On the Embedded Eigenvalues for the Self-Adjoint Operators with Singular Perturbations

Kazuo WATANABE

Gakushuin University

(Communicated by T. Kawasaki)

1. Introduction and assumptions.

This paper is a continuation of [7]. That is, in the framework of the \mathcal{H}_{-2} -construction we consider a finite rank perturbation of a self-adjoint operator H_0 without assuming semi-boundedness for H_0 . The \mathcal{H}_{-2} -construction has been developed by A. Kiselev and B. Simon [1], S. T. Kuroda and H. Nagatani [2], [3] and have been applied to Schrödinger operators with a singular perturbation by H. Nagatani [4] and S. Shimada [6].

In this paper we consider the embedded eigenvalues of H_T and the existence of the wave operator $W_{\pm}(H_0, H_T)$. We prepare some notations. Let \mathcal{H} be a Hilbert space with the inner product $\langle \cdot, \cdot \rangle$, H_0 a self-adjoint operator in \mathcal{H} and $R_0(z) = (H_0 - z)^{-1}$ (Im $z \neq 0$). We put $\mathcal{H}_s := \{u \in \mathcal{H}; \|(|H_0|+1)^{s/2}u\| < \infty\}$ for $s \geq 0$, and $\mathcal{H}_s := (\mathcal{H}_{-s})^*$ for s < 0. Remark that $\mathcal{H}_s \subset \mathcal{H} \subset \mathcal{H}_{-s}$ for $s \geq 0$. For simplicity we use the same symbol $\langle \cdot, \cdot \rangle$ for the dual coupling $\langle \cdot, \cdot \rangle_{s,-s}$ of \mathcal{H}_s and \mathcal{H}_{-s} ($s \in \mathbf{R}$), and regard the operator $R_0(z)$ with Im $z \neq 0$ as the element of $\mathcal{L}(\mathcal{H},\mathcal{H}) \cap \mathcal{L}(\mathcal{H}_s,\mathcal{H}_{s+2})$ for Im $z \neq 0$.

DEFINITION. Define

$$W(z) = W(z, i) = (z - i)R_0(z)R_0(i)$$

and the operator $R_T(z)$ in \mathcal{H}

$$R_T(z) = R_0(z) - R_0(z)(1 + TW(z))^{-1}TR_0(z), \quad \text{Im } z \neq 0.$$
 (1)

To define the self-adjoint operator H_T for $T \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_{-2})$ we use the following theorem (cf. [3]).

THEOREM 1.1 ([3]). If $T \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_{-2})$ satisfies

$$T - T^* = TW(-i, i)T^* = T^*W(-i, i)T,$$
(2)

$$u - TR_0(i)u = 0, \quad u \in \mathcal{H}_0 \Rightarrow u = 0, \tag{3}$$

then the operator $R_T(z)$ above is well-defined and satisfies the resolvent equation, i. e., for ${\rm Im} z, {\rm Im} w \neq 0$

$$R_T(z) - R_T(w) = (z - w)R_T(z)R_T(w) = (z - w)R_T(w)R_T(z)$$
.

Furthermore there exists a unique self-adjoint operator H_T such that $R_T(z) = (H_T - z)^{-1}$.

ASSUMPTION (H_0) . H_0 has only absolutely continuous spectrum and satisfies

$$\sigma(H_0)(=\sigma_{ac}(H_0)) = \mathbf{R}. \tag{4}$$

ASSUMPTION (T). For $T \in \mathcal{L}(\mathcal{H}_2, \mathcal{H}_{-2})$ with $\mathcal{R} = \text{Range}T$ assume the conditions (2) and (3) and

(T1) For any $\lambda \in \mathbf{R}$ and for any $f, g \in \mathcal{R}$,

$$\lim_{\varepsilon \downarrow 0} \langle R_0(\lambda \pm i\varepsilon) R_0(-i) f, g \rangle,$$

exist, locally uniformly in R.

(T2) There exists a dense subset \mathcal{D} of \mathcal{H} such that for any $\lambda \in \mathbf{R}$ and for any $f \in \mathcal{R}$,

$$\lim_{\varepsilon \downarrow 0} \langle R_0(\lambda \pm i\varepsilon)u, f \rangle, \quad u \in \mathcal{D},$$

exist, locally uniformly in R.

In this paper we always suppose Assumptions (H_0) and (T). We are mainly interested in the existence of the embedded eigenvalues of H_T , the explicit form of the eigenvectors corresponding to the eigenvalues and the asymptotic completeness of the wave operators $W_{\pm}(H_0, H_T)$. The organization of this paper is as follows. In section 2 we investigate the necessary and sufficient condition for the existence of the eigenvalue of H_T . In section 3 we prove the asymptotic completeness of the wave operators $W_{\pm}(H_0, H_T)$. In section 4 we investigate the case where a perturbation has rank one and compare with their results ([4], [6]) and ours.

2. Embedded eigenvalues (Finite rank case).

In this section we consider the case $\dim \mathcal{R} = N$. By the condition (2) we can easily obtain the following lemma.

LEMMA 2.1. There exist a basis $[f_1, \dots, f_N]$ of \mathcal{R} and $\mu_j \neq 0 \in \mathbb{C}$ $(j = 1, \dots, N)$ such that

$$\langle R_0(i) f_j, R_0(i) f_k \rangle = \delta_{jk},$$

$$Tu = \sum_{j=1}^N \mu_j \langle u, f_j \rangle f_j, \quad u \in \mathcal{H}_2.$$

PROOF. Putting $T_1 := R_0(i)TR_0(-i)$ we multiply the equation (2) by $R_0(i)$ (from left) and $R_0(-i)$ (from right). Then we have

$$T_1 - T_1^* = -2iT_1T_1^* = -2iT_1^*T_1$$

Hence T_1 is a normal operator. Therefore T can be decomposed as above.

