho^{\prime}
$$

Then by $(*)$ there is a correspondence between E and $\left\{p \in \mathcal{P}^{\prime} \mid p \subset \bigcup_{0 \leq j<c} Z(j)\right\}$ via $\left(v(j), \rho, v^{\prime}(i)\right) \longleftrightarrow p=U^{\rho}\left(Z^{\prime}(i)\right)$ with $p \subset Z(j)$. If $\left(v(j), \rho, v^{\prime}(i)\right) \leq\left(v\left(j^{\prime}\right), \rho^{\prime}, v^{\prime}\left(i^{\prime}\right)\right)$, then $U^{\rho^{\prime}}\left(Z^{\prime}\left(i^{\prime}\right)\right)$ is a forward image of $U^{\rho}\left(Z^{\prime}(i)\right)$ (indeed $\left.Z^{\prime}\left(i^{\prime}\right)=Z^{\prime}(i)\right)$.

Now, let $\left(\mathcal{P}_{n}\right)_{n \in \mathbf{Z}_{+}}$be a refining sequence of KR partitions of (Y, U) where $\mathcal{P}_{n}=$ $\left\{U^{k}\left(Z_{n}(i)\right) \mid 0 \leq i<c_{n}, 0 \leq k<h_{n}(i)\right\}$. Then for each $0 \leq i<c_{n}$ and $0 \leq j<c_{n-1}$, there exists $\left(H_{n}\right)_{i j} \subset\left[0, h_{n}(i)\right) \cap \mathbf{Z}$ such that

$$
Z_{n-1}(j)=\bigcup_{0 \leq i<c_{n}} \bigcup_{\rho \in\left(H_{n}\right)_{i j}} U^{\rho}\left(Z_{n}(i)\right)
$$

We call $\left\{\left(H_{n}\right)_{i j}\right\}$ the hitting time sets of $\left(\mathcal{P}_{n}\right)_{n \in \mathbf{N}}$.
From $\left\{\left(H_{n}\right)_{i j}\right\}$, we construct an ordered Bratteli diagram $\mathbf{B}\left(\left\{\mathcal{P}_{n}\right\}\right)$ associated with $\left(\mathcal{P}_{n}\right)_{n \in \mathbf{Z}_{+}}$as follows:

$$
\begin{aligned}
& V_{n}=\left\{v_{n}(0), \ldots, v_{n}\left(c_{n}-1\right)\right\}, \\
& E_{n}=\left\{\left(v_{n-1}(j), \rho, v_{n}(i)\right) \mid \rho \in\left(H_{n}\right)_{i j}\right\}, \\
& \left(v_{n-1}(j), \rho, v_{n}(i)\right) \leq\left(v_{n-1}\left(j^{\prime}\right), \rho^{\prime}, v_{n}\left(i^{\prime}\right)\right) \text { if } i=i^{\prime} \text { and } \rho \leq \rho^{\prime}, \\
& s\left(v_{n-1}(j), \rho, v_{n}(i)\right)=v_{n-1}(j), \\
& r\left(v_{n-1}(j), \rho, v_{n}(i)\right)=v_{n}(i) .
\end{aligned}
$$

Proposition 4 ([1]). There exists a refining sequence of $K R$ partitions $\left(\mathcal{P}_{n}\right)_{n \in \mathbf{Z}_{+}}$, where $\mathcal{P}_{n}=\left\{U^{k}\left(Z_{n}(i)\right) \mid 0 \leq i<c_{n}, 0 \leq k<h_{n}(i)\right\}$ and $c_{0}=h_{0}(0)=1, Z_{0}(0)=Y$ such that $\mathbf{B}=\mathbf{B}\left(\left\{\mathcal{P}_{n}\right\}\right)$ is properly ordered, and the corresponding Bratteli-Vershik system $\left(X_{\mathbf{B}}, \theta_{\mathbf{B}}\right)$ is conjugate to (Y, U). A conjugacy ϕ is given by

$$
\left\{\phi\left(\left(v_{n-1}\left(i_{n-1}\right), \rho_{n}, v_{n}\left(i_{n}\right)\right)_{n \in \mathbf{N}}\right)\right\}=\bigcap_{n \in \mathbf{N}} Z_{n}\left(i_{n}, \sum_{l=1}^{n} \rho_{l}\right) \text { where } Z_{n}\left(i_{n}, k\right):=U^{k}\left(Z_{n}\left(i_{n}\right)\right)
$$

Moreover,

$$
\left\{\phi\left(e_{*}^{\min }\right)\right\}=\bigcap_{n \in \mathbf{N}} \bigcup_{0 \leq i<c_{n}} Z_{n}(i)
$$

We say ($X_{\mathbf{B}}, \theta_{\mathbf{B}}$) is an HPS-adic presentation of (Y, U), and call ϕ the natural conjugacy.
5.2. HPS-adic presentations of Denjoy systems. Consider a Denjoy system (X, T) of rotation number α and double orbit number d. Let Λ be a transversal of its double point set with $\alpha \in \Lambda$, and $\Lambda_{1}=\Lambda \cup\{1\}$. In [6], the author, Sugisaki and Yoshida constructed a concrete HPS-adic presentation of (X, T) (based on dual Ostrowski numeration system). We shall introduce its construction.
First, we introduce a modification of dual Ostrowski numeration system. Let

$$
\alpha=\left[0 ; b_{1}+1, b_{2}, b_{3}, \ldots\right]
$$

be the simple continued fraction expansion of α, that is, $b_{1}=a_{1}-1, b_{n}=a_{n}(n \geq 2)$, and

$$
M_{\alpha}^{s}=\left\{x_{*} \in \prod_{n \in \mathbf{N}}\left\{-1,0,1, \ldots, b_{n}\right\} \mid x_{n}=b_{n} \Longleftrightarrow x_{n+1}=-1\right\} .
$$

Define the signed expansion $x_{*}^{s}:(0,1] \rightarrow M_{\alpha}^{s}$ by

$$
x_{n}^{s}(\omega)= \begin{cases}x_{n}(\omega)-1 & \text { if } n=1 \text { or } x_{n-1}(\omega)=a_{n-1} \\ x_{n}(\omega) & \text { otherwise }\end{cases}
$$

Next, we define

$$
C_{n}^{s}: \Lambda_{1} \rightarrow \mathcal{A} \text { where } C_{n}^{s}(\omega)=\#\left\{\lambda \in \Lambda_{1} \mid x_{(n, \infty)}^{s}(\lambda)<\operatorname{lex} x_{(n, \infty)}^{s}(\omega)\right\}
$$

Definition 5. For each $n \in \mathbf{N}$, let

$$
\xi_{n}=x_{n}^{s} \circ\left(C_{n-1}^{s}\right)^{-1} \text { and } g_{n}=C_{n}^{s} \circ\left(C_{n-1}^{s}\right)^{-1} .
$$

