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Introduction.

Let G be a commutative group. A formula on the torsion free rank of Z[G] is given by
Higman ([2, Theorem 13.5]). We think about a case where G is a finite commutative group.
Then we can define a fundamental system of units in Z[G] (See Definition 2.2.). We consider
the following problem.

PROBLEM A. Given a finite commutative group G, find a specific fundamental system
of units in Z[G].

This is a difficult problem. For example, if G is cyclic of prime order p, then Problem A
is equivalent to the problem of find a specific fundamental system of units of the subgroup of
Z[¢]* consisting of all units which are congruent to 1 modulo ¢ — 1, where ¢ be a primitive
p-th root of unity. Therefore we consider the weaker next problem.

PROBLEM B. Given a finite commutative group G, find a specific system of » indepen-
dent units of infinite order in Z[G] or, equivalently, a system of independent units of infinite
order which generates a subgroup of finite index.

In the case where G is a cyclic group, an independence system of units in Z[G] is given
by Bass ([1], [2]). In this article, we consider the elementary p-group case G = (Z/p)", and
we give the direct product decomposition of Z[G]™ induced by the structure of the unit group
scheme U (G).

ASSERTION 1 (cf. Lemma 2.3). Let G = (Z/p)" and let ¢ be a primitive p-th root of
unity. We put .. = ¢ — 1. Then

ZIGT* S {£1} x ]_[ U,.(';) ,
i=1
where U; = {ii € (Z[¢]®)*|ii = 1% mod A%},

Moreover we construct an independent system of finite index of the unit group Z[G]*
when G =Z/p x Z/p.
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ASSERTION 2 (cf. Theorem 2.4). Let G = Z/p x Z/p and let r| = %(p —3). We
take an independent system {u;|1 < i < r1} of the units in the group ring Z[Z/p] and let
u; be the image of u; in Z[¢] i.e. {ui|l < i < r1} is an independent system of Uy. Then
{uipl1 <i <r1,1 < j < p — 1} is an independent system of U,. Here u;jy is an inverse
image of (1, --- , 1,u;, 1,---, 1) by an injection ¢ : Z[¢] ®7 Z[¢] = [,y ZIE].

J

In Section 1, we review the group scheme U (G) and some results. In Sections 2 and 3,
we prove the assertions. And in Section 4, we construct a fundamental system of units in the
group ring Z[G] when p = 5 and 7.

ACKNOWLEDGMENT. The results in Section 1, which was allowed us to use in this
work, are based on N. Suwa. We specify them here. And the author was given some advice
from T. Sekiguchi and N. Suwa in finishing this work. He expresses his gratitude for them.

1. Preliminaries.

In this section, we review some results in [3] and [4].

DEFINITION 1.1. Let A be aringand a € A. We define a group scheme G over A
by G@ = SpecA[X, 1/(aX + 1)] with

(1) the multiplication: X —> aX X +X®1+1Q® X,

(2) theunit: X — 0,

(3) theinverse: X — —X/(aX + 1).

Moreover, we define an A-homomorphism a@ : G — G, 4 by
U aX+1: AU, U > A[X, 1/@X + D].

If a is invertible in A, @ is an A-isomorphism. If a = 0, G @ ig nothing but the additive
group scheme G, 4.

Let B be an A-algebra. Then the multiplication of the group G (B) = {b € B|1+ab €
B*}isdefinedby b-b' = b+b'+abb’ forb, b’ € G (B). Moreover, G (B) is isomorphic
to{be B*|b=1moda} C B*.

DEFINITION 1.2. Let G be a finite group. We define a ring scheme A(G) by A(G) =
SpecZ[Ty; g € G] with

(1) the addition: a*(Tg) =T34 @ 1 +1® Ty,

(2) the multiplication: u*(Ty) = Zglgz=g Ty, ®@Ty,,
where T are indeterminates. Then A(G) represents the group algebra of G.

Let U(G) = SpecZ[Ty, 1/ det(Typ)]. Then U(G) is an open subscheme of A(G) and
represents the unit group of the group algebra of G. If G = 1, U(G) is nothing but the
multiplicative group G,, 7 = Spec Z[U, 1/U].