We fix a basis $[f_1, \dots, f_N]$ of \mathcal{R} as in Lemma 2.1. We use the following notations: NOTATIONS.

$$g_j = \bar{\mu}_j f_j, \quad v_{jk}(z) = \langle W(z) f_k, g_j \rangle \quad (1 \le j, k \le N),$$

$$V(z) = (v_{jk}(z))_{1 \le j, k \le N} (N \times N \text{matrix}), \quad \Delta(z) = \det(I + V(z)),$$

$$\Delta_{jk}(z) \text{ is a cofactor of } I + V(z).$$

Then we have

$$(I + V(z))^{-1} = \frac{1}{\Delta(z)} \begin{pmatrix} \Delta_{11}(z) & \Delta_{21}(z) & \cdots & \Delta_{N1}(z) \\ \Delta_{12}(z) & \Delta_{22}(z) & \cdots & \Delta_{N2}(z) \\ \vdots & \vdots & \ddots & \vdots \\ \Delta_{1N}(z) & \Delta_{2N}(z) & \cdots & \Delta_{NN}(z) \end{pmatrix}.$$
 (5)

LEMMA 2.2. For $z \in \rho(H_T) \cap \rho(H_0)$ and for $u \in \mathcal{H}$ we have

$$R_T(z)u = R_0(z)u - \Delta(z)^{-1} \sum_{i,k=1}^{N} \Delta_{jk}(z) \langle R_0(z)u, g_k \rangle R_0(z) f_j.$$
 (6)

Furthermore we have

$$R_{T}(z)R_{0}(i)f_{m} = R_{0}(z)R_{0}(i)f_{m} - \frac{1}{(z-i)}R_{0}(z)f_{m} + \frac{1}{(z-i)\Delta(z)}\sum_{j=1}^{N}\Delta_{jm}(z)R_{0}(z)fi,$$
(7)

$$\langle R_T(z)R_0(i)f_m, R_0(-i)g_n \rangle = \langle R_0(z)R_0(i)f_m, R_0(-i)g_n \rangle - (z-i)^{-2}v_{nm}(z) + \frac{\Delta_{mn}(z)}{(z-i)^2\Delta(z)}.$$
(8)

PROOF. For simplicity we write W(z) = W and $v_{jk}(z) = v_{jk}$. We calculate $(I + TW)^{-1}T_u$ $(u \in \mathcal{H}_2)$. Since $(I+TW)^{-1}T = T(I+TW)^{-1}$ (cf. [3]), we put $(I+TW)^{-1}T_u = \sum_{j=1}^N c_j f_j$ and determine c_j . Since $Tu = \sum_{j=1}^N c_j (I+TW) f_j$, we have

$$\begin{split} \sum_{l=1}^{N} \langle u, g_{l} \rangle f_{l} &= Tu = \sum_{j=1}^{N} c_{j} (I + TW) f_{j} = \sum_{j=1}^{N} c_{j} \bigg(f_{j} + \sum_{k=1}^{N} \langle W f_{j}, g_{k} \rangle f_{k} \bigg) \\ &= \sum_{j=1}^{N} c_{j} \bigg(f_{j} + \sum_{k=1}^{N} v_{kj} f_{k} \bigg). \end{split}$$

Comparing the coefficients of f_i of each hand side, we have

$$\begin{pmatrix} \langle u, g_1 \rangle \\ \langle u, g_2 \rangle \\ \vdots \\ \langle u, g_N \rangle \end{pmatrix} = \begin{pmatrix} I + \begin{pmatrix} v_{11} & v_{12} & \cdots & v_{1N} \\ v_{21} & v_{22} & \cdots & v_{2N} \\ \vdots & \vdots & \vdots & \vdots \\ v_{N1} & v_{N2} & \cdots & v_{NN} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ \vdots \\ c_N \end{pmatrix}.$$

By Crammer's formula we have

$$c_{j} = \begin{vmatrix} 1 + v_{11} & v_{12} & \cdots & \langle u, g_{1} \rangle & \cdots & v_{1N} \\ v_{21} & 1 + v_{22} & \cdots & \langle u, g_{2} \rangle & \cdots & v_{2N} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ v_{N1} & v_{N2} & \cdots & \langle u, g_{N} \rangle & \cdots & 1 + v_{NN} \end{vmatrix} / \Delta(z)$$

$$= \sum_{k=1}^{N} \Delta_{jk} \langle u, g_{k} \rangle / \Delta(z)$$

where we used (5). Hence we have (6).

