Multiplicative SK Invariants for G-Manifolds with Boundary

Tamio HARA

Tokyo University of Science

(Communicated by R. Miyaoka)

0. Introduction

Let *G* be a finite abelian group. In this paper, a *G*-manifold means an unoriented compact smooth manifold (which may have boundary) together with a smooth action of *G*. Let *T* be a map for m-dimensional *G*-manifolds which takes its values in the ring **Z** of rational integers and is additive with respect to the disjoint union of *G*-manifolds. We call *T* a *G*-SK invariant if it is invariant under equivariant cuttings and pastings (Schneiden und Kleben in German) [5, 6, 9]. For example, χ^H given by $\chi^H(M) = \chi(M^H)$ for *G*-manifolds *M* is a *G*-SK invariant, where χ is the Euler characteristic, *H* is a subgroup of *G* and $M^H = \{x \in$ $M \mid hx = x$ for any $h \in H$ }. Further suppose that *T* is defined for all *G*-manifolds with various dimensions. Then it is said to be multiplicative if $T(M \times N) = T(M) \cdot T(N)$ for any *G*-manifolds *M* and *N*. For example, the above χ^H is multiplicative.

The main object of this paper is to characterize a form of multiplicative G-SK invariants. In [1, 3], the author has discussed such a question in case where G is a cyclic group of finite order.

In Section 1, we describe the irreducible *G*-modules and *G*-slice types. These notions are needed in order to proceed with our argument.

In Section 2, we first introduce an SK group $SK_*^G(\partial)$ resulting from equivariant cuttings and pastings of *G*-manifolds. In [4, 8], Koshikawa and the author have studied its SK_* module structure, where SK_* is an SK ring of closed manifolds (Proposition 2.2). A *G*-SK invariant *T* induces an additive homomorphism $SK_*^G(\partial) \rightarrow \mathbb{Z}$. For a slice type σ , let χ_{σ} be a *G*-SK invariant defined by $\chi_{\sigma}(M) = \chi(M_{\sigma})$, where M_{σ} is a *G*-submanifold of *M* with slice types containing σ (Definition 2.5). Then, using these χ_{σ} , we have a basis of a free \mathbb{Z} -module \mathcal{T}_*^G consisting of all *G*-SK invariants [2] (Proposition 2.8). Next we study a multiplicative *G*-SK invariant, which is considered to be a ring homomorphism $SK_*^G(\partial) \rightarrow \mathbb{Z}$. Such an invariant *T* is said to be of type $\langle G/H \rangle$ if *H* is the minimum element (with respect to the inclusion of subgroups) in the set consisting of those subgroups *K* of *G* such that $T(G/K) \neq 0$ (Definition 2.11). For example, χ^H is of type $\langle G/H \rangle$. It is seen that *T*

Received September 17, 2002; revised December 12, 2002

is determined by its values on the one-dimensional disk D^1 (with the trivial action) and *G*manifolds $G \times_H D(V_i)$, where $\{V_i\}$ is the complete set of non-trivial irreducible *H*-modules and $D(V_i)$ is the associated H-disk (Theorem 2.17). Finally we give a typical example of such invariants (Example 2.21).

1. Preliminaries

A *G*-module means a finite-dimensional real vector space together with a linear action of *G*. For a subgroup *H* of *G*, let C(H) consist of all subgroups *J* of *H* such that the quotient $H/J \cong \mathbb{Z}_d$, a cyclic group of order $d \geq 2$. Then, for $J \in C(H)$ a non-trivial irreducible *H*-module V(J, j) $(1 \leq j < \frac{1}{2}\phi(d) + 1)$, where ϕ is the Euler phi-function, is defined as follows.

(1) If d = 2, then the underlying space of V(J, 1) is the set **R** of real numbers with a generator of $H/J \cong \mathbb{Z}_2$ acting by multiplication by -1.

(2) If $d \ge 3$, then the underlying space of $V(J, j_k)$ is the set **C** of complex numbers with a generator of $H/J \cong \mathbb{Z}_d$ acting by multiplication by $\exp(2\pi i j_k/d)$, where $\{j_k\}$ is the complete set of integers such that $0 < j_1 < j_2 < \cdots < j_{\phi(d)} < d$ and each j_k is prime to d (cf. [9; Theorem 1.6.1]).

If *M* is a *G*-manifold and $x \in M$, then there is a G_x -module U_x which is equivariantly diffeomorphic to a G_x -neighbourhood of *x*. Here $G_x = \{g \in G \mid gx = x\}$ is the isotropy subgroup at *x*. The module U_x decomposes as $U_x = \mathbb{R}^p \oplus V_x$, where G_x acts trivially on \mathbb{R}^p and $V_x^{G_x} = \{0\}$. We refer to the pair $\sigma_x = [G_x; V_x]$ as a slice type of *x*. By a *G*-slice type in general, we mean a pair $\sigma = [H; V]$ of a subgroup *H* of *G* and an *H*-module *V* such that $V^H = \{0\}$. An *H*-module *V* is a product of non-trivial irreducible *H*-modules $V(J, j_k)$ with $J \in C(H)$. We denote by σ_0 the slice type $[\{1\}; \{0\}]$, where $\{1\}$ is the trivial group. Let St[H] be the set of all slice types $\sigma = [H; V]$ and $St(G) = \bigcup_{H \subseteq G} St[H]$ the set of all *G*-slice types. There is a total ordering on St(G) as follows. For any positive divisor *k* of |G|, the order of *G*, let L(k) be the set consisting of all subgroups *H* of *G* such that |H| = k. First order the elements in L(k) appropriately, then give an ordering < on the set $\bigcup_k L(k)$ of all subgroups of *G*, preserving inclusion of subgroups, that is, if $H \subseteq K$ then $H \leq K$. Let us fix a subgroup *H*, then such an ordering leads to the one on the set of all non-trivial irreducible *H*-modules: $V(J_1, j_1) < V(J_2, j_2)$ if $J_2 < J_1$ or $J_1 = J_2$ and $j_1 < j_2$. Finally we order the elements in St(G) as follows.