Let $\left(\xi_{n}, g_{n}\right)(j)=\left(\xi_{n}(j), g_{n}(j)\right)$. Associated with $\left(\xi_{n}, g_{n}\right)$, define

$$
D\left(\xi_{n}, g_{n}\right)=\left\{(x, i) \in\left\{-1,0, \ldots, b_{n}\right\} \times \mathcal{A} \mid x=b_{n} \Leftrightarrow i \leq g_{n}(d)\right\}
$$

and for each $j \in \mathcal{A}$,
$D\left(\xi_{n}, g_{n}\right)_{j}= \begin{cases}\left\{(x, i) \in D\left(\xi_{n}, g_{n}\right) \mid(x, i) \leq_{\operatorname{lex}}\left(\xi_{n}, g_{n}\right)(0)\right\} & \text { if } j=0 \\ \left\{(x, i) \in D\left(\xi_{n}, g_{n}\right) \mid\left(\xi_{n}, g_{n}\right)(j-1)<_{\text {lex }}(x, i) \leq_{\text {lex }}\left(\xi_{n}, g_{n}\right)(j)\right\} & \text { otherwise }\end{cases}$
where $(x, i)<_{\text {lex }}(y, j)$ if $x<y$, or $x=y$ and $i<j$.
(The definition of $\left(\xi_{n}, g_{n}\right)$ is different from the one in [6], but Prop. 8.2 in [6] ensures that both are the same.)
Let

$$
\lceil c, i\rceil_{n}^{s}=\#\left\{\lambda \in \Lambda_{1} \mid x_{(n-1, \infty)}^{s}(\lambda)<_{\operatorname{lex}} c x_{(n, \infty)}^{s} \circ\left(C_{n}^{s}\right)^{-1}(i)\right\}
$$

Lemma 1. (1) $D\left(\xi_{n}, g_{n}\right)=\bigcup_{j \in \mathcal{A}} D\left(\xi_{n}, g_{n}\right)_{j}$.
(2) If $(c, i) \in D\left(\xi_{n}, g_{n}\right)$, then $(c, i) \in D\left(\xi_{n}, g_{n}\right)_{\lceil c, i\rceil_{n}^{s}}$.

Proof. First, we claim that

$$
\left(\xi_{n}, g_{n}\right)(j)<_{\operatorname{lex}}\left(\xi_{n}, g_{n}\right)(j+1)
$$

Indeed, notice that $x_{(n, \infty)}^{s} \circ\left(C_{n}^{s}\right)^{-1}(i)<_{\operatorname{lex}} x_{(n, \infty)}^{s} \circ\left(C_{n}^{s}\right)^{-1}(j) \Longleftrightarrow i<j$. So by the definition of $\left(\xi_{n}, g_{n}\right)$, we have

$$
\begin{gathered}
x_{(n-1, \infty)}^{s} \circ\left(C_{n-1}^{s}\right)^{-1}(j)<\operatorname{lex} x_{(n-1, \infty)}^{s} \circ\left(C_{n-1}^{s}\right)^{-1}(j+1) \\
\Longleftrightarrow \xi_{n}(j)<\xi_{n}(j+1), \text { or } \xi_{n}(j)=\xi_{n}(j+1) \text { and }
\end{gathered}
$$

$$
\begin{aligned}
& x_{(n, \infty)}^{s} \circ\left(C_{n}^{s}\right)^{-1}\left(g_{n}(j)\right)<_{\operatorname{lex}} x_{(n, \infty)}^{s} \circ\left(C_{n}^{s}\right)^{-1}\left(g_{n}(j+1)\right) \\
& \Longleftrightarrow\left(\xi_{n}, g_{n}\right)(j)<_{\operatorname{lex}}\left(\xi_{n}, g_{n}\right)(j+1)
\end{aligned}
$$

(1) By the definition of $D\left(\xi_{n}, g_{n}\right)_{j}$, clearly $D\left(\xi_{n}, g_{n}\right) \supset \bigcup_{j} D\left(\xi_{n}, g_{n}\right)_{j}$. It suffices to show that $\left(\xi_{n}, g_{n}\right)(d)=\left(b_{n}, g_{n}(d)\right)$, that is, $\xi_{n}(d)=b_{n}$. By the above claim, $\xi_{n}(d)=$ $\max \left\{\xi_{n}(i) \mid i \in \mathcal{A}\right\}=\max \left\{x_{n}^{s}(\omega) \mid \omega \in \Lambda_{1}\right\}$. By (\sharp) in Section 2, we see that $\max \left\{x_{n}^{s}(\omega) \mid\right.$ $\left.\omega \in \Lambda_{1}\right\}=b_{n}$.
(2) Let $j=\lceil c, i\rceil_{n}^{s}$. By the definition of $\lceil c, i\rceil_{n}^{s}$,

$$
x_{(n-1, \infty)}^{s} \circ\left(C_{n-1}^{s}\right)^{-1}(j-1)<_{\operatorname{lex}} c x_{(n, \infty)}^{s} \circ\left(C_{n}^{s}\right)^{-1}(i) \leq_{\operatorname{lex}} x_{(n-1, \infty)}^{s} \circ\left(C_{n-1}^{s}\right)^{-1}(j)
$$

Notice that

$$
\begin{aligned}
c x_{(n, \infty)}^{s} & \circ\left(C_{n}^{s}\right)^{-1}(i) \leq_{\operatorname{lex}} x_{(n-1, \infty)}^{s} \circ\left(C_{n-1}^{s}\right)^{-1}(j) \\
& \Longleftrightarrow c<\xi_{n}(j), \text { or } c=\xi_{n}(j) \text { and } x_{(n, \infty)}^{s} \circ\left(C_{n}^{s}\right)^{-1}(i) \leq_{\operatorname{lex}} x_{(n, \infty)}^{s} \circ\left(C_{n}^{s}\right)^{-1}\left(g_{n}(j)\right) \\
& \Longleftrightarrow(c, i) \leq_{\operatorname{lex}}\left(\xi_{n}, g_{n}\right)(j),
\end{aligned}
$$

Similarly, we can see that

$$
x_{(n-1, \infty)}^{s} \circ\left(C_{n-1}^{s}\right)^{-1}(j-1)<_{\operatorname{lex}} c x_{(n, \infty)}^{s} \circ\left(C_{n}^{s}\right)^{-1}(i) \Longleftrightarrow\left(\xi_{n}, g_{n}\right)(j-1)<_{\operatorname{lex}}(c, i)
$$

For each $n \in \mathbf{Z}$, let $n_{+}=\max \{n, 0\}$ and

$$
\varepsilon_{n}= \begin{cases}0 & \text { if } n \text { is odd } \\ 1 & \text { if } n \text { is even }\end{cases}
$$

Define

$$
s_{n}(x)= \begin{cases}\left(-\varepsilon_{n+1}(-1)^{n} q_{n}+\left(x-b_{n}+\varepsilon_{n}\right)(-1)^{n-1} q_{n-1}\right)_{+} & \text {if }-1 \leq x<b_{n} \\ 0 & \text { if } x=b_{n}\end{cases}
$$