By $\langle R_0(z)R_0(i)f_m, g_j\rangle = (z-i)^{-1}\langle W(z)f_m, g_j\rangle$ and the cofactor expansion of the matrix I+V(z) we obtain

$$\Delta(z)^{-1} \sum_{j,k=1}^{N} \Delta_{jk}(z) \langle R_0(z) R_0(i) f_m, g_k \rangle R_0(z) f_j$$

$$= \frac{1}{(z-i)\Delta(z)} \sum_{j,k=1}^{N} \Delta_{jk}(z) v_{mk} R_0(z) f_j.$$

We first calculate the sum with respect to k.

$$\sum_{k=1}^{N} \Delta_{jk} v_{km} = \sum_{k=1}^{N} \begin{vmatrix} 1 + v_{11} & \cdots & 0 & \cdots & v_{1N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ v_{k1} & \cdots & 1 & \cdots & v_{kN} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ v_{N1} & \cdots & 0 & \cdots & v_{NN} \end{vmatrix} v_{km}$$

$$= \begin{vmatrix} 1 + v_{11} & \cdots & v_{1m} & \cdots & v_{1N} \\ \vdots & \vdots & \ddots & \ddots & \ddots & \ddots \\ v_{N1} & \cdots & v_{Nm} & \cdots & v_{NN} \end{vmatrix}$$

$$= \begin{vmatrix} 1 + v_{11} & \cdots & v_{1m} & \cdots & v_{1N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ v_{m1} & \cdots & 1 + v_{mm} & \cdots & v_{mN} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ v_{N1} & \cdots & v_{Nm} & \cdots & v_{NN} \end{vmatrix} - \begin{vmatrix} 1 + v_{11} & \cdots & 0 & \cdots & v_{1N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ v_{m1} & \cdots & 1 + v_{mm} & \cdots & v_{mN} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ v_{N1} & \cdots & v_{Nm} & \cdots & v_{NN} \end{vmatrix} - \begin{vmatrix} 1 + v_{11} & \cdots & 0 & \cdots & v_{1N} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ v_{m1} & \cdots & 1 + v_{mm} & \cdots & v_{mN} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ v_{N1} & \cdots & v_{Nm} & \cdots & v_{NN} \end{vmatrix} = \delta_{im} \Delta(z) - \Delta_{im}(z).$$

Hence we obtain (7). Similarly we have (8).

To the end of this section we fix $\lambda \in \mathbf{R}$.

LEMMA 2.3. Let

$$c_{mn}(z) = \frac{(\lambda - z)\Delta_{mn}(z)}{(z - i)\Delta(z)}.$$

Then the following limit exists:

$$c_{mn}(\lambda + i0) := \lim_{\varepsilon \downarrow 0} c_{mn}(\lambda + i\varepsilon).$$

PROOF. Remark that by Assumption (T1) $\lim_{\varepsilon \downarrow 0} v_{nm}(\lambda + i\varepsilon)$ exists and that $E_0(\{\lambda\}) = 0$. Using (8), we have

$$\begin{split} \langle E_T(\{\lambda\})R_0(i)f_m,R_0(-i)g_n\rangle &= \lim_{\varepsilon \downarrow 0} (-i\varepsilon \langle R_T(\lambda+i\varepsilon)R_0(i)f_m,R_0(-i)g_n\rangle) \\ &= \lim_{\varepsilon \downarrow 0} \left(-i\varepsilon \langle R_0(\lambda+i\varepsilon)R_0(i)f_m,R_0(-i)g_n\rangle + i\varepsilon (\lambda+i\varepsilon-i)^{-2}v_{nm}(\lambda+i\varepsilon) \right. \\ &+ \frac{-i\varepsilon \Delta_{mn}(\lambda+i\varepsilon)}{(\lambda+i\varepsilon-i)^2\Delta(\lambda+i\varepsilon)} \right) \\ &= \langle E_0(\{\lambda\})R_0(i)f_m,R_0(-i)g_n\rangle + \lim_{\varepsilon \downarrow 0} \frac{-i\varepsilon \Delta_{mn}(\lambda+i\varepsilon)}{(\lambda+i\varepsilon-i)^2\Delta(\lambda+i\varepsilon)} \\ &= \lim_{\varepsilon \downarrow 0} \frac{-i\varepsilon \Delta_{mn}(\lambda+i\varepsilon)}{(\lambda+i\varepsilon-i)^2\Delta(\lambda+i\varepsilon)} = \frac{1}{\lambda-i}\lim_{\varepsilon \downarrow 0} c_{mn}(\lambda+i\varepsilon) \,. \end{split}$$

Hence $\lim_{\varepsilon \downarrow 0} c_{mn}(\lambda + i\varepsilon)$ exists.

We put

$$C(\lambda + i0) = (c_{mn}(\lambda + i0))_{1 \le m, n \le N},$$

$$h_m(z) = \sum_{j=1}^{N} c_{mj}(z) R_0(z) f_j \quad (\text{Im } z \ne 0, 1 \le m \le N).$$
(9)

THEOREM 2.4. $\lambda \in \sigma_{pp}(H_T)$ if and only if the following condition is satisfied:

$$\operatorname{Rank} C(\lambda + i0) \neq 0$$
.

If $\lambda \in \sigma_{pp}(H_T)$, then w- $\lim_{\varepsilon \downarrow 0} h_m(\lambda + i\varepsilon)$ $(1 \le m \le N)$ exists and satisfies

$$R_T(i)h_m(\lambda + i0) = \frac{1}{\lambda - i}h_m(\lambda + i0), \qquad (10)$$

and dim $E_T(\{\lambda\})\mathcal{H} = \operatorname{Rank}C(\lambda + i0)$.

REMARK. (i) $\Delta(\lambda+i0)=0$ follows from Rank $C(\lambda+i0)\neq 0$. In fact, if $\Delta(\lambda+i0)\neq 0$, then $\lim_{\varepsilon\downarrow 0}\varepsilon\Delta_{mn}(\lambda+i\varepsilon)/\Delta(\lambda+i\varepsilon)=0$ $(1\leq m,n\leq N)$.

(ii) The equality (10) is desirable, because by comparing with Theorem 4.1 we expect that there exists $f \neq 0 \in \mathbb{R}$ such that $H_T R_0(\lambda + i0) f = \lambda R_0(\lambda + i0) f$, i.e., $R_0(\lambda + i0) f$ is an eigenvector of H_T corresponding to λ .