- (1) [H; V] < [K; W] if dim $(V) < \dim(W)$.
- (2) Suppose that $\dim(V) = \dim(W)$, then [H; V] < [K; W] if H < K.

(3) Suppose that dim(V) = dim(W) and H = K, then [H; V] < [H; W] if V < W in the ordering of *H*-modules induced lexicographically from the one of all non-trivial irreducible *H*-modules: $V_1 < V_2 < \cdots < V_{i_H}$ (cf. [9; Section 1.7]). Here, by the definition of the total ordering, there is an integer p_H such that the underlying space of each V_i ($1 \le i \le p_H$) is **R**, while the one of each V_i ($p_H < i \le t_H$) is **C**. We regard $p_H = 0$ if *H* is an odd order

group. A slice type $\sigma \in St[H]$ is therefore of the form $\sigma = \sigma^H(a(1), \dots, a(p_H); a(p_H + 1), \dots, a(t_H)) = [H; \prod_i V_i^{a(i)}]$ for some integers $a(i) (\geq 0)$.

DEFINITION 1.1. Let *W* be a *K*-module and *H* a subgroup of *K*. Then denote by $W_{(H)}$ an *H*-module *W* induced from $H \subseteq K$. Let $\{W_j\} : W_1 < \cdots < W_{p_K} < W_{p_K+1} < \cdots < W_{t_K}$ be the set of all non-trivial irreducible *K*-modules. If $\tau = [K; W] \in St[K]$, $W = \prod_j W_j^{b(j)}$, is a slice type, then we define a slice type $\tau_{(H)} \in St[H]$ by $\tau_{(H)} = [H; V]$, $V = \prod_j (W_j)_{(H)}^{b(j)}$, where the product is taken over all *j* such that $(W_j)_{(H)}$ are non-trivial *H*-modules. Since $(W_j)_{(\{1\})} = \mathbf{R}$ or \mathbf{R}^2 , a trivial *H*-module $(1 \le j \le t_K)$, we have that $\tau_{(\{1\})} = \sigma_0$. We call dim $(W) = \sum_{1 \le j \le p_K} b(j) + 2 \sum_{p_K < j \le t_K} b(j)$ the dimension of τ and denote it by $|\tau|$.

REMARK 1.2. (i) More precisely, let $W_j = V(L, m_k)$ for some $L \subset K$ with $K/L \cong \mathbb{Z}_a$ and an integer m_k such that $0 < m_k < a$, $(m_k, a) = 1$. Then $(W_j)_{(H)} = V(L \cap H, m')$ with 0 < m' < b, (m', b) = 1, where $H/(L \cap H) = LH/L \cong \mathbb{Z}_b$. The integer m' is determined by the action LH/L on $(W_j)_{(H)}$ induced from the one of K/L on W_j . We see that $(W_j)_{(H)}$ is the trivial H-module \mathbb{R} or \mathbb{R}^2 only if $H \subseteq L$. It follows that the difference $|\tau| - |\tau_{(H)}|$ is the sum of dim (W_j) (= 1 or 2) with $H \subseteq L$.

(ii) $W_{(H)} = \mathbf{R}^{|\tau| - |\tau_{(H)}|} \times V$ as an *H*-module and $W^H = (W_{(H)})^H = \mathbf{R}^{|\tau| - |\tau_{(H)}|} \times \{0\}$ has slice types $\tau_{(U)}$ ($H \subseteq U \subseteq K$) as a *K*-invariant subspace of *W*. Note that $\tau_{(U)} \leq \tau$ because $|\tau_{(U)}| \leq |\tau|$.

(iii) Let us write $\tau = \tau^K(b(1), \dots, b(p_K); b(p_K+1), \dots, b(t_K))$ for τ in Definition 1.1. Then we have $\tau_{(H)} = \sigma^H(a(1), \dots, a(p_H); a(p_H+1), \dots, a(t_H))$, where

$$a(i) = \sum_{j \in J'(i)} b(j) + 2 \sum_{j \in J''(i)} b(j) (1 \le i \le p_H),$$

$$a(i) = \sum_{j \in J(i)} b(j) (p_H < i \le t_H).$$
(1.2.1)

The sets J(i) = J(H, K; i), J'(i) and J''(i) are as follows: J(i) $(0 \le i \le t_H)$ are subsets of $J(K) = \{j \mid 1 \le j \le t_K\}$ given by

$$J(i) = J'(i) \cup J''(i) \text{ if } 1 \le i \le p_H, \text{ where}$$

$$J'(i) = \{j \mid (W_j)_{(H)} = V_i, 1 \le j \le p_K\} \text{ and } J''(i) = \{j \mid (W_j)_{(H)} = V_i^2, p_K < j \le t_K\}$$

$$J(i) = \{j \mid (W_j)_{(H)} = V_i, p_K < j \le t_K\} \text{ if } p_H < i \le t_H.$$

$$J(0) = J(K) \setminus \bigcup_{1 \le i \le t_H} J(i) = J'(0) \cup J''(0), \text{ where}$$

$$J'(0) = \{j \mid (W_j)_{(H)} = \mathbf{R}, 1 \le j \le p_K\} \text{ and } J''(0) = \{j \mid (W_j)_{(H)} = \mathbf{R}^2, p_K < j \le t_K\}.$$

The set J(K) is a disjoint union of these J(i) = J(H, K; i) $(0 \le i \le t_H)$.

(iv) It follows that

$$|\tau| - |\tau_{(H)}| = \sum_{j \in J'(0)} b(j) + 2 \sum_{j \in J''(0)} b(j).$$
(1.2.2)

2. Multiplicative G-SK invariants

Let N_i (i = 1, 2) be m-dimensional *G*-manifolds, *L* an *G*-invariant codimension zero submanifold of each boundary ∂N_i and $\varphi, \psi : L \to L$ *G*-equivariant diffeomorphisms. Pasting along *L*, we have *G*-manifolds $M_1 = N_1 \cup_{\varphi} N_2$ and $M_2 = N_1 \cup_{\psi} N_2$. Then M_1 and M_2 are said to be obtained from each other by an equivariant cutting and pasting (*G*-SK process). Let $\mathcal{M}_m^G(\partial)$ be the set of all *m*-dimensional *G*-manifolds with boundary, which is an abelian semigroup with respect to the disjoint union + and has a zero given by the empty set \emptyset .