Hence we see that

$$
\begin{aligned}
& \text { if } n \text { is odd, then } s_{n}(-1)<s_{n}(0)<\cdots<s_{n}\left(b_{n}-1\right) \text {; } \\
& \text { if } n \text { is even, then } s_{n}(-1)>s_{n}(0)>\cdots>s_{n}\left(b_{n}-1\right)
\end{aligned}
$$

The next proposition follows Th. 5.1, Lem. 7.1, Cor. 7.1 and Cor. 7.2 in [6].
Proposition 5. For a Denjoy system (X, T) of finite double orbit number d and rotation number α, there exists a refining sequence of KR partitions $\left(\mathcal{P}_{n}^{X}\right)_{n \in \mathbf{Z}_{+}}$whose form is $\mathcal{P}_{n}^{X}=\left\{T^{k}\left(z_{n}(i)\right) \mid i \in \mathcal{A}, 0 \leq k<h_{n}(i)\right\}(n \geq 1)$, with hitting time sets given by

$$
\begin{aligned}
& \left(H_{1}\right)_{i 0}=\left\{s_{1}(x) \mid(x, i) \in D\left(\xi_{1}, g_{1}\right)\right\} \\
& \left(H_{n}\right)_{i j}=\left\{s_{n}(x) \mid(x, i) \in D\left(\xi_{n}, g_{n}\right)_{j}\right\} \quad(n \geq 2)
\end{aligned}
$$

such that $\mathbf{B}=\mathbf{B}\left(\left\{\mathcal{P}_{n}^{X}\right\}\right)$ is properly ordered, and the associated Bratteli-Vershik system $\left(X_{\mathbf{B}}, \theta_{\mathbf{B}}\right)$ is conjugate to (Y, S). Moreover $\phi\left(e_{*}^{\min }\right)=\inf I_{\alpha}$ where ϕ is the natural conjugacy, and

$$
z_{0}(j)=\bigcup_{i \in \mathcal{A}} \bigcup_{(x, i) \in D\left(\xi_{1}, g_{1}\right)_{j}} T^{s_{1}(x)}\left(z_{1}(i)\right)
$$

($z_{0}(j)$'s are defined in Section 3.)

6. Proof

6.1. Proof of Theorem 1. First, we prepare some lemmas to prove Theorem 1. Let \mathbf{B} be an ordered Bratteli diagram. Let $P_{[l, m]}(v)\left(1 \leq l \leq m, v \in V_{m}\right)$ be the set of finite paths from V_{l-1} to v, that is,

$$
P_{[l, m]}(v)=\left\{e_{[l, m]} \in \prod_{n=l}^{m} E_{n} \mid r\left(e_{n}\right)=s\left(e_{n+1}\right)(l \leq n<m), r\left(e_{m}\right)=v\right\}
$$

Naturally the order of Bratteli diagram induces a total order on $P_{[l, m]}(v)$: $e_{[l, m]}<f_{[l, m]}$ if there exists $l \leq N \leq m$ such that $e_{N}<f_{N}$ and $e_{n}=f_{n}$ for all $N<n \leq m$. For each $e_{[l, m]} \in P_{[l, m]}(v)$, define $s\left(e_{[l, m]}\right)=s\left(e_{l}\right)$.

LEMMA 2. (1) $X_{\mathbf{B}}$ has a unique minimal path if and only if for each $n \geq 2$, there exists $N \geq n$ such that $s\left(\min P_{[n, N]}(v)\right)$ is independent of v. In this case, $s\left(\min P_{[n, N]}(v)\right)=$ $s\left(e_{n}^{\text {min }}\right)$.
(2) $X_{\mathbf{B}}$ has a unique maximal path if and only if for each $n \geq 2$, there exists $N \geq n$ such that $s\left(\max P_{[n, N]}(v)\right)$ is independent of v. In this case, $s\left(\max P_{[n, N]}(v)\right)=s\left(e_{n}^{\max }\right)$.

Proof. We prove (1). Note $X_{\mathbf{B}}$ is compact. For each $n \in \mathbf{N}$, let

$$
X_{n}=\left\{e_{*} \in X_{\mathbf{B}} \mid e_{[1, n]}=\min P_{[1, n]}\left(r\left(e_{n}\right)\right)\right\}
$$

Then $\bigcap_{n} X_{n}$ is the set of minimal paths. Observe $X_{n} \supset X_{n+1}$ and X_{n} is non-empty closed. Therefore $\bigcap_{n} X_{n}$ is non-empty, that is, there exist minimal paths.

Suppose $e_{*}^{\min }$ is the unique minimal path of $X_{\mathbf{B}}$, that is, $\bigcap_{n} X_{n}=\left\{e_{*}^{\min }\right\}$. Then for each $n \geq 2$,

$$
\bigcap_{N \in \mathbf{N}} X_{N} \cap\left\{e_{*} \in X_{\mathbf{B}} \mid e_{[1, n-1]} \neq e_{[1, n-1]}^{\min }\right\}=\emptyset
$$

Therefore for any $n \geq 2$, there exists $N \geq n$ such that

$$
X_{N} \subset\left\{e_{*} \in X_{\mathbf{B}} \mid e_{[1, n-1]}=e_{[1, n-1]}^{\min }\right\}
$$

This implies that $s\left(\min P_{[n, N]}(v)\right)=r\left(e_{n-1}^{\min }\right)=s\left(e_{n}^{\min }\right)$ for any $v \in V_{N}$.

Conversely, suppose that for each $n \geq 2$, there exists $N \geq n$ such that $s\left(\min P_{[n, N]}(v)\right)$ is independent of v. Let e_{*}, f_{*} be minimal paths and $n \geq 2$. Since $e_{*}, f_{*} \in X_{N}$, we see that $s\left(e_{n}\right)=s\left(f_{n}\right)=s\left(\min P_{[n, N]}(v)\right)$ and

$$
e_{[1, n-1]}=f_{[1, n-1]}=\min P_{[1, n-1]}\left(s\left(\min P_{[n, N]}(v)\right)\right)
$$

Since n is arbitrary, this implies $e_{*}=f_{*}$.
Let \mathbf{B} be a properly ordered Bratteli diagram. By the definition of $\theta_{\mathbf{B}}$, we have the following.