To prove Theorem 2.4 we prove some lemmas.

LEMMA 2.5. For $f \in \mathcal{R}$ we have

(i)
$$\sup_{0 < \varepsilon < 1} \|R_0(\lambda + i\varepsilon)f\| < \infty$$

if and only if

$$\sup_{0<\varepsilon<1}\|R_0(i)R_0(\lambda+i\varepsilon)f\|<\infty\,,$$

(ii) $\lim_{\varepsilon \downarrow 0} \|R_0(\lambda + i\varepsilon) f\|$ exists. (The value may be infinity.)

PROOF. (i) By the resolvent equation we have

$$|z - i|^{2} ||R_{0}(z)R_{0}(i)f||^{2}$$

$$= \langle (R_{0}(z) - R_{0}(i))(R_{0}(\bar{z}) - R_{0}(-i))f, f \rangle$$

$$= ||R_{0}(z)f||^{2} - 2 \operatorname{Re}\langle R_{0}(z)R_{0}(i)f, f \rangle + ||R_{0}(i)f||^{2}.$$

Since the second term $\langle R_0(z)R_0(i)f, f\rangle$ converges as $\varepsilon \downarrow 0$ $(z = \lambda + i\varepsilon)$ by Assumption (T1), we obtain (i).

(ii) By the spectral representation of H_0 we see that $||R_0(\lambda + i\varepsilon)R_0(i)f||^2$ is monoton-uously increasing as $\varepsilon \downarrow 0$. Hence we have (ii).

LEMMA 2.6. For any $u \in D(H_T)$ and for any $f \in \mathcal{R}$ we have

$$\lim_{\varepsilon \downarrow 0} \varepsilon \langle u, R_0(\lambda + i\varepsilon) f \rangle = 0.$$

PROOF. It is sufficient to prove that $\lim_{\varepsilon \downarrow 0} \varepsilon \langle R_T(i)u, R_0(\lambda + i\varepsilon) f \rangle = 0$ for any $u \in \mathcal{H}$ and for any $f \in \mathcal{R}$. By (7) we can easily obtain

$$\langle R_T(i)u, R_0(\lambda + i\varepsilon)f \rangle$$

$$= \langle R_0(i)u, R_0(\lambda + i\varepsilon)f \rangle - \sum_{j=1}^N \langle R_0(i)u, g_j \rangle \langle R_0(i)f_j, R_0(\lambda + i\varepsilon)f \rangle$$

$$= \langle u, R_0(\lambda + i\varepsilon) R_0(-i) f \rangle - \sum_{j=1}^N \langle u, R_0(-i) g_j \rangle \langle R_0(i) f_j, R_0(\lambda + i\varepsilon) f \rangle.$$

Multiplying each side by ε , we have, by Assumption (T1) and $E_0(\{\lambda\}) = 0$,

$$\lim_{\varepsilon \downarrow 0} \varepsilon \langle R_T(i)u, R_0(\lambda + i\varepsilon) f \rangle = 0.$$

LEMMA 2.7. Assume that $u \in D(H_T)$ satisfies $H_T u = \lambda u$. If $\langle u, R_0(-i)f \rangle = 0$ for any $f \in \mathcal{R}$, then u = 0.

PROOF. Since u is an eigenvector of H_T and by (7), we can easily see that

$$\frac{1}{\lambda - i} u = R_T(i) u = R_0(i) u.$$

Hence we have $u \in D(H_0)$ and $H_0u = \lambda u$. By $\sigma_{pp}(H_0) = \emptyset$ we conclude u = 0.

LEMMA 2.8. For $h_m(z)$ in (9), we have

- (i) w- $\lim_{\varepsilon \downarrow 0} h_m(\lambda + i\varepsilon)$ $(1 \le m \le N)$ exists,
- (ii) $\langle R_T(i)h_m(\lambda+i0), u \rangle = \frac{1}{\lambda-i} \langle h_m(\lambda+i0), u \rangle$ for any $u \in \mathcal{H}$, (iii) dim $L.h.[h_1(\lambda+i0), \cdots, h_N(\lambda+i0)] = \operatorname{Rank} C(\lambda+i0)$.

PROOF. (i) By (7) and $E_0(\{\lambda\}) = 0$ for $u \in \mathcal{H}$ we have

$$\begin{split} \langle R_0(-i)E_T(\{\lambda\})R_0(i)f_m,u\rangle &= \lim_{\varepsilon\downarrow 0} (-i\varepsilon\langle R_0(-i)R_T(\lambda+i\varepsilon)R_0(i)f_m,u\rangle) \\ &= \lim_{\varepsilon\downarrow 0} \{-i\varepsilon\langle R_0(-i)R_0(\lambda+i\varepsilon)R_0(i)f_m,u\} \\ &+ i\varepsilon(\lambda+i\varepsilon-i)^{-1}\langle R_0(-i)R_0(\lambda+i\varepsilon)f_m,u\rangle + \langle R_0(-i)h_m(\lambda+i\varepsilon),u\rangle)\} \\ &= \lim_{\varepsilon\downarrow 0} \langle R_0(-i)h_m(\lambda+i\varepsilon),u\rangle \,. \end{split}$$

This means that w- $\lim_{\varepsilon \downarrow 0} R_0(-i)h_m(\lambda + i\varepsilon)$ exists and is equal to

$$R_0(-i)E_T(\{\lambda\})R_0(i)f_m$$
.