DEFINITION 2.1 (cf. [6; Chapter 1]). *G*-manifolds M_1 and $M_2 \in \mathcal{M}_m^G(\partial)$ are said to be *G*-SK equivalent, in symbols $M_1 \sim M_2$, if there is a *G*-manifold $P \in \mathcal{M}_m^G(\partial)$ such that $M_1 + P$ and $M_2 + P$ can be obtained from each other by a finite sequence of *G*-SK processes.

The *G*-SK equivalence ~ is an equivalence relation on $\mathcal{M}_m^G(\partial)$ and the set $\mathcal{M}_m^G(\partial)/\sim$ of all equivalence classes is a cancellative abelian semigroup. Denote by [*M*] the equivalence class containing a *G*-manifold *M*. Let $SK_m^G(\partial)$ be the Grothendieck group of $\mathcal{M}_m^G(\partial)/\sim$. We then have a graded SK_* -module $SK_*^G(\partial) = \bigoplus_{m\geq 0} SK_m^G(\partial)$ given by the cartesian product of manifolds. Here SK_* is an SK ring of closed manifolds, which is a polynomial ring over **Z** with a generator α represented by the real projective plane **R** P^2 (cf. [9; Theorem 2.5.1 (i)]).

PROPOSITION 2.2 (cf. [4; Proposition 1.13]). $SK^G_*(\partial)$ is a free SK_* -module with basis $\mathcal{B} = \{[G \times_H D(\sigma)], [G \times_H D(\sigma \times \mathbf{R})] \mid \sigma = [H; V] \in St(G)\}$, where $D(\sigma) = D(V)$ is the associated H-disk.

Let $M \times N$ be the cartesian product of *G*-manifolds *M* and *N* (with straightening the angle). This product makes $SK_*^G(\partial)$ an SK_* -algebra.

For $\sigma = \sigma^H(a(1), \dots, a(t_H))$ and $\tau = \sigma^H(b(1), \dots, b(t_H)) \in St[H]$, we denote by $\sigma \times \tau$ the slice type $\sigma \times \tau = \sigma^H(a(1) + b(1), \dots, a(t_H) + b(t_H))$.

LEMMA 2.3 (cf. [2; Lemma 3.6]). A multiplicative relations for the basis elements in \mathcal{B} are given by the following.

(i) $[G \times_H D(\sigma)] \cdot [G \times_K D(\tau)] = a(H, K)[D^b][G \times_{H \cap K} D(\sigma_{(H \cap K)} \times \tau_{(H \cap K)})]$ for any $\sigma \in St[H]$ and $\tau \in St[K]$, where $a(H, K) = (|G||H \cap K|)/(|H||K|)$ and $b = |\sigma| - |\sigma_{(H \cap K)}| + |\tau| - |\tau_{(H \cap K)}|$.

(ii) $\widehat{x} \cdot y = x \cdot \widehat{y} = \widehat{x \cdot y}$ and $(\widehat{x}) = \alpha x$ for any elements x, y, where $\widehat{x} = [D^1] \cdot x$ in general.

(ii-i) In particular, $\alpha = [D^2]$ in $SK_2(\partial)$, where $SK_*(\partial) = SK_*^{\{1\}}(\partial)$ is an SK ring of manifolds with boundary.

DEFINITION 2.4 (cf. [5], [6; Chapter 1] and [9; Definition 5.2.5]). Let $T : \mathcal{M}_m^G(\partial) \to \mathbb{Z}$ be an additive map, that is, if $M = M_1 + M_2$ then $T(M) = T(M_1) + T(M_2)$. We call T a *G*-SK invariant if T is invariant under *G*-SK process, that is $T(N_1 \cup_{\varphi} N_2) = T(N_1 \cup_{\psi} N_2)$ for any *G*-diffeomorphisms $\varphi, \psi : L \to L$ in the beginning of this section. The map T induces an additive homomorphism $T : SK_*^G(\partial) \to \mathbb{Z}$ naturally. Denote by \mathcal{T}_m^G the set of all these *G*-SK invariants, which is a \mathbb{Z} -module under the natural addition.

From now on, T is simply called an invariant. We sometimes write T(M) instead of T(x) for x = [M] if no confusion can arise.

DEFINITION 2.5. Let *M* be a *G*-manifold and $\sigma \in St[H]$ with $H \subseteq G$. Then define $M_{\sigma} = \{x \in M_{(H)} | \sigma_x = \sigma\}$, where $M_{(H)} = M$ with the induced action of *H* and σ_x is the slice type of *x* in $M_{(H)}$.

REMARK 2.6. In other words, M_{σ} is the set consisting of those points $x \in M$ whose slice types σ_x satisfy that $(\sigma_x)_{(H)} = \sigma$. By the slice theorem, M_{σ} is a *G*-invariant submanifold of *M* with dim $(M_{\sigma}) = \dim(M) - |\sigma|$ and $\partial(M_{\sigma}) = (\partial M)_{\sigma}$ (cf. [7; Theorem 4.14]). In case $\sigma = \sigma_0$, we have $M_{\sigma_0} = M$. As an example, let $M = G \times_K D(\tau)$ for $\tau \in St[K]$. Then $M_{\sigma} = |G/K|D^{|\tau|-|\tau_{(H)}|}$ in $M_{(H)} = G \times_K D(\mathbb{R}^{|\tau|-|\tau_{(H)}|} \times V)$ if $H \subseteq K$ and $\sigma = \tau_{(H)} =$ [H; V], while $M_{\sigma} = \emptyset$ otherwise (cf. Definition 1.1 and Remark 1.2 (ii)). In general, a submanifold $M^H = (M_{(H)})^H$ decomposes as $M^H = \sum_{\sigma \in St[H]} M_{\sigma}$. For $\sigma \in St[H]$, we have $(M \times N)_{\sigma} = \sum_{(\sigma', \sigma'')} (M_{\sigma'} \times N_{\sigma''})$ summing over all pairs $(\sigma', \sigma'') \in St[H] \times St[H]$ such that $\sigma' \times \sigma'' = \sigma$. Hence the following product formula holds:

$$\chi((M \times N)_{\sigma}) = \sum_{(\sigma', \sigma'')} \chi(M_{\sigma'}) \cdot \chi(N_{\sigma''}).$$
(2.6.1)