REMARK 2. If $e_{*} \neq e_{*}^{\max }$, then there exists N such that for any $n>N, e_{n}=\theta_{\mathbf{B}}\left(e_{*}\right)_{n}$.
Lemma 3. Let \mathbf{B} be a properly ordered Bratteli diagram. Then $\left(X_{\mathbf{B}}, \theta_{\mathbf{B}}\right)$ has a periodic point if and only if

$$
\lim _{n \rightarrow \infty} \min _{v \in V_{n}} \# P_{[1, n]}(v)<\infty
$$

PROOF. Notice that $\min _{v \in V_{n}} \# P_{[1, n]}(v) \leq \min _{v \in V_{n+1}} \# P_{[1, n+1]}(v)$.
Suppose $\theta_{\mathbf{B}}^{p}\left(e_{*}\right)=e_{*}(p \in \mathbf{N})$. If $e_{*} \neq e_{*}^{\max }$ then $\theta_{\mathbf{B}}\left(e_{*}\right)>e_{*}$. So there exists $0 \leq q<p$ such that $\theta_{\mathbf{B}}^{q}\left(e_{*}\right)=e_{*}^{\max }$. Then $e_{*}^{\max }=\theta_{\mathbf{B}}^{p-1}\left(e_{*}^{\min }\right)$. By Remark 2, there exists N such that for all $n>N, e_{n}^{\max }=e_{n}^{\min }$. Let $n>N$. Since $\min r^{-1}\left(r\left(e_{n}^{\min }\right)\right)=e_{n}^{\min }=e_{n}^{\max }=$ $\max r^{-1}\left(r\left(e_{n}^{\max }\right)\right)$, we see $r^{-1}\left(r\left(e_{n}^{\min }\right)\right)=\left\{e_{n}^{\min }\right\}$. Then

$$
\# P_{[1, n]}\left(r\left(e_{n}^{\min }\right)\right)=\# P_{[1, n-1]}\left(r\left(e_{n-1}^{\min }\right)\right)
$$

Therefore $\lim _{n \rightarrow \infty} \min _{v \in V_{n}} \# P_{[1, n]}(v)<\infty$.
Conversely, suppose $\lim _{n \rightarrow \infty} \min _{v \in V_{n}} \# P_{[1, n]}(v)<\infty$. There exist $N, p \in \mathbf{N}$ such that

$$
\min _{v \in V_{n}} \# P_{[1, n]}(v)=p \quad \text { for any } n \geq N
$$

To prove the existence of a periodic point, we show the following claims.
Claim 1. There exists $f_{*} \in X_{\mathbf{B}}$ such that $r^{-1}\left(r\left(f_{n}\right)\right)=\left\{f_{n}\right\}$ for all $n>N$.
For each $n \geq N$, let $Y_{n}=\left\{e_{*} \in X_{\mathbf{B}} \mid \# P_{[1, n]}\left(r\left(e_{n}\right)\right)=p\right\}$. For $e_{*} \in Y_{n+1}$, we have

$$
p=\# P_{[1, n+1]}\left(r\left(e_{n+1}\right)\right)=\sum_{e \in r^{-1}\left(r\left(e_{n+1}\right)\right)} \# P_{[1, n]}(s(e)) \geq \# P_{[1, n]}\left(r\left(e_{n}\right)\right) \geq p
$$

hence $r^{-1}\left(r\left(e_{n+1}\right)\right)=\left\{e_{n+1}\right\}$ and $e_{*} \in Y_{n}$. In particular, $Y_{n+1} \subset Y_{n}$. Since Y_{n} is non-empty and closed, $\bigcap_{n \geq N} Y_{n}$ is non-empty. Let $f_{*} \in \bigcap_{n \geq N} Y_{n}$, then f_{*} is the desired one.

Claim 2. Let $Z=\left\{e_{*} \in X_{\mathbf{B}} \mid e_{n}=f_{n}\right.$ for all $\left.n>N\right\}$. Then $\theta_{\mathbf{B}}(Z) \subset Z$.
For each $n>N$, let $Z_{n}=\left\{e_{*} \in X_{\mathbf{B}} \mid e_{n}=f_{n}\right\}$. So $Z=\bigcap_{n>N} Z_{n}$. For $e_{*} \in Z_{n+1}$, $e_{n} \in r^{-1}\left(s\left(e_{n+1}\right)\right)=r^{-1}\left(s\left(f_{n+1}\right)\right)=r^{-1}\left(r\left(f_{n}\right)\right)=\left\{f_{n}\right\}$. Hence $Z_{n+1} \subset Z_{n}$.

For each $n \in \mathbf{N}$, let $X_{n}=\left\{e_{*} \in X_{\mathbf{B}} \mid e_{[1, n]}=\min P_{[1, n]}\left(r\left(e_{n}\right)\right)\right\}$. Then $X_{n+1} \subset X_{n}$ and $\bigcap_{n \in \mathbf{N}} X_{n}=\left\{e_{*}^{\min }\right\}$. For each $n>N, \min P_{[1, n]}\left(r\left(f_{n}\right)\right) f_{(n, \infty)} \in X_{n} \cap Z_{n}$ since $r^{-1}\left(r\left(f_{n}\right)\right)=$ $\left\{f_{n}\right\}$. So $X_{n} \cap Z_{n}$ is non-empty and closed. Clearly $X_{n+1} \cap Z_{n+1} \subset X_{n} \cap Z_{n}$. Therefore

$$
\emptyset \neq \bigcap_{n>N} X_{n} \cap Z_{n} \subset \bigcap_{n>N} X_{n}=\left\{e_{*}^{\min }\right\} .
$$

Thus $e_{*}^{\min } \in Z$.
Let $e_{*} \in Z$. If $e_{*}=e_{*}^{\max }$, then $\theta_{\mathbf{B}}\left(e_{*}\right)=e_{*}^{\min } \in Z$. If $e_{*} \neq e_{*}^{\max }$, then by Remark 2 , there exists N^{\prime} such that for any $n>N^{\prime}, \theta_{\mathbf{B}}\left(e_{*}\right)_{n}=e_{n}$. If $N^{\prime} \leq N$, then $\theta_{\mathbf{B}}\left(e_{*}\right) \in Z$. If $N^{\prime}>N$, then $\theta_{\mathbf{B}}\left(e_{*}\right) \in \bigcap_{n>N^{\prime}} Z_{n}$. Since $Z_{n+1} \subset Z_{n}, \theta_{\mathbf{B}}\left(e_{*}\right) \in Z$.

The existence of a periodic point follows Claim 2 and $\# Z<\infty$.
LEMMA 4. Let \mathbf{B} be an ordered Bratteli diagram of constant rank and $\left(\sigma_{n}\right)_{n \in \mathbf{N}}$ be the natural substitution system of \mathbf{B}. Then

$$
v_{l-1}^{-1} \circ s\left(\overrightarrow{P_{[l, m]}\left(v_{m}(i)\right)}\right)=\sigma_{l} \sigma_{l+1} \cdots \sigma_{m}(i)
$$

Proof. Fix $l \in \mathbf{N}$. We use induction on $m(\geq l)$. It is clear for $m=l$. Suppose the claim holds for m. Here we have the following partition

$$
P_{[l, m+1]}\left(v_{m+1}(i)\right)=\bigcup_{e_{m+1} \in r^{-1}\left(v_{m+1}(i)\right)}\left\{e_{[l, m]} e_{m+1} \mid e_{[l, m]} \in P_{[l, m]}\left(s\left(e_{m+1}\right)\right)\right\}
$$