By Lemma 2.5 (i) $h_m(\lambda + i\varepsilon)$ is bounded. Since \mathcal{H}_2 is dense in \mathcal{H} , by the standard argument we conclude that w- $\lim_{\varepsilon \downarrow 0} h_m(\lambda + i\varepsilon) = E_T(\{\lambda\}) R_0(i) f_m$.

(ii) By (i) it is suffcient to prove that

$$R_T(i)h_m(z) = \frac{1}{z-i}h_m(z) - \frac{\lambda - z}{(z-i)^2}R_0(i)f_m, \quad (1 \le m \le N).$$

Using (7) and $\Delta(i) = 1$ we have

$$\begin{split} R_T(i)h_m(z) &= R_0(i) \sum_{j=1}^N c_{mj}(z) R_0(z) f_j - \sum_{k=1}^N \left\langle R_0(i) \sum_{j=1}^N c_{mj}(z) R_0(z) f_j, g_k \right\rangle R_0(i) f_k \\ &= \frac{1}{z-i} \sum_{j=1}^N c_{mj}(z) R_0(z) f_j - \frac{1}{z-i} \sum_{j=1}^N c_{mj}(z) R_0(i) f_j \\ &- \sum_{j=1}^N \sum_{k=1}^N c_{mj}(z) \langle R_0(i) R_0(z) f_j, g_k \rangle R_0(i) f_k \\ &= \frac{1}{z-i} h_m(z) \\ &- \frac{1}{z-i} \left(\sum_{j=1}^N c_{mj}(z) R_0(i) f_j + \sum_{k=1}^N \sum_{j=1}^N c_{mj}(z) \langle (z-i) R_0(i) R_0(z) f_j, g_k \rangle R_0(i) f_k \right). \end{split}$$

Calculating the sum of j of the third term in the right hand side, we see that

$$\sum_{j=1}^{N} c_{mj}(z) \langle W(z) f_j, g_k \rangle = \sum_{j=1}^{N} c_{mj}(z) v_{kj}(z) = \frac{\lambda - z}{z - i} \Delta_{mk} - c_{mk}(z).$$

Hence we obtain (ii).

(iii) For simplicity we write

$$h_m = h_m(\lambda + i0), \quad c_{mj} = c_{mj}(\lambda + i0), \quad C = C(\lambda + i0), \quad v_{mj} = v_{mj}(\lambda + i0).$$

Putting $A = \{(\alpha_1, \dots, \alpha_N) \in \mathbb{C}^N; \sum_{m=1}^N \alpha_m h_m = 0\}$, we calculate dim A. By (ii) and Lemma 2.7 we see that

$$\dim A = \dim \left\{ (\alpha_1, \dots, \alpha_N) \in \mathbf{C}^N; \sum_{m=1}^N \alpha_m \langle h_m, R_0(-i)g_k \rangle = 0, 1 \le k \le N \right\}.$$

By (ii) we can justify the following calculation: for $1 \le k \le N$

$$0 = \left\langle R_T(i) \sum_{m=1}^{N} \alpha_m h_m, R_0(-i) g_k \right\rangle = \frac{1}{\lambda - i} \sum_{m=1}^{N} \alpha_m \langle h_m, R_0(-i) g_k \rangle$$

$$= \frac{1}{\lambda - i} \sum_{m=1}^{N} \alpha_m \sum_{j=1}^{N} c_{mj} \langle R_0(\lambda + i0) f_j, R_0(-i) g_k \rangle$$

$$= \frac{1}{(\lambda - i)^2} \sum_{m=1}^{N} \alpha_m \sum_{j=1}^{N} c_{mj} v_{kj} = \frac{1}{(\lambda - i)^2} \sum_{m=1}^{N} \alpha_m c_{mk}.$$

Hence we have $\dim A = \dim \ker^{t} C$. Therefore we conclude that

$$\dim L.h.[h_1,\cdots,h_N] = \operatorname{Rank} C.$$

LEMMA 2.9. If $u \in D(H_T)$ satisfies $H_T u = \lambda u$, then $\langle R_0(i) f_m, u \rangle = \langle h_m, u \rangle$ for $1 \le m \le N$.

PROOF. Combining (7) and Lemma 2.6 we see that

$$\langle R_0(i)f_m, u \rangle = \lim_{\varepsilon \downarrow 0} (-i\varepsilon \langle R_T(\lambda + i\varepsilon)R_0(i)f_m, u \rangle) = \langle h_m, u \rangle. \qquad \Box$$

LEMMA 2.10. Let u_i satisfy $H_T u_i = \lambda u_i$ $(1 \le j \le N)$. Then

$$\dim L.h.[u_1, \cdots, u_N] \leq \operatorname{Rank} C.$$

PROOF. By Lemma 2.7 we see that

$$\left\{ (\alpha_1, \dots, \alpha_N) \in \mathbf{C}^N; \sum_{j=1}^N \alpha_j u_j = 0 \right\}$$

$$= \left\{ (\alpha_1, \dots, \alpha_N) \in \mathbf{C}^N; \sum_{j=1}^N \alpha_j \langle u_j, R_0(-i) f_m \rangle = 0, (1 \le m \le N) \right\}.$$

Hence we have

$$\dim L.h.[u_1,\cdots,u_N] = \dim L.h.[\mathbf{a}_1,\cdots,\mathbf{a}_N] = \operatorname{Rank}[\mathbf{a}_1,\cdots,\mathbf{a}_N]$$

where $\mathbf{a}_i = {}^t(\langle u_i, R_0(-i) f_1 \rangle, \cdots, \langle u_i, R_0(-i) f_N \rangle)$. By Lemma 2.9 (ii) we have

$$Rank[\mathbf{a}_1, \cdots, \mathbf{a}_N] = Rank[\mathbf{b}_1, \cdots, \mathbf{b}_N]$$

where $\mathbf{b}_j = {}^t(\langle u_j, h_1 \rangle, \cdots, \langle u_j, h_N \rangle)$. Since dim $L.h.[h_1, \cdots, h_N] = \mathrm{Rank}C$ by Lemma 2.8, we have proved this lemma.