Let ¢ : G — H be a homomorphism of finite groups. We denote by A(p) : A(G) —
A(H)and U(gp) : U(G) — U(H) the homomorphism of ring schemes or the homomorphism
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of group schemes, respectively, induced by ¢. These homomorphisms are represented by the
homomorphism of rings defined by
Thi> Y Ty,

p(g)=h
Let (G;)ier be a finite family of finite commutative groups. For J C I, let G; =
[lic; Gi, where Gy = 1. Then the decomposition of the group scheme U (G ) corresponding
to G; = [];¢; Gj is given as follows.
Let ¢; € End(U(Gy)) be defined by the composition of the canonical projection G; —
]_[j# G ; and the canonical injection ]_[j +i Gj — Gj. By the definition of ¢;, the followings
are trivial.

LEMMA 1.3.

e, ifi=j,
e = ejei, fi#],
foranyi, j e I.
Note that the ring structure of End(U (G)) is denoted by the addition = the one induced
by the multiplication of U (G ) and the multiplication = the composition of endomorphism.
COROLLARY 1.4. Foranyi,j el
I €, lfv l = .] )
(l_ej)(l_ei)s lfvl#.]s

@) ei(l—ej)=(1—eje,
(3) e(l—e)=0.

1 d—-e)l—ej)= {

REMARK. Let R be a ring. We consider the R-valued points of group scheme U (G).
Then

(1 —e)() = u(e;w) ™" € RIG]*

foru € R[G]*.

Let gy = (Hi¢1 e))([[;e;(1 —¢)) for J C 1. Then ¢; are idempotent elements of
End(U (Gy)).

LEMMA 1.5. Under the above notations, we have the following.

(1) IfJ £K,thenejex =0,

2 Y jcrer=1

PROOF. Weput/ ={1,2,---,r}.

(1) Since J # K, we may assume that thereisi € [ suchthati € J andi ¢ K. Then

sJeK=e,~(1—e,~>(]"[e,~)( I1 (1—e,;>)( I1 q)(]‘[(l—e@)

JEJ JjeJ\{i} kg K U{i} kek
=0
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by Lemma 1.3 and Corollary 1.4.
(2) We prove the assertion by the induction on r.
Whenr =1,e; + (1 —e1) = 1.
Assume that the assertion is true whenr = k. If r = k + 1, then

281=ek+1( Z 8J>+(1—ek+l)( Z 81)

JcI JC{1,2,- k} JC{1,2,- k}
= {ex+1 + (1 — €k+1)}< > 81)
JC{1,2, k}
=1. 0
By this Lemma, putting U; = Im ¢&;, we obtain the decomposition U(G;) =

[1;c; Us(Gp), and the following.

LEMMA 1.6. IfK C J C I, then the canonical projection G; = [[;¢; Gi = Gj =
[1;c; Gi induces the isomorphism U (G1) — Ug (G ).

Let I = {1,2,---,r}, pi(i € I) be prime numbers, G; = Z/pf" and G = G; =
nl 112 nr
[T;c; Gi- Then Z[G] is isomorphic to ZIT, T, - - - , T, /(T{* =1, T)> —1,--- T —1)
and U (G) is identified with the functor
p”l p”Z nr
A (AT, Ta, - T1/(T) =1L, T2 =1, T —1)*.

Let I = {(ki,ko,--- ,ky),|1 < k; < n;}. Fork = (ki,ka,---,k;) € I, we define the
subfunctor Vx(G) of U(G) by

kp—1 ky—1 np—1
p p "
fT, T T —1=(T)" —1)(T,2 =D (T —1DF(T)
A Ty, T, -, T, 1 2 nr
=1 f(T1, T, ) E(Tlpl _I’szz _1"”,Trpr -1
for some F(T) € A[Ty, T, -, Tr]
p”l p”Z nr
C(A[TI,TZ,---,Tr]/(TI] —1,T22 -1, ,Trp’ —1)*.

For example V(1 1,...,1)(G) = U;(G). Then V(1,1,~~~,1)(1_[{:1 Z/p;”) is a successive exten-
sion of Vi([Ti—, Z/p}'), where k = (ki, kz, -+ , k,) € L

THEOREM 1.7. Letnyi,na,---,n, € Nog, let p1, p2,---, pr be prime numbers and
let ;pn,- be a primitive p:” -th root of unity in C, chosen so that {p,,l. = {pni—l. We put Ap, =
i Pi i

n;—1
{,’pnl. — 1. Then
D

,
V(n1,n2,~~,nr)(l_[Z/p?i) — l_[ g()»p1®...®)»pr) ]

i=1 Z[Zp'ln]®z---®ZZ[§pgr]/Z
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Here, for an A-algebra B which is finite and locally free over A, and for a B-scheme F, we
denote by [ |54 F the Weil restriction of F. That is to say, for A-algebra R, [[g, F(R) =
F(R ®4 B).