Let $e_{[l, m+1]}, f_{[l, m+1]} \in P_{[l, m+1]}\left(v_{m+1}(i)\right)$. If $e_{m+1}<f_{m+1}$, or $e_{m+1}=f_{m+1}$ and $e_{[l, m]}<$ $f_{[l, m]}$, then $e_{[l, m+1]}<f_{[l, m+1]}$. Hence when

$$
\overrightarrow{r^{-1}\left(v_{m+1}(i)\right)}=e_{m+1}^{1} e_{m+1}^{2} \cdots e_{m+1}^{k} \quad\left(\text { where } k=\# r^{-1}\left(v_{m+1}(i)\right)\right)
$$

we see that

$$
\begin{aligned}
v_{l-1}^{-1} \circ s\left(\overrightarrow{P_{[l, m+1]}\left(v_{m+1}(i)\right)}\right) & \left.\left.=v_{l-1}^{-1} \circ s\left(\overrightarrow{P_{[l, m]}\left(s\left(e_{m+1}^{1}\right)\right.}\right)\right) \cdots v_{l-1}^{-1} \circ s\left(\overrightarrow{P_{[l, m]}\left(s\left(e_{m+1}^{k}\right)\right.}\right)\right) \\
& =\sigma_{l} \cdots \sigma_{m}\left(v_{m}^{-1} \circ s\left(e_{m+1}^{1}\right)\right) \ldots \sigma_{l} \cdots \sigma_{m}\left(v_{m}^{-1} \circ s\left(e_{m+1}^{k}\right)\right) \\
& =\sigma_{l} \cdots \sigma_{m+1}(i)
\end{aligned}
$$

By the definition of $\theta_{\mathbf{B}}$, we have the following.
Observation 2. Suppose that \mathbf{B} is a properly ordered Bratteli diagram. Let $e_{*} \in X_{\mathbf{B}}$ and $P=P_{[1, l]}\left(r\left(e_{l}\right)\right)$. If $e_{[1, l]}=\min P$, then

$$
\theta_{\mathbf{B}}^{0}\left(e_{*}\right)_{[1, l]} \theta_{\mathbf{B}}^{1}\left(e_{*}\right)_{[1, l]} \cdots \theta_{\mathbf{B}}^{\# P-1}\left(e_{*}\right)_{[1, l]}=\vec{P}
$$

Proof of Theorem 1. Let $e_{*} \in X_{\mathbf{B}}$ and $P=P_{[1, l]}\left(r\left(e_{l}\right)\right)$. If $e_{[1, l]}=\min P$, then by Observation 2 and Lemma 4,

$$
J_{\mathbf{B}}\left(e_{*}\right)_{0} J_{\mathbf{B}}\left(e_{*}\right)_{1} \cdots J_{\mathbf{B}}\left(e_{*}\right)_{\# P-1}=\sigma_{1} \sigma_{2} \cdots \sigma_{l}\left(v_{l}^{-1} \circ r\left(e_{l}\right)\right) .
$$

Let $n \geq 2$ and $Q=P_{[1, n-1]}\left(r\left(e_{n-1}^{\min }\right)\right)$. Notice that $e_{[1, n-1]}^{\min }=\min Q$. By Lemma 2 and 4 , there exists N such that

$$
v_{n-1}^{-1} \circ s\left(e_{n}^{\min }\right)=v_{n-1}^{-1} \circ s\left(\min P_{[n, N]}\left(v_{N}(i)\right)\right)=\left(\sigma_{n} \sigma_{n+1} \cdots \sigma_{N}(i)\right)_{1} \quad(i \in \mathcal{A}) .
$$

Hence

$$
J_{\mathbf{B}}\left(e_{*}^{\min }\right)_{0} J_{\mathbf{B}}\left(e_{*}^{\min }\right)_{1} \cdots J_{\mathbf{B}}\left(e_{*}^{\min }\right) \# Q-1=\sigma_{1} \sigma_{2} \cdots \sigma_{n-1}\left(\left(\sigma_{n} \sigma_{n+1} \cdots \sigma_{N}(i)\right)_{1}\right)
$$

By Lemma 3, $\# Q \rightarrow \infty$. So $\left(\sigma_{n}\right)_{n \in \mathbf{N}}$ generates $J_{\mathbf{B}}\left(e_{*}^{\min }\right)_{0} J_{\mathbf{B}}\left(e_{*}^{\min }\right)_{1} \cdots$.
Similarly, we can see that $\left(\stackrel{\sigma_{n}}{n}\right)_{n \in \mathbf{N}}$ generates $J_{\mathbf{B}}\left(e_{*}^{\text {min }}\right)_{-1} J_{\mathbf{B}}\left(e_{*}^{\text {min }}\right)_{-2} \cdots$.
6.2. Proof of Main Theorem. By Proposition 5, we have a properly ordered Bratteli diagram $\mathbf{B}=\mathbf{B}\left(\left\{\mathcal{P}_{n}^{X}\right\}\right)$ and an HPS-adic presentation of $(X, T):\left(X_{\mathbf{B}}, \theta_{\mathbf{B}}\right)$. But \mathbf{B} is not of constant rank $\left(c_{0}=1, c_{n}=d+1(n \geq 1)\right)$. Here, define a properly ordered Bratteli diagram D of constant rank by

$$
\begin{aligned}
& V_{n}=\left\{w_{n}(0), w_{n}(1), \ldots, w_{n}(d)\right\}, \\
& E_{n}=\left\{\left(w_{n-1}(j), s_{n}(x), w_{n}(i)\right) \mid(x, i) \in D\left(\xi_{n}, g_{n}\right)_{j}\right\}, \\
& \left(w_{n-1}(j), \rho, w_{n}(i)\right) \leq\left(w_{n-1}\left(j^{\prime}\right), \rho^{\prime}, w_{n}\left(i^{\prime}\right)\right) \text { if } i=i^{\prime} \text { and } \rho \leq \rho^{\prime} .
\end{aligned}
$$

Moreover define $\Psi: \mathbf{D} \rightarrow \mathbf{B}$ by

$$
\begin{aligned}
& \Psi\left(\left(w_{0}(j), \rho, w_{1}(i)\right)\right)=\left(v_{0}(0), \rho, v_{1}(i)\right) \\
& \Psi\left(\left(w_{n-1}(j), \rho, w_{n}(i)\right)\right)=\left(v_{n-1}(j), \rho, v_{n}(i)\right) \quad(n \geq 2) .
\end{aligned}
$$

Then by Lemma 1 (1), Ψ induces a conjugacy $\Psi:\left(X_{\mathbf{D}}, \theta_{\mathbf{D}}\right) \rightarrow\left(X_{\mathbf{B}}, \theta_{\mathbf{B}}\right)$ with $\Psi\left(e_{*}^{\min }\right)=e_{*}^{\min }$.
PROPOSITION 6. $J_{\mathbf{D}}\left(e_{*}^{\min }\right)=J_{X}\left(\inf I_{\alpha}\right)$.
Proof. By Proposition 5, $\phi \circ \Psi\left(e_{*}^{\min }\right)=\inf I_{\alpha}$. Note

$$
\Psi\left(\left\{e_{*} \in X_{\mathbf{D}} \mid s\left(e_{*}\right)=j\right\}\right)=\left\{e_{*} \in X_{\mathbf{B}} \mid e_{1}=\left(v_{0}(0), s_{1}(x), v_{1}(i)\right),(x, i) \in D\left(\xi_{1}, g_{1}\right)_{j}\right\}
$$