PROOF OF THEOREM 2.4. We have already obtained (10) by Lemma 2.8 (ii). So we prove the rest of the statements. Let $\lambda \in \sigma_{pp}(H_T)$ and u an eigenvector of H_T corresponding to λ . We prove Rank $C \neq 0$. We assume that RankC = 0. Combining Lemma 2.8 (ii), (iii) and Lemma 2.9, we have $0 = \langle u, 0 \rangle = \langle u, h_m \rangle = \langle u, R_0(i) f_m \rangle$, $(1 \leq m \leq N)$. By Lemma 2.7 we have u = 0, which is a contradiction.

Conversely we assume Rank $C \neq 0$. Then there exists, at least, an (m, n) such that $c_{mn} \neq 0$. By (8) we see that

$$\langle E_T(\{\lambda\})R_0(i)f_m, R_0(-i)g_n \rangle = \lim_{\varepsilon \downarrow 0} (-i\varepsilon \langle R_T(\lambda + i\varepsilon)R_0(i)f_m, R_0(-i)g_n \rangle$$

= $c_{mn}(\lambda + i0)$.

Hence we obtain $E_T(\{\lambda\}) \neq 0$.

We prove that $\dim E_T(\{\lambda\}) = \operatorname{Rank} C$. In general, we remark that $N \geq \dim E_T(\{\lambda\})$. By Lemma 2.8 (ii) and (iii) $\dim E_T(\{\lambda\}) \geq \dim L.h.[h_1, \cdots, h_N]$ (= RankC). On the other hand, by Lemma 2.10 we have $\dim E_T(\{\lambda\})\mathcal{H} \leq \operatorname{Rank} C$. We have thus completed the proof of Theorem 2.4.

3. Asymptotic completeness of wave operators.

In this section we consider the asymptotic completeness of the wave operators $W_{\pm}(H_0, H_T)$. (We use the same notations as in section 2.) In general, the wave operators $W_{\pm}(H_1, H_2)$ for self-adjoint operators H_1 and H_2 are defined by

$$W_{\pm}(H_1, H_2) := s - \lim_{t \to \pm \infty} e^{itH_2} e^{itH_1} P_{ac}(H_1),$$

where $P_{ac}(H_1)$ is the projection for the absolutely continuous subspace of H_1 . If $W_{\pm}(H_1, H_2)$ exists, then we say that $W_{\pm}(H_1, H_2)$ are *complete* if and only if Range $W_{\pm} = P_{ac}(H_2)$. And we say that $W_{\pm}(H_1, H_2)$ is asymptotically complete if and only if $W_{\pm}(H_1, H_2)$ is complete and $\sigma_{sing}(H_2) = \emptyset$.

THEOREM 3.1. The wave operators $W_{\pm}(H_0, H_T)$ are asymptotically complete.

REMARK. As for the scattering matrix, it inverstigated in [8] for more general T. And see [4] in the case of the usual Laplacian $H_0 = -\Delta$ and RankT = 1.

Using the following theorem we can easily see that $W_{\pm}(H_0, H_T)$ are complete.

THEOREM 3.2 (Kuroda-Birman theorem, [5, Theorem XI.9]). Let H_1 and H_2 be self-adjoint operators such that $(H_1 - z)^{-1} - (H_2 - z)^{-1}$ is of trace class for some $z \in \rho(H_1) \cap \rho(H_2)$. Then $W_{\pm}(H_1, H_2)$ exist and are complete.

Since

$$R_T(i)u - R_0(i)u = \sum_{i=1}^N \langle R_0(i)u, g_j \rangle R_0(i) f_j, \quad u \in \mathcal{H},$$

we see that $W_{\pm}(H_0, H_T)$ exist and are complete. Hence, in order to show the asymptotic completeness of $W_{\pm}(H_0, H_T)$ it remains only to verify $\sigma_{sing}(H_T) = \emptyset$.

LEMMA 3.3. Put $\mathcal{N}_{\pm} := \{\lambda \in \mathbf{R}; \Delta(\lambda \pm i0) = 0\}$. Then $\mathcal{N}_{+} = \mathcal{N}_{-}$ and \mathcal{N}_{\pm} is discrete.

PROOF. We prove $\mathcal{N}_+ = N_-$. Putting

$$A = (\mu_j \delta_{jk})_{1 \le j,k \le N}, \quad B(z) = (w_{jk}(z))_{1 \le j,k \le N},$$

where $w_{jk}(z) = \langle W(z) f_k, f_j \rangle$, we see that V(z) = AB(z). Since $w_{jk}(\bar{z}) = \overline{w_{kj}(z)}$, we have

$$\det(I + V(\overline{z})) = \det(I + AB^*(z)) = \det((I + B(z)A)^*)$$

$$= \overline{\det(I + B(z)A)} = \overline{\det(A^{-1}(I + AB(z))A)} = \overline{\det(I + AB(z))} = \overline{\Delta(z)}.$$

Hence $\mathcal{N}_+ = \mathcal{N}_-$.