EXAMPLE 2.7. A map χ_{σ} defined by $\chi_{\sigma}(M) = \chi(M_{\sigma})$ is an invariant because $M_1 \sim M_2$ implies $(M_1)_{\sigma} \sim (M_2)_{\sigma}$ naturally. Note that $\chi_{\sigma_0} = \chi$. Let $M = G \times_K D(\tau)$ for $\tau \in St[K]$. Then $\chi_{\sigma}(M) = |G/K|$ if $H \subseteq K$ and $\sigma = \tau_{(H)}$, while $\chi_{\sigma}(M) = 0$ otherwise. Furthermore, for a subgroup H of G, the map χ^H defined by $\chi^H(M) = \chi(M^H)$ is also an invariant and the equality $\chi^H = \sum_{\sigma \in St[H]} \chi_{\sigma}$ holds in \mathcal{T}_m^G (cf. Remark 2.6).

Let *H* be a subgroup of *G*. Then, by using the total ordering on the set of all subgroups of *G* in Section 1, define inductively integers $n_H(K)$ for subgroups *K* with $H \subseteq K \subseteq G$ as follows:

$$n_H(H) = 1$$
, $n_H(K) = |K/H| - \sum_{H \subseteq L \subset K} n_H(L)$.

Here $L \subset K$ means that *L* is a proper subgroup of *K*. If $H = \{1\}$, then the integers $n_{\{1\}}(K)$ coincide with those n_i in [7; Definition 5.3]. For $\sigma \in St[H]$ and a subgroup *K* with $H \subset K \subseteq G$, let $S_K(\sigma)$ be the set consisting of those slice types $\tau \in St[K]$ such that $\tau_{(H)} = \sigma$.

PROPOSITION 2.8 (cf. [2; Theorem 2.6 and Remark 2.8]). For $\sigma \in St[H]$, define an invariant θ_{σ} by

$$\theta_{\sigma} = |G/H|^{-1} \left\{ \chi_{\sigma} + \sum_{H \subset K \subseteq G} n_H(K) \left(\sum_{\tau \in \mathcal{S}_K(\sigma)} \chi_{\tau} \right) \right\}.$$

Then we have the following.

(i) Let $\tau \in St[U]$ for a subgroup U of G. Then $\theta_{\sigma}(G \times_U D(\tau)) = 1$ if $U \supseteq H$ and $\sigma = \tau_{(H)}$, while $\theta_{\sigma}(G \times_U D(\tau)) = 0$ otherwise.

(ii) The set $\{\theta_{\sigma} \mid \sigma \in St(G), |\sigma| \leq m\}$ provides a basis for \mathcal{T}_m^G as a free **Z**-module.

DEFINITION 2.9. Assume that an invariant *T* is defined for all *G*-manifolds. Then it is said to be multiplicative if $T(M \times N) = T(M) \cdot T(N)$ for any *G*-manifolds *M* and *N*. The map *T* induces a ring homomorphism $T : SK^G_*(\partial) \to \mathbb{Z}$.

Let *pt* be the one-point set. We see that T(pt) = 0 or 1 because $T(pt)^2 = T(pt)$. If T(pt) = 0, then *T* is trivial, that is $T \equiv 0$. From now on, we treat a non-trivial invariant *T*, which therefore takes the value T(pt) = 1.

The remainder of this paper are devoted to studying of a form of (non-trivial) multiplicative invariants.

In case of the trivial group $G = \{1\}$, we have the following.

PROPOSITION 2.10 (cf. [1; Proposition 3.4]). A multiplicative invariant $T_0: SK_*(\partial) \rightarrow \mathbb{Z}$ is uniquely determined by the value $a = T_0(D^1)$ and has a form $T_0(M) = a^{\dim(M)}\chi(M)$. Here, if a = 0, then a^0 is regarded as 1.

We next consider the case where $G \neq \{1\}$. Given a multiplicative invariant T, let C_T be the set consisting of all subgroups K of G such that $T(G/K) \neq 0$. Note that $C_T \neq \emptyset$ because T(pt) = T(G/G) = 1 and $G \in C_T$. It is seen that C_T has the minimum element $H = \bigcap_{K \in C_T} K$ (with respect to the inclusion \subseteq of subgroups). Indeed there is a non-zero integer k such that $k \cdot G/H = \prod_{K \in C_T} G/K$ by Lemma 2.3 (i). This implies that $k \cdot T(G/H) = \prod_{K \in C_T} T(G/K)$ and hence $T(G/H) \neq 0$. In other words, such an H is the subgroup which satisfies the condition that $T(G/H) \neq 0$ and T(G/U) = 0 for any proper subgroups U of H.

DEFINITION 2.11. The above T is said to be of type $\langle G/H \rangle$.

Note that $G/H = G \times_H D(\sigma^H(\mathbf{0}))$, where $\sigma^H(\mathbf{0}) = \sigma^H(0, \dots, 0; 0, \dots, 0)$.

PROPOSITION 2.12. If T is of type $\langle G \rangle$, then $T(M) = T_0(M_0)$ for any G-manifold M, where T_0 is the invariant in Proposition 2.10 given by $a = T(D^1)$ and $M_0 = M$ with ignoring group action.

PROOF. Since $M \times G \cong M_0 \times G$ as *G*-manifolds, we have $T(M) = T(M_0) = T_0(M_0)$ because $T(G) \neq 0$. q.e.d.