By Proposition 5,

$$
\phi \circ \Psi\left(\left\{e_{*} \in X_{\mathbf{D}} \mid s\left(e_{*}\right)=j\right\}\right) \subset z_{0}(j) .
$$

This completes the proof.
So we will study the natural substitution system of \mathbf{D}.
LEMMA 5. $i \leq g_{n}(d) \Longleftrightarrow \xi_{n+1}(i)=-1$.
Proof. By (\sharp) in Section 2, notice that

$$
\left(C_{n}^{s}\right)^{-1}(d)= \begin{cases}\alpha & \text { if } n \text { is odd } \\ 1 & \text { if } n \text { is even }\end{cases}
$$

Therefore

$$
i \leq g_{n}(d) \Longleftrightarrow x_{(n, \infty)}^{s} \circ\left(C_{n}^{s}\right)^{-1}(i) \leq_{\operatorname{lex}}(-1) b_{n+2}(-1) b_{n+4} \cdots \Longleftrightarrow \xi_{n+1}(i)=-1
$$

Proposition 7. Let

$$
\tau_{n}(i)= \begin{cases}\left\lceil b_{n}, i\right\rceil_{n}^{s} & \text { if } x_{n+1}^{s} \circ\left(C_{n}^{s}\right)^{-1}(i)=-1 \\ \lceil-1, i\rceil_{n}^{s}\lceil 0, i\rceil_{n}^{s} \cdots\left\lceil b_{n}-1, i\right\rceil_{n}^{s} & \text { otherwise. }\end{cases}
$$

Then the natural substitution system of \mathbf{D} is $\left(\tau_{1}, \overleftarrow{\tau_{2}}, \tau_{3}, \overleftarrow{\tau_{4}}, \ldots\right)$.
Proof. By Lemma 1,

$$
r^{-1}\left(w_{n}(i)\right)= \begin{cases}\left\{\left(w_{n-1}\left(\left\lceil a_{n}, i\right\rceil_{n}^{s}\right), s_{n}\left(b_{n}\right), w_{n}(i)\right)\right\} & \text { if } i \leq g_{n}(d) \\ \left\{\left(w_{n-1}\left(\lceil x, i\rceil_{n}^{s}\right), s_{n}(x), w_{n}(i)\right) \mid-1 \leq x<b_{n}\right\} & \text { otherwise } .\end{cases}
$$

By Lemma 5, $i \leq g_{n}(d)$ is equivalent to $x_{n+1}^{s} \circ\left(C_{n}^{s}\right)^{-1}(i)=-1$.
Let $i \leq g_{n}(d)$. Then

$$
\sigma_{n}(i)=w_{n-1}^{-1} \circ s\left(w_{n-1}\left(\left\lceil b_{n}, i\right\rceil_{n}^{s}\right), s_{n}\left(b_{n}\right), w_{n}(i)\right)=\left\lceil b_{n}, i\right\rceil_{n}^{s}=\tau_{n}(i)=\overleftarrow{\tau_{n}}(i)
$$

Let $i>g_{n}(d)$ and n be odd. Since s_{n} is increasing on $\left\{-1,0, \ldots, b_{n}-1\right\}$, we see that

$$
\begin{aligned}
\overrightarrow{r^{-1}\left(w_{n}(i)\right)}=\left(w_{n-1}\left(\lceil-1, i\rceil_{n}^{s}\right), s_{n}(-1), w_{n}(i)\right)\left(w_{n-1}(\right. & \left.\left(\lceil 0, i\rceil_{n}^{s}\right), s_{n}(0), w_{n}(i)\right) \\
& \cdots\left(w_{n-1}\left(\left\lceil b_{n}-1, i\right\rceil_{n}^{s}\right), s_{n}\left(b_{n}-1\right), w_{n}(i)\right) .
\end{aligned}
$$

Therefore

$$
w_{n-1}^{-1}\left(\overrightarrow{r^{-1}\left(w_{n}(i)\right)}\right)=\lceil-1, i\rceil_{n}^{s}\lceil 0, i\rceil_{n}^{s} \cdots\left\lceil b_{n}-1, i\right\rceil_{n}^{s}=\tau_{n}(i) .
$$

Let $i>g_{n}(d)$ and n be even. Since s_{n} is decreasing on $\left\{-1,0, \ldots, b_{n}-1\right\}$, similarly, we can see that $w_{n-1}^{-1}\left(\overrightarrow{r^{-1}\left(w_{n}(i)\right)}\right)=\overleftarrow{\tau_{n}}(i)$.

Combining Proposition 2 (1), 6, 7 and Theorem 1, we get the following.
PROPOSITION 8. The sequence $\left(\tau_{1}, \overleftarrow{\tau_{2}}, \tau_{3}, \overleftarrow{\tau_{4}}, \cdots\right)$ generates $J(\alpha)$.
To complete the proof of Main Theorem, we observe the relation between ($\tau_{1}, \overleftarrow{\tau_{2}}, \cdots$) and $\left(\sigma_{1}, \overleftarrow{\sigma_{2}}, \cdots\right)$. Indeed, it suffices to show that

$$
\sigma_{1} \stackrel{\sigma_{2}}{\sigma_{3}} \stackrel{\sigma_{4}}{\cdots}=\tau_{1} \overleftarrow{\tau_{2}} \tau_{3} \overleftarrow{\tau_{4}} \cdots
$$

To show this, we prepare some definitions. Let

$$
\tau_{n}^{\prime}(i)= \begin{cases}\left\lceil a_{n}, i^{\prime}\right\rceil_{n} & \text { if } x_{n+1}^{s} \circ\left(C_{n}^{s}\right)^{-1}(i)=-1 \\ \left\lceil 0, i^{\prime}\right\rceil_{n}\left\lceil 1, i^{\prime}\right\rceil_{n} \cdots\left\lceil a_{n}-1, i^{\prime}\right\rceil_{n} & \text { otherwise }\end{cases}
$$

where $i^{\prime}=C_{n} \circ\left(C_{n}^{s}\right)^{-1}(i)$. Moreover define i_{n}, i_{n}^{s}, Δ by
$M_{n}=\left\{x_{(n, \infty)} \mid x_{*} \in M_{\alpha}\right\}, i_{n}: M_{n} \rightarrow \mathcal{A}, i_{n}\left(x_{(n, \infty)}\right)=\#\left\{\lambda \in \Lambda_{1} \mid x_{(n, \infty)}(\lambda)<_{\operatorname{lex}} x_{(n, \infty)}\right\} ;$
$M_{n}^{s}=\left\{y_{(n, \infty)} \mid y_{*} \in M_{\alpha}^{s}\right\}, i_{n}^{s}: M_{n}^{s} \rightarrow \mathcal{A}, i_{n}^{s}\left(y_{(n, \infty)}\right)=\#\left\{\lambda \in \Lambda_{1} \mid x_{(n, \infty)}^{s}(\lambda)<_{\operatorname{lex}} y_{(n, \infty)}\right\} ;$

$$
\Delta: \bigcup_{n=1}^{\infty} M_{n}^{s} \rightarrow \bigcup_{n=1}^{\infty} M_{n}, \Delta\left(x_{(n, \infty)}\right)=\left(x_{n+1}\right)_{+}\left(x_{n+2}\right)_{+} \cdots
$$