PROOF. Let A be aring and let
fM=>"aT = Y a0, T3 T}
i

1,00, 0y
pTl P;z p;’r
EA[TI’TZ’”"T"]/(TI _17T2 _17"’,Tr _1)
We define
f(C) € A®y Z[fp'lu] X7 Z[{p;z] Rz - Z[gp;,r]
by
fQ)= ZaiCl = Z i,y ® C;l?l ® g;zgz ® - ® §;r)r” )
1 01,00, ,ir

If

Pnlil pnzil nr—1

fM=1mod (T —1(T> —1)-- (T -1

ny ny r

for f(T) € (A[Th, T», - - ,Tr]/(Tlpl 1 szz 1, TP Z1))%, then

fQ e (A®ZZ[C1,71]®ZZ[§I,§2]®Z- ~®zZIg D and f() =1mod 1@ Ap, ® -+ @ Ap,.

Hence we can define a homomorphism

,
N4 Vi g, ony) ( [1z/p} ) ()G A& Ehr) (A ZIE 1@ L 2187 - @7 LIy )
i=1
by
fQ -1
1® Ap, ®"'®)‘pr.

; Cp =1 i I —1
Note that é-Il;lnl 1;;1 -1 ®-® é-Il7rnr {gpr*]

2ty m ] ®z - - - ®7 Z[Lp,nr ] over Z. The injectivity of na:
Assume that n4(f(T)) = 0. Then f({) — 1 = 0. Since we can represent f(T) — 1 asa

linear combination of monomials
1

na(f (M) =

0 <ix < PZ"_I, 1 < jx < py) form a basis of

. onp— . g1 i
T T ...Trir(rl-“”ll — 1)(T2"2”22 @ S0 <ic < PN < ik < o)
uniquely, f(T) — 1 = 0. Hence 54 is injective.
The surjectivity of n4:
For any
,-.Z,-, oot @ S = T @1 @ g
Jue s

€ GUn® (A @y ZIL m] @ ZIL ] @z - @1 LIy D).
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we put

nl—l ;12—I np—1

S =14 3" iy, T T T D@ =1 (177 -1y
i [}

Jiseesr
Then
) é’p.jl_l ) é‘pjr_l
_ o i 5P - e gl 2P
na(f(T)) = .Z_ i ide ® Epm " ® @ L =
1A 7Y
Jiseesr
and f(T) € Vi, ny,.n)([Ti=1 Z/p!")(A). Hence n4 is surjective.
Therefore 14 is bijective. O

2. The Z-rational points of the group scheme U (Z/p x Z/p).

Let p be a prime number and ¢ be a primitive p-th root of unity. Put A = ¢ — 1. Then
(1) is a prime ideal of Z[¢] and (W)P~! = (p).

For any commutative group G, there is a formula on the torsion free rank of Z[G]* as
follows.

THEOREM 2.1 ([2, Th. 13.5]). Let G be an arbitrary commutative group and let G
be the torsion subgroup of G. Then
ZIG1* =+G x F

where F is a free commutative group whose rank is defined as follows:

J(Gol —2¢+m+1) if G is finite

rank F = {0 ifGy=1lorG§=1

|Gol if Gy is infinite, G§ # 1 and G§ # 1.
Here m (respectively, £ ) is the number of cyclic subgroups of G of order 2 (respectively, the
number of the cyclic subgroups of Go).

In particular, if G = Z/p x Z/p for a prime number p > 5,thenm = 0and £ = p + 2.
Hence,

1
rank Z[G]* = E(p—i— D(p—3).

DEFINITION 2.2. Letr = rank Z[G]*. There exists a system of r units uy, uz, - - - , u,
such that every unit of Z[G] is represented uniquely in the form

tgu'uy? - -ul"(ni € Z, g €G).

In this case, we call {uy, us, - - - , u,} a fundamental system of units in Z[G] and call each u;
a fundamental unit.