We next study an invariant of type $\langle G/H \rangle$ with $H \neq \{1\}$.

LEMMA 2.13. If T is of type $\langle G/H \rangle$, then

- (i) $T(G \times_U D(\sigma)) = 0$ for any slice type $\sigma \in St[U]$ with $U \not\supseteq H$.
- (ii) T(G/K) = |G/K| for any $K \supseteq H$. In particular, $\beta = T(G/H) = |G/H|$.

PROOF. For subgroups P, Q of G and $\sigma \in St[P]$, we have

$$T(G \times_P D(\sigma)) \cdot T(G/Q) = a(P, Q) \cdot T(D^{\nu}) \cdot T(G \times_{P \cap Q} D(\sigma_{(P \cap Q)}))$$
(2.13.1)

by Lemma 2.3 (i), where $b = |\sigma| - |\sigma_{(P \cap Q)}|$. First, set P = Q = U for a proper subgroup U of H, then

$$T(G \times_U D(\sigma)) \cdot T(G/U) = |G/U| \cdot T(D^0) \cdot T(G \times_U D(\sigma)).$$

Since T(G/U) = 0 by definition and $T(D^0) = 1$, we have $T(G \times_U D(\sigma)) = 0$. Next, set P = U for $U \not\supseteq H$ and Q = H in (2.13.1). The right-hand side vanishes because $U \cap H$ is a proper subgroup of H, while $T(G/H) = \beta \neq 0$ in the left-hand side. Thus $T(G \times_U D(\sigma)) = 0$ and (i) is obtained. To show (ii), set P = K, $\sigma = \sigma^K(0)$ for $K \supseteq H$ and Q = H in (2.13.1), then $T(G/K) \cdot \beta = a(K, H) \cdot \beta$. Hence T(G/K) = a(K, H) = |G/K|. q.e.d.

LEMMA 2.14. For subgroups H and K with $H \subset K \subseteq G$, let $J(K) = \bigcup_i J(i)$ and J(i) = J(H, K; i) be the partition in Remark 1.2 (iii). Let $\sigma_j = \sigma^K(\mathbf{e}_j)$, where \mathbf{e}_j has components zero except for its *j*-th component, which is equal to $1 \ (1 \le j \le t_K)$. Then we have

(i)

$$(\sigma_j)_{(H)} = \begin{cases} \sigma^H(\mathbf{0}) & \text{if } j \in J(0), \\ \sigma^H(\mathbf{e}_i) & \text{if } j \in J(i) \ (1 \le i \le p_H, 1 \le j \le p_K \text{ or } i > p_H, j > p_K), \\ \sigma^H(2\mathbf{e}_i) & \text{if } j \in J(i) \ (1 \le i \le p_H, j > p_K). \end{cases}$$

Further, if T is an invariant of type $\langle G/H \rangle$ *, then* (ii)

$$T(G \times_{K} D(\sigma_{j})) = \begin{cases} |G/K| \cdot a & \text{if } j \in J(0) \ (1 \le j \le p_{K}) \ , \\ |G/K| \cdot a^{2} & \text{if } j \in J(0) \ (j > p_{K}) \ , \\ |G/K| \cdot \gamma_{i} & \text{if } j \in J(i) \ (1 \le i \le p_{H}, 1 \le j \le p_{K} \text{ or } i > p_{H}, j > p_{K}) \ , \\ |G/K| \cdot \gamma_{i}^{2} & \text{if } j \in J(i) \ (1 \le i \le p_{H}, j > p_{K}) \ , \end{cases}$$

where $a = T(D^1)$ and γ_i is the integer given by $\gamma_i = |G/H|^{-1} \cdot T(G \times_H D(\sigma^H(\mathbf{e}_i)))$ $(1 \le i \le t_H).$

Note that $G \times_K D(\sigma_j) = G \times_K D(W_j)$, where $\{W_j\}$ is the set of non-trivial irreducible *K*-modules.

PROOF OF THE LEMMA. Write $(\sigma_j)_{(H)}$ as $(\sigma_j)_{(H)} = \sigma^H(a(1), \dots, a(p_H); a(p_H + 1), \dots, a(t_H))$. Suppose that $j \in J(i) = J'(i) \cup J''(i)$ for some $i \ (1 \le i \le p_H)$. Then

a(i) = 1 (resp. a(i) = 2) if $j \in J'(i)$ (resp. $j \in J''(i)$) and a(k) = 0 if $k \neq i$ by the first equality in (1.2.1). Hence $(\sigma_j)_{(H)} = \sigma^H(\mathbf{e}_i)$ if $1 \leq j \leq p_K$ or $\sigma^H(2\mathbf{e}_i)$ if $j > p_K$. Similarly $(\sigma_j)_{(H)} = \sigma^H(\mathbf{e}_i)$ if $i > p_H$, $j > p_K$. Finally $(\sigma_j)_{(H)} = \sigma^H(\mathbf{0})$ if and only if $j \in J(0)$. Thus (i) follows. Next we prove (ii). Put $\lambda_j = T(G \times_K D(\sigma_j))$ and $\xi_i = T(G \times_H D(\sigma^H(\mathbf{e}_i)))$ for convenience. We have $\lambda_j \cdot T(G/H) = |G/K| a^b \cdot T(G \times_H D((\sigma_j)_{(H)}))$ by (2.13.1), where $b = |\sigma_j| - |(\sigma_j)_{(H)}|$. This implies that

$$\lambda_j = |G/K| |G/H|^{-1} a^b \cdot T(G \times_H D((\sigma_j)_{(H)}))$$
(2.14.1)

because T(G/H) = |G/H| by Lemma 2.13 (ii). Suppose first that $j \in J(i)$ with $i \ge 1$. In this case, we see that $|\sigma_j| = |(\sigma_j)_{(H)}|$ and b = 0 by (i). Since T is non-trivial, we note that $a^0 = T(D^0) = 1$ even if a = 0. Hence