We have the following:

- For each $i \in \mathcal{A}$, there exist $x_{(n, \infty)} \in M_{n}, y_{(n, \infty)} \in M_{n}^{s}$ such that $i_{n}\left(x_{(n, \infty)}\right)=$ $i_{n}^{s}\left(y_{(n, \infty)}\right)=i$.
- $x_{(n, \infty)}=\Delta \circ x_{(n, \infty)}^{s}$.
- For $y_{(n, \infty)}, y_{(n, \infty)}^{\prime} \in M_{n}^{s}$, if $y_{n+1}=y_{n+1}^{\prime}=-1$, or $y_{n+1}, y_{n+1}^{\prime} \geq 0$, then

$$
y_{(n, \infty)}<_{\operatorname{lex}} y_{(n, \infty)}^{\prime} \Longleftrightarrow \Delta\left(y_{(n, \infty)}\right)<_{\operatorname{lex}} \Delta\left(y_{(n, \infty)}^{\prime}\right) .
$$

The following formula gives characterizations of σ_{n}, τ_{n} and τ_{n}^{\prime}.
FORMULA 1. The following holds.
(1) $\quad \sigma_{n}\left(i_{n}\left(x_{(n, \infty)}\right)\right)= \begin{cases}i_{n-1}\left(0 x_{(n, \infty)}\right) \cdots i_{n-1}\left(a_{n} x_{(n, \infty)}\right) & \text { if } x_{n+1}=0 \\ i_{n-1}\left(0 x_{(n, \infty)}\right) \cdots i_{n-1}\left(\left(a_{n}-1\right) x_{(n, \infty)}\right) & \text { otherwise. }\end{cases}$
(2) $\quad \tau_{n}\left(i_{n}^{s}\left(y_{(n, \infty)}\right)\right)= \begin{cases}i_{n-1}^{s}\left(b_{n} y_{(n, \infty)}\right) & \text { if } y_{n+1}=-1 \\ i_{n-1}^{s}\left((-1) y_{(n, \infty)}\right) \cdots i_{n-1}^{s}\left(\left(b_{n}-1\right) y_{(n, \infty)}\right) & \text { otherwise. }\end{cases}$
(3) $\quad \tau_{n}^{\prime}\left(i_{n}^{s}\left(y_{(n, \infty)}\right)\right)= \begin{cases}i_{n-1}\left(a_{n} \Delta\left(y_{(n, \infty)}\right)\right) & \text { if } y_{n+1}=-1 \\ i_{n-1}\left(0 \Delta\left(y_{(n, \infty)}\right)\right) \cdots i_{n-1}\left(\left(a_{n}-1\right) \Delta\left(y_{(n, \infty)}\right)\right) & \text { otherwise. }\end{cases}$

Proof. (1) Let $x_{(n, \infty)} \in M_{n}$. Since $0 a_{n+2} 0 a_{n+4} \cdots \in x_{(n, \infty)}\left(\Lambda_{1}\right)$, we have

$$
x_{n+1}=0 \Longleftrightarrow x_{n+1} C_{n}^{-1} i_{n}\left(x_{(n, \infty)}\right)=0 .
$$

Assume that there exist $\lambda \in \Lambda_{1}$ and $0 \leq c \leq a_{n}$ such that

$$
c x_{(n, \infty)} \leq_{\operatorname{lex}} x_{(n-1, \infty)}(\lambda)<_{\operatorname{lex}} c x_{(n, \infty)} C_{n}^{-1}\left(i_{n}\left(x_{(n, \infty)}\right)\right) .
$$

Then we can see

$$
x_{(n, \infty)} \leq_{\operatorname{lex}} x_{(n, \infty)}(\lambda)<_{\operatorname{lex}} x_{(n, \infty)} C_{n}^{-1}\left(i_{n}\left(x_{(n, \infty)}\right)\right)
$$

This contradicts the definition of i_{n} and C_{n}. Therefore we have

$$
\left\lceil c, i_{n}\left(x_{(n, \infty)}\right)\right\rceil_{n}=i_{n-1}\left(c x_{(n, \infty)}\right) .
$$

This completes the proof of (1). Similarly we can show (2).
(3) Let $y_{(n, \infty)} \in M_{n}^{s}$. Since $(-1) b_{n+2}(-1) b_{n+4} \cdots \in x_{(n, \infty)}^{s}\left(\Lambda_{1}\right)$, we have

$$
y_{n+1}=-1 \Longleftrightarrow x_{n+1}^{s}\left(C_{n}^{s}\right)^{-1}\left(i_{n}^{s}\left(y_{(n, \infty)}\right)\right)=-1
$$

First, consider the case of $y_{n+1}=-1$. Assume that there exists $\lambda \in \Lambda_{1}$ such that

$$
a_{n} \Delta\left(y_{(n, \infty)}\right) \leq_{\operatorname{lex}} x_{(n-1, \infty)}(\lambda)<_{\operatorname{lex}} a_{n} x_{(n, \infty)}\left(C_{n}^{s}\right)^{-1}\left(i_{n}^{s}\left(y_{(n, \infty)}\right)\right)
$$

Then we can see

$$
y_{(n, \infty)} \leq_{\operatorname{lex}} x_{(n, \infty)}^{s}(\lambda)<_{\operatorname{lex}} x_{(n, \infty)}^{s}\left(C_{n}^{s}\right)^{-1}\left(i_{n}^{s}\left(y_{(n, \infty)}\right)\right) .
$$

This contradicts the definitions of i_{n}^{s} and C_{n}^{s}. Therefore we have

$$
\left\lceil a_{n}, C_{n}\left(C_{n}^{s}\right)^{-1}\left(i_{n}^{s}\left(y_{(n, \infty)}\right)\right)\right\rceil_{n}=i_{n-1}\left(a_{n} \Delta\left(y_{(n, \infty)}\right)\right) .
$$

Next, consider the case of $y_{n+1} \geq 0$. Assume there exist $\lambda \in \Lambda_{1}$ and $0 \leq c<a_{n}$ such that

$$
c \Delta\left(y_{(n, \infty)}\right) \leq \operatorname{lex} x_{(n-1, \infty)}(\lambda)<\operatorname{lex} c x_{(n, \infty)}\left(C_{n}^{s}\right)^{-1}\left(i_{n}^{s}\left(y_{(n, \infty)}\right)\right)
$$