Let aug:Z[G] — Z be the homomorphism of Z-algebras defined by dec agg
dec ag. If u € Z[G]*, then aug(u) € {£1}.
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We construct an independent system of finite index of the units of Z[G] for G = Z/p x
Z/ p using the rational points of unit group scheme U (G) of group ring scheme A(G).
At first, we give the direct product decomposition of Z[G]* when G = (Z/p)"

LEMMA 2.3. Let G = (Z/p)" and let ¢ be a primitive p-th root of unity. A := ¢ — 1.
Then

ZIG)* = {£1} x ]_[U,.(?) :
i=1

where U; = {ii € (Z[¢]®)*|ii = 1% mod A%},
PROOF. Letl ={1,2,---,n}. Then
UG =[] us6)

Jci
by the direct product decomposition of U (G). And if §J = k,

urG) > [ %"
Z§)®* /7.

by Theorem 1.7. Hence we have

(
U(G) = Gy 7, X ( [1 g@))
151/ Z

n
1

n
n

) y ( l—[ g()‘®2)>(g) . ( l_[ g(k®")>

751927, Z[t1®"/

Since U(G) =ZIG1* and [ 6% @) = Ui,
ZIc1® /L

ZIG)* S {1} x ]_[ U,.(';) ) O

i=1

Let G be a cyclic group. Then U; = Z[G]* /{£1} and we obtain the independent system
of Z[G1* i.e. the independent system of U;. (cf. [1], [2]) In particular, if the order of G is
prime, then we get some results on the fundamental system of Z[G]* (cf. [2]). Let G be a
cyclic group of prime order p > 2 and let ¢ : Z[G] — Z[¢] be the homomorphism defined
by g — ¢, where g is a generator of G. For any unit u of Z[G], ¢ (1) = £1 mod () i.e. the
restriction of ¢ to Z[G]* is nothing but the isomorphism of Lemma 2.3. Putu = ¢ (u).

Let G = Z/p x Z/p. We have rank U, = %(p —3)(p — 1) by Lemma 2.1. Therefore
we can expect to construct independent %( p —3)(p — 1) units of U,.

We put H = Gal(Q(¢)/Q). The isomorphism ¢ : Q(¢) ®g Q(¢) = ]_[UeH Q@)
defined by ¢ (> aijgi ® ) = [Toen o aijg“i(r(;j)) induces an injection ¢ : Z[{] ®7
ZIg] = Tloen ZIE)-

THEOREM 2.4. LetG =7Z/p X Z/p and letr| = %(p — 3). We take an independent
system {u;|1 < i < r1} of the units in Z[7Z/ p] and let u; is image of u; in Z[¢] i.e. {u;|l <



342 NORITSUGU ENDO

i < ri} is an independent system of Uy. Then {uj |1 <i <r;,1 < j < p—1}isan
independent system of U, where u_,-(j) = go_l((l, -, Lui,1,---,1)).
J

3. The proof of Theorem 2.4.

Let ¢ be the homomorphism as in section 2. At first, we prove some lemmas for the

proof of Theorem 2.4.
LEMMA 3.1. We employ
i

v

{;elsé‘ze]s”' 1§p7]elsge21”' 1§p7]ep7]|el =(01”' 701 1701”' 10}

and

G®ees- oot o e
as bases of Z-modules (Z[¢1)P~! and of Z[¢] ®y, ZI[¢], respectively. Then the matrix repre-
sentation Ay of the injective homomorphism ¢ is

Ay = (Aij)1<i,j<p—1
where for each i, j, Aij = (ag-1)(p—1)+k,(j—D)(p—)+O1<k,e<p—1 € M(p — 1, Z) and
1, ifij+€=kmodp,

agik,j,0) = Ai—-1)(p—1)+k,(j-D(p—-H+¢ = y—1, f ij+£€=0mod p,
0, otherwise.

Then the inverse matrix B of Ay is as follows :
B = (Bj’i/)lfi/,j/fpfl

wherefor each l'/, j/, Bj’i/ = (b(j/fl)(pfl)+€/,(i’71)(p71)+k’)1SZ’,k’Spfl and

1
—, ifi'j/+ ¢ =k modp,

, ifkl =Lt orelsei'j' =k,
bjre i iy = b(jr—1)(p— D)+, "~ D) (p—1)+k' =

, ifklzg/andi/j/zk/’

, otherwise.