$$\lambda_{j} = \begin{cases} |G/K| |G/H|^{-1} \cdot \xi_{i} \text{ if } j \in J(i) \ (1 \le i \le p_{H}, 1 \le j \le p_{K} \text{ or } i > p_{H}, j > p_{K}), \\ |G/K| |G/H|^{-1} \cdot T(G \times_{H} D(\sigma^{H}(2\mathbf{e}_{i}))) \text{ if } j \in J(i) \ (1 \le i \le p_{H}, j > p_{K}). \end{cases}$$

$$(2.14.2)$$

In the second case, since $\xi_i^2 = |G/H| \cdot T(G \times_H D(\sigma^H(2\mathbf{e}_i)))$ by Lemma 2.3 (i), we have $\lambda_j = |G/K||G/H|^{-2} \cdot \xi_i^2$. Now consider the case where K = G for the first equality in (2.14.2) and denote by γ_i the integer $T(D(\sigma^G(\mathbf{e}_j)))$ if $1 \le i \le p_H$ (and some $j \in J(H, G; i)$ with $1 \le j \le p_G$) or $i > p_H$ (and some $j \in J(H, G; i)$ with $j > p_G$). Then $\gamma_i = |G/H|^{-1} \cdot \xi_i$ $(1 \le i \le t_H)$. Taking this in (2.14.2), we have $\lambda_j = |G/K| \cdot \gamma_i$ in the first case or $|G/K| \cdot \gamma_i^2$ in the second one. Next, in case $j \in J(0)$, it is seen that $\lambda_j = |G/K|a^b$ by (2.14.1) because $(\sigma_j)_{(H)} = \sigma^H(\mathbf{0})$ and $T(G \times_H D(\sigma^H(\mathbf{0}))) = |G/H|$ by Lemma 2.13 (ii). Since $b = |\sigma_j| = 1$ if $1 \le j \le p_K$ or 2 if $j > p_K$, the result follows.

DEFINITION 2.15. The above *T* is said to take a class of integers $\mathcal{V} = \{a\} \cup \{\gamma_i \mid 1 \le i \le t_H\}$. The integer *a* or γ_i is given by $a = T(D^1)$ or $\gamma_i = |G/H|^{-1} \cdot T(G \times_H D(V_i))$ respectively, where $\{V_i \mid 1 \le i \le t_H\}$ is the set of non-trivial irreducible *H*-modules.

LEMMA 2.16. Let T be the invariant in the above lemma. Then we have

$$T(G \times_K D(\sigma)) = |G/K| \cdot a^{|\sigma| - |\sigma_{(H)}|} \gamma_{\sigma_{(H)}}$$
(2.16.1)

for any slice type $\sigma \in St[K]$ with $K \supseteq H$, where $\gamma_{\sigma(H)} = \prod_i \gamma_i^{a(i)}$ if $\sigma(H) = \sigma^H(a(1), \dots, a(p_H); a(p_H+1), \dots, a(t_H))$. We regard a^0 (or γ_i^0) as 1 if a = 0 (or $\gamma_i = 0$) respectively.

PROOF. Write σ as $\sigma = \sigma^K(b(1), \dots, b(p_K); b(p_K+1), \dots, b(t_K))$ and set $\sigma(j) = \sigma^K(0, \dots, b(j), 0, \dots, 0)$ $(1 \le j \le t_K)$. Since $\sigma = \prod_j \sigma(j)$ and $\sigma(j) = \sigma^K(\mathbf{e}_j)^{b(j)}$, we have $|G/K|^{t_K-1}[G \times_K D(\sigma)] = \prod_j [G \times_K D(\sigma(j))]$ and $|G/K|^{b(j)-1}[G \times_K D(\sigma(j))] = [G \times_K D(\sigma^K(\mathbf{e}_j))]^{b(j)}$ by using Lemma 2.3 (i) inductively. Then it follows that

$$T(G \times_K D(\sigma(j))) = |G/K|^{1-b(j)} \cdot \lambda_j^{b(j)} \quad (1 \le j \le t_K),$$

where $\lambda_j = T(G \times_K D(\sigma^K(\mathbf{e}_j)))$. Further, we have

$$T(G \times_{K} D(\sigma)) = |G/K|^{1-t_{K}} \prod_{j} T(G \times_{K} D(\sigma(j)))$$

= $|G/K|^{1-t_{K}} |G/K|^{t_{K}-l(\sigma)} \prod_{j} \lambda_{j}^{b(j)}$
= $|G/K|^{1-l(\sigma)} \prod_{i} L_{i}$, (2.16.2)

where $l(\sigma) = \sum_j b(j)$ and $L_i = \prod_{j \in J(i)} \lambda_j^{b(j)}$, J(i) = J(H, K; i) $(0 \le i \le t_H)$ as in Lemma 2.14. It follows from Remark 1.2 (iii) and Lemma 2.14 (ii) that $L_i = |G/K|^{l_0} a^{s_0}$ if i = 0 or $|G/K|^{l_i} \gamma^{s_i}$ if $1 \le i \le t_H$, where $l_i = \sum_{j \in J(i)} b(j)$ and

$$s_{i} = \begin{cases} \sum_{j \in J'(0)} b(j) + 2 \sum_{j \in J''(0)} b(j) = |\sigma| - |\sigma_{(H)}| \text{ if } i = 0\\ \sum_{j \in J'(i)} b(j) + 2 \sum_{j \in J''(i)} b(j) = a(i) \text{ if } 1 \le i \le p_{H},\\ \sum_{j \in J(i)} b(j) = a(i) \text{ if } p_{H} < i \le t_{H}. \end{cases}$$

Note that $\sum_{0 \le i \le t_H} l_i = l(\sigma)$. Hence we obtain the desired formula by substituting L_i in (2.16.2). Let $\sigma = \sigma^H(\mathbf{0})$ in (2.16.1). Then $T(G/H) = |G/H| \cdot a^0 \gamma_{\sigma^H(\mathbf{0})}$ which is equal to |G/H| by Lemma 2.13 (ii). Hence $a^0 \gamma_1^0 \cdots \gamma_{t_H}^0 = 1$ and this means that a^0 or each γ_i^0 must be regarded as 1 even if a or $\gamma_i = 0$ respectively.