We put $\mathcal{N}:=\mathcal{N}_+=\mathcal{N}_-$ and prove that \mathcal{N}_\pm is discrete. Assume, for contradition, that \mathcal{N} is dense in some open interval (a,b). Since $\Delta(\lambda+i0)$ is continuous in (a,b) by Assumption (T) and (8), we see that $\Delta(\lambda+i0)=0$ in (a,b). Since $\Delta(z)$ is analytic in $\{z\in\mathbf{C}; \operatorname{Im} z>0\}$, by the reflection principle of the analytic function there exists some $\varepsilon>0$ such that $\Delta(z)$ has an analytic continuation $\tilde{\Delta}(z)$ in $(a,b)\times[-i\varepsilon,i\varepsilon]$. So by the identity theorem of the analytic function, we see that $\tilde{\Delta}(z)=0$ in $(a,b)\times[-i\varepsilon,i\varepsilon]$. This is a contradiction.

Follwing [5, section XIII], we prove that $\sigma_{sing}(H_T) = \emptyset$. By Weyl's theorem we see that $\sigma_{ess}(H_T) = \sigma_{ess}(H_0) = \mathbf{R}$. So it is sufficient to prove $\sigma_{sing}(H_T) \cap [0, \infty) = \emptyset$. We put $\mathcal{N} := \mathcal{N}_{\pm}$. If we prove $\sigma_{sing}(H_T) \subset \mathcal{N} \cup \{0\}$, then $\sigma_{sing}(H_T)$ is a countable set and hence $\sigma_{sing}(H_T) = \emptyset$. Since \mathcal{N} is discrete, we can take an open interval (a, b) such that $[a, b] \cap (\mathcal{N} \cup \{0\}) = \emptyset$. We remark that for $u \in \mathcal{D}\langle R_T(\lambda + i0)u, u \rangle - \langle R_0(\lambda + i0)u, u \rangle$ are continuous in (a, b) by Assumption (T2). By the continuity of $\langle R_T(\lambda + i0)u, u \rangle$ $(u \in \mathcal{D})$ and Stone's formula, i.e.,

$$\langle E_T((a,b))u,u\rangle = \frac{1}{2\pi i} \int_a^b (\langle R_T(\lambda+i0)u,u\rangle - \langle R_T(\lambda+i0)u,u\rangle)d\lambda,$$

we have

$$\langle E_T((a,b))u,u\rangle \in C_1(u)(b-a)+\langle E_0((a,b))u,u\rangle$$

where $C_1(u)$ is a constant dependent on u. Hence we have $E_T((a,b))\mathcal{D} \subset P_{ac}(H_T)\mathcal{H}$. Since $P_{ac}(H_T)\mathcal{H}$ is closed in \mathcal{H} and \mathcal{D} is dense in \mathcal{H} , $E_T((a,b))\mathcal{H} \subset P_{ac}(H_T)\mathcal{H}$.

4. Rank one perturbation.

We consider a rank one perturbation. We assume Assumption (H_0) , (T) and $\dim \mathcal{R} = 1$, and put $f := f_1$, $\mu := 1$ and $\Delta(z) = 1 + (z - i)\langle R_0(z)R_0(i)f, f \rangle$.

THEOREM 4.1. Let $\lambda \in \mathbf{R}$. $\lambda \in \sigma_{pp}(H_T)$ if and only if the following condition is satisfied:

$$C(\lambda+i0):=\lim_{\varepsilon\downarrow 0}\frac{i\varepsilon}{\Delta(\lambda+i\varepsilon)}\neq 0\,.$$

Under the condition above, we have

$$\lim_{\varepsilon \downarrow 0} \|R_0(\lambda + i\varepsilon)f\|^2 = \operatorname{Re}\left(\frac{1}{C(\lambda + i0)}\right) < \infty,$$

and $R_0(\lambda + i0) f$ is an eigenvector of H_T corresponding to λ .

PROOF. By Theorem 2.4 we have already obtained the first and the last statements. So we prove the second statement. We can take $u_n \in \mathcal{H}$ such that $u_n \to f$ $(n \to \infty)$ in \mathcal{H}_{-2} . We have, by the resolvent equation,

$$1 + (\lambda + i\varepsilon - i)\langle R_0(\lambda + i\varepsilon)R_0(i)u_n, u_n \rangle - (1 + (\lambda - i\varepsilon - i)\langle R_0(\lambda - i\varepsilon)R_0(i)u_n, u_n \rangle)$$

$$= \langle (R_0(\lambda + i\varepsilon) - R_0(i))u_n, u_n \rangle - \langle (R_0(\lambda - i\varepsilon) - R_0(i))u_n, u_n \rangle$$

$$= 2i\varepsilon\langle R_0(\lambda + i\varepsilon)R_0(\lambda - i\varepsilon)u_n, u_n \rangle = 2i\varepsilon\|R_0(\lambda + i\varepsilon)u_n\|^2.$$

Letting $n \to \infty$, we have

$$\Delta(\lambda + i\varepsilon) - \Delta(\lambda - i\varepsilon) = 2i\varepsilon ||R_0(\lambda + i\varepsilon) f||^2.$$

Taking account of $\Delta(\bar{z}) = \overline{\Delta(z)}$, we have

$$\operatorname{Re}\left(\frac{\Delta(\lambda+i\varepsilon)}{i\varepsilon}\right) = \|R_0(\lambda+i\varepsilon)f\|^2.$$