PROOF.  Since Zf;(;{f = 0, it is trivial that A, is the matrix of the representation of
¢. We prove that

Y aGk by = Y, bieiky = Y bgeik
Jt Jt Jt
ij+e=k ij+e=0
= 8;,i"k.k'-
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When i =i’ and k = k’, then

1
> bjein=(p-2=,
j.L 14
ij+i=k

1
> bgein =2 (——) .
.0 P

ijre=0

Hence Zj,e a([,k,j,g)b(j,g,,',k) =1.
Wheni =i’ and k # k/, then

1
Z bjeiky =2 <——> ,
il P
ij+i=k
1
S b =2 <__> |
JiL p
ij+e=0

Hence Zj,f (l(i,k,j,()b(j,g,i,k/) =0.
Wheni # i’ and k = k/, then

1
Z bjirky=——>
JiL P

ij 1=k

3 b 1+2( 1)
(.41 k) = — -

= p p

ij+e=0

Hence Zj,f (l(i,k,j,()b(j,g,i/,k) =0.
When i # i’ and k # k/, then

1 1
b TR :——|—2<——) .
§ : (CANIND) D D

J.L
ij+=0
And if we put
N =8{(j, O)lij + €=k mod p,i'j+ €= k" mod p},
N =8{(j, Olij + £ =kmod p,i'j = k' mod p},
then
1 1
Z bijirky =N (—) + (N +1) <__) ]
il 14 p
J»
ij+e=k
Hence
Secssotuinn -2
aik.j.obi.ei i = .
0.k, j, 00, L,i' k) »

Jt

343
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It is sufficient to prove that N = N’. We may assume that i = 1. Note that the number
of the solutions of congruence equations in j and £ for given i’, k, k’ j + £ = k mod p and
i’j = k'’ mod p is one at most. Suppose that (o, B) € {(j,&)|j +£€ =kmod p,i'j +{ =
k" mod p}. We put y such that i’y = —B mod p. Sincei #i’,k #k’andy #0, o, B. And
"o —y)=ia—iy
=i'a+pB
=k"mod p.
Hence (« — ¥, B+ v) € {(j,0)|j +£ =k mod p,i’j = k' mod p}. Conversely, we assume
that (o/, B/) € {(j,£)|j + € = kmod p,i’j = k' mod p}. We put ¥’ such that (i’ — 1)y =
—B mod p. Sincei’—1=0,p—1mod p,y #0, —a', 8°. And
i'(a +y/) + (,3/_ )//) — i’o/—i—i/y/—i—,B/— )//
=i'd' + (- +y)+p —v
=i'a
= k' mod p
Hence (&' +y', B —y") € {(j, 0)|j+£ =k mod p,i'j+£ = k' mod p}. Therefore N = N'.
O

By the definitions of the elements of A;; (resp. Bjj), if i - j = i’ - j' mod p, then
Ajj = Ay (resp. Bjj = Bjrjr). Therefore if we define Ay (resp. Bi) by A;; (resp. B;j) with
l<k<p-—1landk=i-jmod p, then

A Ap o App Al Ay o Ap
Ay Ay - Az, A Ay - Ap
A(p = . . . = . . .
Ap_11 Ap_12 - Ap_ipai Ap 1 Apo - A
B By, -+ Bip-i B B, -+ Bp
By By -+ Byp-i B By -+ By
resp. B = . . . = . . .
By—1,1 Bp—12 -+ Bp_1p-1 By—1 Bp—> -+ B
Moreover, the matrices A1, Az, - -+, Ap_1 satisfy the following properties.

(1) |Aj|=1foranyl <i<p-—1.
(2) AjAj =AjA; = A, jforany 1 <i, j < p— 1. In particular A; = Aj.
Moreover, we have the following relation between the determinant of A, and the discriminant
of Q(¢).
THEOREM 3.2.
det(Ay) = p2P=V=2 — (The discriminant of Q(¢)])2 P~V

Here Ay is the representation matrix of ¢ in Lemma 3.1.
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PROOF. More generally (the discriminant of Q(¢,))= :I:ppnfl(p”””l), where ¢, is a
primitive p”-th root of unity and we have the sign — if p” = 4 orif p = 3 mod 4 and we
have + otherwise (cf. [6, Prop. 2.1]). Hence, it is sufficient to show that

E, E, E,
M M, M,
2 2 2
M; M; M | =TT1; — M)
: : : i<j
—1 -1 —1
Myt
for My, --- , My, are n X n matrices such that M; M; = M;M; and E,, is n X n unit matrix.