THEOREM 2.17. Let T be a (non-trivial) multiplicative invariant of type $\langle G/H \rangle$ with $H \neq \{1\}$. Then it is uniquely determined by a class of integers $\mathcal{V} = \{a\} \cup \{\gamma_i \mid 1 \leq i \leq t_H\}$ in Definition 2.15 and has a form

$$T(M) = \sum_{\sigma \in St[H]} a^{\dim(M_{\sigma})} \gamma_{\sigma} \cdot \chi(M_{\sigma})$$
(2.17.1)

for any G-manifold M. If a or $\gamma_i = 0$ for some i, then we regard a^0 or γ_i^0 as 1 respectively.

PROOF. Since $\gamma_{\sigma'}\gamma_{\sigma''} = \gamma_{\sigma}$ for any σ' and $\sigma'' \in St[H]$ such that $\sigma' \times \sigma'' = \sigma$, the above *T* is multiplicative by making use of the product formula (2.6.1). We see that *T* takes integers $\mathcal{V} = \{a, \gamma_i\}$. In fact, let $\sigma \in St[H]$, then $\chi_{\sigma}(D^1) = 1$ if $\sigma = \sigma^H(\mathbf{0})$ or zero otherwise. Hence $T(D^1) = a^1\gamma_{\sigma^s(\mathbf{0})} \cdot 1 = a$. Further $\chi_{\sigma}(G \times_H D(\sigma^H(\mathbf{e}_i))) = |G/H|$ if $\sigma = \sigma^H(\mathbf{e}_i)$ or zero otherwise $(1 \le i \le t_H)$, which implies that $T(G \times_H D(\sigma^H(\mathbf{e}_i))) =$ $a^0\gamma_{\sigma^H(\mathbf{e}_i)} \cdot |G/H| = \gamma_i \cdot |G/H|$. Therefore, *T* takes integers in \mathcal{V} and is determined by the class \mathcal{V} . On the other hand, $T(G/H) = a^0\gamma_{\sigma^H(\mathbf{0})} \cdot |G/H| = |G/H|$ and T(G/U) = 0 for any proper subgroup *U* of *H*. This verifies that *T* is of type $\langle G/H \rangle$ (cf. Definition 2.11).

Let *I* be an invariant which is not necessarily multiplicative. To proceed with our proof, for an integer $j \ge 0$, consider an invariant $I_{(j)}$ defined by $I_{(j)}(M) = I(M)$ if $j = \dim(M)$ or zero if $j \ne \dim(M)$. Now let *T* be any multiplicative invariant of type $\langle G/H \rangle$, which takes integers $\mathcal{V} = \{a, \gamma_i\}$. We show that *T* has a form in (2.17.1), or equivalently has a form

$$T = \sum_{k, \sigma} a^{k} \gamma_{\sigma} \chi_{\sigma, (k+|\sigma|)}, \qquad (2.17.2)$$

where $\chi_{\sigma,(j)} = (\chi_{\sigma})_{(j)}$ in the sense mentioned above and the sum is taken over all slice types $\sigma \in \text{St}[H]$ and the integer $k \geq 0$ (Remark. Note that $\chi_{\sigma,(j)}$ may be defined for $j \geq |\sigma|$ because $M_{\sigma} = \emptyset$ if dim $(M) < |\sigma|$. Thus, j is written as $j = k + |\sigma|$ for some $k \geq 0$. If dim $(M) = k + |\sigma|$, then $k = \dim(M) - |\sigma| = \dim(M_{\sigma})$ as in (2.17.1) (cf. Remark 2.6).) Now let us consider an invariant $\theta_{\sigma,(j)} = (\theta_{\sigma})_{(j)}$ for θ_{σ} in Proposition 2.8. Since $T \in \mathcal{T}_*^G = \sum_m \mathcal{T}_m^G$, we can write T as $T = \sum_{k,\sigma} a_{\sigma,(k+|\sigma|)} \theta_{\sigma,(k+|\sigma|)}$ summing over all $\sigma \in \text{St}(G)$ and $k \geq 0$. To begin with, we show that $a_{\sigma,(k+|\sigma|)} = 0$ for each $\sigma \in St[U]$ with $U \not\supseteq H$ and $k \geq 0$. Recall the total ordering < on St(G) and rename the slice types $\sigma \in \bigcup_{U \not\supseteq H} St[U]$ as $\rho_1 = \sigma_0 < \rho_2 < \rho_3 < \cdots$. First it follows that $T(D^k \times G) = a_{\sigma_0,(k)} \cdot \theta_{\sigma_0}(D^k \times G) = a_{\sigma_0,(k)} \cdot |G|^{-1}\chi(D^k \times G) = a_{\sigma_0,(k)}$ because $\theta_{\sigma_0} = |G|^{-1}(\chi + \eta)$ by definition, where η is a sum of χ_{τ} with $\tau \neq \sigma_0$. Since T is of type $\langle G/H \rangle$ with $H \neq \{1\}$, we have T(G) = 0 and $T(D^k \times G) = T(D^k) \cdot T(G) = 0$. Thus $a_{\sigma_0,(k)} = 0$ for each $k \geq 0$. Let take $M = D^k \times G \times_U D(\rho_t)$. Then $T(M) = T(D^k) \cdot T(G \times_U D(\rho_t)) = 0$ by Lemma 2.13 (i), while

$$T(M) = \sum_{L \subseteq U} a_{(\rho_t)(L), (k+|\rho_t|)} \theta_{(\rho_t)(L), (k+|\rho_t|)}(M) = \sum_{L \subseteq U} a_{(\rho_t)(L), (k+|\rho_t|)}$$