Then we can see

$$
y_{(n, \infty)} \leq \operatorname{lex} x_{(n, \infty)}^{s}(\lambda)<_{\operatorname{lex}} x_{(n, \infty)}^{s}\left(C_{n}^{s}\right)^{-1}\left(i_{n}^{s}\left(y_{(n, \infty)}\right)\right)
$$

This contradicts the definitions of i_{n}^{s} and C_{n}^{s}. Therefore we have

$$
\left\lceil c, C_{n}\left(C_{n}^{s}\right)^{-1}\left(i_{n}^{s}\left(y_{(n, \infty)}\right)\right)\right\rceil_{n}=i_{n-1}\left(c \Delta\left(y_{(n, \infty)}\right)\right)
$$

By Formula 1, $\tau_{1}=\tau_{1}^{\prime}$. Moreover $\tau_{n}^{\prime} \tau_{n+1}^{\llcorner }=\sigma_{n} \tau_{n+1}^{\prime}$ (equivalently, $\overleftarrow{\tau_{n}^{\prime}} \tau_{n+1}=\overleftarrow{\sigma_{n}} \tau_{n+1}^{\prime}$). Indeed, if $y_{n+2}=-1$,

$$
\begin{aligned}
& \left.\tau_{n}^{\prime} \tau_{n+1}^{\leftharpoonup}\left(i_{n+1}^{s}\left(y_{(n+1, \infty)}\right)\right)\right)=\tau_{n}^{\prime}\left(i_{n}^{s}\left(b_{n+1} y_{(n+1, \infty)}\right)\right) \\
& =i_{n-1}\left(0 \Delta\left(b_{n+1} y_{(n+1, \infty)}\right)\right) \cdots i_{n-1}\left(\left(a_{n}-1\right) \Delta\left(b_{n+1} y_{(n+1, \infty)}\right)\right) \\
& =i_{n-1}\left(0 a_{n+1} \Delta\left(y_{(n+1, \infty)}\right)\right) \cdots i_{n-1}\left(\left(a_{n}-1\right) a_{n+1} \Delta\left(y_{(n+1, \infty)}\right)\right) \\
& \left.=\sigma_{n}\left(i_{n}\left(a_{n+1} \Delta\left(y_{(n+1, \infty)}\right)\right)\right)=\sigma_{n} \tau_{n+1}^{\prime}\left(i_{n+1}^{s}\left(y_{(n+1, \infty)}\right)\right)\right) .
\end{aligned}
$$

If $y_{n+2} \neq-1$,

$$
\begin{aligned}
& \left.\tau_{n}^{\prime} \tau_{n+1}^{\leftharpoonup}\left(i_{n+1}^{s}\left(y_{(n+1, \infty)}\right)\right)\right)=\tau_{n}^{\prime}\left(i_{n}^{s}\left(\left(b_{n+1}-1\right) y_{(n+1, \infty)}\right) \cdots i_{n}^{s}\left((-1) y_{(n+1, \infty)}\right)\right) \\
& =\underbrace{i_{n-1}\left(0 \Delta\left(\left(b_{n+1}-1\right) y_{(n+1, \infty)}\right)\right) \cdots i_{n-1}\left(\left(a_{n}-1\right) \Delta\left(\left(b_{n+1}-1\right) y_{(n+1, \infty)}\right)\right)}
\end{aligned}
$$

$$
\underbrace{i_{n-1}\left(0 \Delta\left(0 y_{(n+1, \infty)}\right)\right) \cdots i_{n-1}\left(\left(a_{n}-1\right) \Delta\left(0 y_{(n+1, \infty)}\right)\right)} i_{n-1}\left(a_{n} \Delta\left((-1) y_{(n+1, \infty)}\right)\right)
$$

$$
=\underbrace{i_{n-1}\left(0\left(a_{n+1}-1\right) \Delta\left(y_{(n+1, \infty)}\right)\right) \cdots i_{n-1}\left(\left(a_{n}-1\right)\left(a_{n+1}-1\right) \Delta\left(y_{(n+1, \infty)}\right)\right)}
$$

$$
\begin{aligned}
& \underbrace{i_{n-1}\left(00 \Delta\left(y_{(n+1, \infty)}\right)\right) \cdots i_{n-1}\left(\left(a_{n}-1\right) 0 \Delta\left(y_{(n+1, \infty)}\right)\right) i_{n-1}\left(a_{n} 0 \Delta\left(y_{(n+1, \infty)}\right)\right)} \\
= & \left.\sigma_{n}\left(i_{n}\left(\left(a_{n+1}-1\right) \Delta\left(y_{(n+1, \infty)}\right)\right) \cdots i_{n}\left(0 \Delta\left(y_{(n+1, \infty)}\right)\right)\right)=\sigma_{n} \tau_{n+1}^{\prime}\left(i_{n+1}^{s}\left(y_{(n+1, \infty)}\right)\right)\right) .
\end{aligned}
$$

Therefore we have

$$
\tau_{1} \overleftarrow{\tau_{2}} \tau_{3} \overleftarrow{\tau_{4}} \cdots=\tau_{1}^{\prime} \overleftarrow{\tau_{2}} \tau_{3} \overleftarrow{\tau_{4}} \cdots=\sigma_{1} \tau_{2}^{\prime} \tau_{3} \tau \tau_{4} \cdots=\sigma_{1} \overleftarrow{\sigma_{2}} \tau_{3}^{\prime} \overleftarrow{\tau_{4}} \cdots=\cdots=\sigma_{1} \overleftarrow{\sigma_{2}} \sigma_{3} \overleftarrow{\sigma_{4}} \cdots
$$

This completes the proof of Main Theorem.

References

[1] R. H. Herman, I. F. Putnam and C. F. Skau, Ordered Bratteli diagrams, Dimension groups and topological dynamics, Intern. J. Math. 3 (1992), 827-864.
[2] D. Herrmann, Quasicrystals and Denjoy homeomorphisms, J. Phys. A 33 (2000), no. 33, 5867-5878.
[3] S. ITO, Some skew product transformations associated with continued fractions and their invariant measures, Tokyo J. Math. 9 (1986), no. 1, 115-133.
[4] S. Ito and S. Yasutomi, On continued fractions, substitutions and characteristic sequences $[n x+y]-[(n-$ 1) $x+y$], Japan. J. Math. (N.S.) 16 (1990), no. 2, 287-306.
[5] M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, 90. Cambridge University Press, Cambridge, 2002.
[6] K. Masui, F. Sugisaki and M. Yoshida, Denjoy systems and Dimension groups, to appear in Ergodic Theory Dynam. Systems.

Present Address: Department of Mathematics, Osaka City University, Sugimoto, Sumiyoshi-ku, Osaka, 558-8585 Japan. e-mail: masuikenichi@yahoo.co.jp

[^0]: Received August 28, 2007; revised April 16, 2008
 Key words: continued fraction, dual Ostrowski expansion, subshifts, adic transformation