Infact,ifn =p—1, m = p, My =0and M, :Af” for2 < ¢ < p, then
i i -1
det(A¢)=( l_[ I(A{—z‘\’l)l>|z‘hl-~-|z‘\{7 [
I<i<j<p-1

Since |A]' — Ep—1| = pfor1 <m < p — 1, it follows that det(A,) = p%(”_l)(”_z). O

We can get units of Z[¢] ®z Z[¢] as the inverse images of units of [] Z[¢] by the iso-
morphism ¢. Moreover, we see that the units must be in Us. Now, we prepare the following
lemma.

LEMMA 3.3. Leta, B € {1,2}and o # B. We put

S| = {Zamz;“ ® 2 e 7] 9y, Z[g]‘ Y aint' ®¢? =1®1mod i ® 1}
CZt)®z Z[¢],

S5 = { Dt © 5" € ZIE1 @7 ZIE) | ) annt @67 = 1@ 1mod 1 ®A}
CZl¢)®z Z[§].

Then following three conditions are equivalent for

Y awt"®t= 3 a i et et @y i),

0<iy,ip<p—2 1<if,ij<p—1

M S > Z aiyi, " ® ¢ = Z at{iiégi; ® ¢

0<iy,ip<p-2 1<if.if<p-1

p—2 .
Imod p (ig=0),
(2) E aji, = /3
= Omod p (ig #0).

p—1
/7 __ ./
3) Z Ay =P~ 1 mod p foranyig.

H—
i,=1
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PROOF. Itis sufficient to prove them fora =1, 8 =2. (1) = (2) :
Y aiint"®¢?=1®1modi®l
elel+ie 1)Zci1iz§il ®2 = Zaim{i‘ ® ¢ for some ¢;;, € Z.

Hence if i = 0,

p—2 p—2 p—3
D agn=1-Ycio+ Y cino—(p—Dep-20
i1=0 i1=0 i1=0

=1modp.

Andif ir # 0,

p—2 p—2 p—3
Z aiji, = — Z Ciyiy + Z Ciyiy = (P = Dep-2)i

i1=0 i1=0 i1=0
=0mod p.

2)= (1):LetZ[Z] > Zfﬁza,-{". Assume that Zf:ozai;i =0 mod (¢ — 1). Since

p—2 p—2 p—2
Yoaist = - 1){ap2§”3 +(apatap )P4+ <Zal>} +Y ai,
i=0 i=1 i=0
the assumption is equivalent to f;oza,- = 0 mod p.
(2) & (3) : Since Y./t =0, it is obvious. 0

For the matrix B, we have equations similar to these in Lemma 3.3(3).

LEMMA 34 Let bi’k = (b(i—l)p+k,l e b(i*l)p+k,(pf])2) be the (l — 1)17 + k‘ﬂ’l row
of inverse matrix of A,. We consider Zlfkqu b; x for any i. Then p — 1 elements of these
vectors are —1 and others are 0. It is similarly about 3 3y _;  ,_ bi k.

We begin to prove Theorem 2.4.
We put

S = {(a,-)lgigpl € ( I1 Z[g])

o; = 1 mod A? foranyi} Do (Us) .
oeH

At first, we fix an independent unit u; € {u;|1 < i < r1} of Z[Z/p]*. Since (W)P~! = (p),
w;P,1,---,1) € S. As

p—2
WP =1+p)y ai
i=0

p—1
=== p Y bl

i=1
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and the components of the inverse matrix of A, are % (a € {1,0,—1, -2}) by Lemma 3.1,

go’l((u_ip, 1,---,1) e go’l(S). We put S1 and S as above. Then by Lemma 3.4 and Lemma
33,0 W@, 1,---, 1) e SiNSyie. o N (@;P,1,---,1)) = 1®1 mod A ® A. We obtain
the units 1 (1, %7, -+, 1)), -+ @ (A, -+, Lwg”, 1)) and o' ((1, -+, 1,%;7)) simi-

larly. This argument can be applied to any elements of {u;|1 < i < ri}. Then we can get
ri(p — 1) units. Sincer; x 24+ ri(p — 1) = %(p — 3)(p + 1), it is sufficient to prove

that these units are independence. Assume that [ 1<i<, ;% =1® 1. Since ¢ is an
1<j<p-1
injective homomorphism,

(p<< l_[ M_i(j)a“)):( l_[ i, l_[ w l_[ W”,):(l,l,u-,l).