Hence we have

$$\lim_{\varepsilon \downarrow 0} \|R_0(\lambda + i\varepsilon)f\|^2 = \operatorname{Re}\left(\frac{1}{C(\lambda + i0)}\right).$$

The rest of the proof is to show Re $C(\lambda + i0) \neq 0$. Assume that Re $C(\lambda + i0) = 0$ and put $a(\varepsilon) := \text{Re}(i\varepsilon/\Delta(\lambda + i\varepsilon))$ ($\lim_{\varepsilon \downarrow 0} a(\varepsilon) = 0$). Then

$$a(\varepsilon) = \frac{i\varepsilon}{\Delta(\lambda + i\varepsilon)} + \frac{-i\varepsilon}{\Delta(\lambda - i\varepsilon)} = \frac{i\varepsilon(\Delta(\lambda - i\varepsilon) - \Delta(\lambda + i\varepsilon))}{|\Delta(\lambda + i\varepsilon)|^2}$$
$$= \frac{2\varepsilon^2 ||R_0(\lambda + i\varepsilon)f||^2}{|\Delta(\lambda + i\varepsilon)|^2}.$$

Remark that $\lim_{\varepsilon\downarrow 0}\|R_0(\lambda+i\varepsilon)f\|$ exists by Lemma 2.5 (ii). If we assume that $\lim_{\varepsilon\downarrow 0}\|R_0(\lambda+i\varepsilon)f\| > 0$, then we have $\lim_{\varepsilon\downarrow 0}2\varepsilon^2/|\Delta(\lambda+i\varepsilon)|^2 = 0$. This is a contradiction to $C(\lambda+i0)\neq 0$. Therefore $\lim_{\varepsilon\downarrow 0}\|R_0(\lambda+i\varepsilon)f\| = 0$. Now we consider $\|R_0(\lambda+i\varepsilon)R_0(i)f\|$. We see that $\lim_{\varepsilon\downarrow 0}\|R_0(\lambda+i\varepsilon)R_0(i)f\| = \lim_{\varepsilon\downarrow 0}\|R_0(\lambda+i\varepsilon)f\| = 0$. Hence $R_0(\lambda+i0)(R_0(i)f) = 0$, and so $R_0(i)f = 0$. We reach a contradiction to $\|R_0(i)f\| = 1$.

We quote two examples without the proofs (see [4, 6]).

EXAMPLE 4.1 (cf. [6]). Let $\mathcal{H} = L^2(\mathbf{R}^3)$ and $H_0 = -\Delta$ (the usual Laplacian) with the domain $D(H_0) = H^2(\mathbf{R}^3)$ (Sobolev space of order 2). And let $t(x_1) \in L^1(\mathbf{R})$, $f(x_1, x_2, x_3) =$ $t(x_1)\delta(x_2,x_3)$ and $T_u=\alpha\langle u,f\rangle f$. Then we can take \mathcal{D} in Assumption (T) as $L^{2,s}(\mathbf{R}^3)=$ ${u \in L^2(\mathbf{R}^3); (1+|x|)^s u(x) \in L^2} (s > 3/2).$

EXAMLE 4.2 (cf. [4]). Let \mathcal{H} and \mathcal{H}_0 be the same as above. And let $t(x_1, x_2) \in$ $L^1(\mathbf{R}^2)$, $f(x_1, x_2, x_3) = t(x_1, x_2)\delta(x_3)$ and $T_u = \alpha \langle u, f \rangle f$. Then we can take \mathcal{D} in Assumption (T) as $L^{2,s}(\mathbf{R}^3)$ (s > 3/2).

We give a brief comment of the relation between their results ([4], [6]) and ours. In [4, 6], under a (stronger) assumption that t is almost in some weighted L^1 -space, they showed the asymptotic completeness of the wave operators for H_0 and H_T . By using Theorem 3.1 we can show the asymptotic completeness under a (weaker) assumption that t is in L^1 .

ACKNOWLEDGEMENTS. The author thanks Professor S. T. Kuroda for the valuable suggestion to consider the range of T. It simplified Assumtion (T).

References

- [1] A. KISELEV and B. SIMON, Rank one perturbations with infinitesimal coupling, J. Funct. Anal. 130 (1995), 345-356.
- [2] S. T. KURODA and H. NAGATANI, Resolvent formulas of general type and its application to point interactions, Preprint Ser. 03-01, Dept. of Math., Gakushuin Univ. (2001).
- [3] S. T. KURODA and H. NAGATANI, \mathcal{H}_{-2} -construction and some examples, Oper. Theory Adv. Appl. 108 (1999), 99-105.
- [4] H. NAGATANI, Scattering theory for solvable models—surface interaction and line interaction (in preparation).
- [5] M. REED and B. SIMON, Methods of Medern Mathematical Physics IV, Analysis of Operators, Academic
- [6] S. SHIMADA, A solvable model for line interaction, RIMS kokyuroku **994** (1997), 168–183 (in Japanese).
- [7] K. WATANABE, On the self-adjoint operator defined by \mathcal{H}_{-2} -construction: finite rank and trace class perturbations, preprint ser. 12, Dept. of Math., Gakushuin Univ. (1998).
- [8] K. WATANABE, Smooth perturbations of the self-adjoint operators defined by the \mathcal{H}_{-2} -construction, Preprint ser. 02-01, Dept. of Math., Gakushuin Univ. (2001).

Present Address:

DEPARTMENT OF MATHEMATICS, GAKUSHUIN UNIVERSITY, Mejiro, Toshima-ku, Tokyo, 171–8588 Japan.

e-mail: kazuo.watanabe@gakushuin.ac.jp