I<i<r I<i<r I<i<r I<i<r
I=j=<p-I
By the independence of units {u1,---,u,}, o;;j = 0O for any i and j. Hence these
%( p — 3)(p — 1) units are independent. O

REMARK. We have to consider the fundamental units u; satisfying ; = 1 mod A? for
constructing a fundamental system of Us.

4. Examples.

In this section, we construct a fundamental system of units in the group ring Z[G] for
some groups G. We define

— . _1 — -
Uy, np) = @ (un] s T unr)

for any units u € Z[Z/p]* and integers n ;, where ¢ is the homomorphism in the section 2.
In particular,

Ui(jy = Ui i
(0,+,0,,0,--,0)

for a fundamental unit ;.
First, let G = Z/5 x Z/5.

LEMMA 4.1. We consider the fixed fundamental unit u = ¢> + g> — 1 € Z[Z/5]%,
where g is a fixed generator of Z/5 (cf. [2, Example 15.4]). Let ¢ : Z[Z/5] — Z[¢] be a
homomorphism defined by g — ¢. For (¢(u))" = Zj’:l a(,-)jg’j, the following hold.

() Ifj+j =0mod5, thenauy; = auyj,

2) ag = —1+4+2i mod 5 anda(,-)z = —1+4 3i mod 5.

PROOF. Note that u~! = g% + g — 1. Therefore it is sufficient to prove the assertions
fori > 1. Since ¢ (u) = ¢ + 2¢2 + 223 + ¢*, the assertions hold for i = 1. We assume that
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the assertions are true fori < k — 1. Then

4
(@ @)k = (Za<k_1>,;§-")(c +207 4207+ ¢

j=1
= —ag-12¢ + {(=3ag-12 + ag-11}¢* + {=3ag-12 + ae-11}¢> — ag—12¢*.
Hence
a1 = —ag-12 = —1+2k mod5,
a2 = —3ak-1)2 + ag-1)1 = —1 +3k mod 5.

By Lemma 3.1, we have

Al Ay Az Ay
Ay Ay A Aj

Ap = A3 A1 Ay Ax |’
Ay A3 Ay A
where
00 0 —1 00 —1 1
1 0 0 —1 00 —1 0
Ar=1lo 1 0 1] %=1 0 -1 ol
00 1 —1 01 -1 0
0 -1 1 0 110 0
0 -1 0 1 101 0
=1y 1 o of ™ A=|_1 o o
1 =1 0 0 100 0
and
By By B3 By
B— B, By B Bj
" |\Bs By By By|’
Bs Bz By Bj
where
2 1 1 1 1
-5 5 00 -5 =5 5 0
1 1 1 2 1
B—|35 5 5 0© =% 5 0 s
1 [ = 11 ’
-5 0 -5 3 0 -5 -5 O
1 1 1 1 1
-5 0 0 -3 5 =5 0 -3
1 1 1 1 1
-5 0 -5 3 -5 0 0 -3
1 1 1 1 1
By — O =5 =5 0 B—|3 73 0 -3
- 1 2 - 1 1 1
s 0 -5 0 0 5 -5 -5
1 1 1 1 2
0 5 -5 -3 0 0 5 -3
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By the above matrix and Lemma 4.1,
e(ZIL)®ZICD™) > @, u’, u,u%) & a+2b+3c+4d =0mod 5.
And by Lemma 3.3,

e M@, ub, uu) =191 mod A @A <a+b+c+d=0mod5
anda+4b+4c+d=0mod>5.

Hence {(@, u2, w3, u*), (1,u,1, 1), (1, 1,2, 1), (1, 1, 1, %)} forms a generating system of
U;. In fact, for any

@, @, 7, ul) € Ua,
we can write
@, 7,7 = @i 7, 0,50, 1, )5 (1L L7, 005, 1,1,70) 5

By the conditions, 52“ £ 53“, d 54“ € 7Z. Therefore we have the following.

EXAMPLE 4.2. LetG = Z/5x7Z/5andletu = g3+ g2 — 1. Then & is a fundamental
unit of Uy and

{t(1,2,3,4), U(2), U3), Uy}

is a fundamental system of Us.

Secondly, let G = Z/7 x Z/7. We get the fundamental units u; = g2 — g+ 1 and ur =
—¢° — g* — g3 +2g + 2 of Z[Z/7] by [2, Example 15.5]. Here g is the generator of Z/7.
We replace u; and uy by gﬁul and g3u2, respectively. Then u7, u3 = 1 mod 22,

LEMMA 4.3. Foranyn € Z, we put

6
= aw;¢’ .
j=1

Then agyj = apy7—j and apys =4 — a1 — apy2 mod 7.

PROOF. Since ity = 2§ +¢2 4¢3 + ¢4+ ¢7 +2¢% w3 = ¢2 +3¢3 +3¢* + ¢° and
aug(u;) = 1, we get the assertion. O

REMARK. For any prime number p > 5,letu = Zf:_ll a,-{i be a fundamental unit of
Z|Z/p] such thata; = ap,_; for any j. Then

p—1

=
p—1
ap;lET—< Z a,~>m0dp.

i=1
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By Lemma 3.1, we get the matrices

00 0O
00 00

O <t N A —
<< << <<
i oon — O < A
<< << < <
<t —~ wn A O on
<< << <<
N O AN — <
<< << <<
N <t O —~ o0
<< << < <
— A N <t n O
<< << < <
N ——

I

<

where

’

—1
—1
—1
—1

0
0

0 00

1

0

0 0

1 -1

0 0 O

1

—1
—1
—1
—1
—1
—1

0 0
00
00
00

0 0

0 0 0
0 0 0
0 0 0

0

Ay =

Ay

—1
—1
—1
—1

00 00O

00 0O

1

0

0 0 0

1

0
0 0 O

0 0

1

0

1

0 0 0O
0 0 0
0 0 O
0 0 O

—1
—1
—1
—1
—1
—1

00
0 0
0 0
0 0

00

0

0

Ay

—_
S oo O —~ O
S oo —=O O
=NeR s NoNeN o)
SO~ O O OO
— o O O OO
— = — —

[ N N

) —

I
Nl
<
el
(=]
<

e
S oo —O O
=NeR s NoNeN o)
(= N e e Ne o)
— o O O OO
— o = = —

[ I N |
SO OO~
~—————
I
"
<t

and

—I~

© o o -ro T
001_701_70
01_701_70 =)
1_701“70 =)
. —I~ QU s I~ =~~~
—_ =
O W <+ A — | | | [ | |
MARRARARRA
N e
M AR ARARA
+ — 1 N O o Il
M AR 2
Q
o O o v — <t
MARRARARRA -
N+ O —~ o on N
N AR SEEE -
— N N <t wn O |
QAREARR oo o-ro
Il e
Q 001_7_00
01_71“70 =
T o o o o

—I~
|

AU —I~ =~ =i~

where

Q



UNIT GROUP OF GROUP RING 351

1 1 1 1 1 1
-0 -2 L 0 o -0 o -1 I o0
o -+ -2 o 1 o o & o -4 o 1
o 0o -2 0o o 1 o o -1 -1 0 o
By = ] | s Ba=1 ) ,
o o -& - 0o o 0 0o -2 0 o
1 1 1 1 1 1
o - o0 -1 o0 o L o -4 -1 o0
1 1 1 1 1 1
0 7 -7 0 0 -3 o 0 7 -7 0 =3
1 1 1 1 1
-1 0o o o -1 1! -0 o o o -!
0 -4 0 0 -1 0 i -2 0 0 0 -1
1 1 1 1 1 1
o -1 o -1 o o L -1 o o -1
Bs=| ' 1 ’ 1 Z and Be = ! 17 1 Z
o 7 0 -3 -7 0 0 0 7 -7 0 =3
o o & o -2 o0 o o o 4+ -1 I
1 1 1 1 2
o o o -+ -1 1 o o o o L+ -2

Then we can get a fundamental system of Z[Z/7 x Z/71*.

EXAMPLE 4.4. LetG =Z/TxZ/T,u; = g>—g+1,up = —g°> —g*— g3 +29 +2,
and letu = u‘l‘ug. Then {u7, us} is a fundamental system of U; and

{1i(12.3.4.5.6) (0,1,1,5,4,3), 4(0,0,1,4,3,6), W1 (j), W2(jn | 1 i <2,2<j<6,4<j <6}

is a fundamental system of U,.
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