because $\theta_{(\rho_t)_{(L)},(k+|\rho_t|)}(M) = \theta_{(\rho_t)_{(L)}}(G \times_U D(\rho_t)) = 1$ by Proposition 2.8 (i). If *L* is a proper subgroup of *U*, then $(\rho_t)_{(L)} = \rho_{j_L}$ for some $j_L < t$. Hence $a_{(\rho_t)_{(L)},(k+|\rho_t|)}$ vanishes by the inductive assumption and so does $a_{\rho_t,(k+|\rho_t|)}$. Therefore *T* is written as

$$T = \sum_{\sigma \in St[H], \ k \ge 0} P_{\sigma,(k+|\sigma|)} \chi_{\sigma,(k+|\sigma|)} + \sum_{H \subset K \subseteq G} \sum_{\tau \in St[K], \ k \ge 0} Q_{\tau,(k+|\tau|)} \chi_{\tau,(k+|\tau|)}$$
(2.17.3)

for some rational numbers $P_{\sigma,(l)}$ and $Q_{\tau,(l)}$ (See the expression of θ_{σ} in Proposition 2.8.). Next we prove that

$$P_{\sigma,(k+|\sigma|)} = a^k \gamma_\sigma \tag{2.17.4}$$

for any $\sigma \in St[H]$ and $k \geq 0$. To show this, consider the value T(M) for $M = D^k \times G \times_H D(\sigma)$. Then we have that $T(M) = P_{\sigma,(k+|\sigma|)} \cdot \chi_{\sigma}(M) = P_{\sigma,(k+|\sigma|)} \cdot |G/H|$ by (2.17.3), while $T(M) = T(D^k) \cdot T(G \times_H D(\sigma)) = a^k \cdot |G/H| a^0 \gamma_{\sigma}$ by (2.16.1). Therefore we obtain (2.17.4). We recall that a^0 (or γ_i^0) is regarded as 1 even if a = 0 (or $\gamma_i = 0$) respectively as remarked in the proof of Lemma 2.16. To complete the proof, we must show that $Q_{\tau,(k+|\tau|)} = 0$. Let

us fix an integer $k \ge 0$. Then, for $M = D^k \times G \times_K D(\tau)$ ($\tau \in St[K], H \subset K \subseteq G$), we have that T(M) = x + y by (2.17.3) and Remark 2.6, where

$$\begin{cases} x = P_{\tau_{(H)},(k+|\tau|)} \cdot \chi_{\tau_{(H)},(k+|\tau|)}(M) \\ y = \sum_{H \subset U \subseteq K} Q_{\tau_{(U)},(k+|\tau|)} \cdot \chi_{\tau_{(U)},(k+|\tau|)}(M) . \end{cases}$$
(2.17.5)

It follows that

$$x = a^{k+|\tau|-|\tau_{(H)}|} \gamma_{\tau_{(H)}} \cdot |G/K| = a^k \cdot |G/K| a^{|\tau|-|\tau_{(H)}|} \gamma_{\tau_{(H)}}$$

by Example 2.7 and (2.17.4), which means that $x = T(D^k) \cdot T(G \times_K D(\tau)) = T(M)$ by (2.16.1). Hence y = 0 and

$$\sum_{H \subset U \subseteq K} Q_{\tau_{(U)},(k+|\tau|)} = 0$$

because $\chi_{\tau_{(U)}}(M) = |G/K|$ $(H \subset U \subseteq K)$. We can order these $U : H < U_1 < \cdots < U_p = K$ by using the total ordering in Section 1. Then the inductive argument gives that $Q_{\tau,(k+|\tau|)} = 0$. Hence *T* has the desired form (2.17.2). q.e.d.

REMARK 2.18. In case where $G = \{1\}$, we have that $St[\{1\}] = \{\sigma_0\}$ and $\chi_{\sigma_0} = \chi$. Then the invariant in (2.17.1) has the form $T(M) = a^{\dim(M)}\chi(M)$ because $M_{\sigma_0} = M$, where γ_{σ_0} is regarded as 1 formally (cf. Remark 2.6 and Example 2.7). Such a *T* coincides with T_0 in Proposition 2.10.

We have shown that $SK_*(\partial) \cong \mathbb{Z}[[D^1]]$ as a polynomial ring over \mathbb{Z} . Further, an element $x \in SK_*(\partial)$ is determined by the value $\chi(x)$ and $[M] = \chi(M) \cdot [D^1]^{\dim(M)}$ for any manifold M (cf. [8; Theorem 1.2]).

COROLLARY 2.19. Let $R : SK^G_*(\partial) \to SK_*(\partial)$ be a (non-trivial) ring homomorphism, then it has a form

$$R([M]) = \sum_{\sigma \in St[H]} a^{\dim(M_{\sigma})} \gamma_{\sigma} \cdot [M_{\sigma}] = \sum_{\sigma \in St[H]} a^{\dim(M_{\sigma})} \gamma_{\sigma} \chi(M_{\sigma}) \cdot [D^{1}]^{\dim(M_{\sigma})}$$

for an $H \subseteq G$ and a class of integers $\mathcal{V}_H = \{\gamma_i \mid 1 \leq i \leq t_H\}$, where $a = \chi(R(D^1))$ and $\gamma_i = |G/H|^{-1} \cdot \chi(R(G \times_H D(V_i)))$ as in Definition 2.15.

PROOF. Consider a map $T = \chi \circ R : SK_*^G(\partial) \to \mathbb{Z}$, then it is a multiplicative invariant and has a form $T = \chi \circ R_0$ as in (2.17.1), where $R_0 : SK_*^G(\partial) \to SK_*(\partial)$ is given by $R_0([M]) = \sum_{\sigma \in St[H]} a^{\dim(M_{\sigma})} \gamma_{\sigma} \cdot [M_{\sigma}]$. Since $\chi(R([M])) = \chi(R_0([M]))$, we have $R([M]) = R_0([M])$ for any [M] as mentioned above. Thus, $R = R_0$. q.e.d.

REMARK 2.20. Let a multiplicative invariant *T* of type $\langle G/H \rangle$ be determined by integers $\mathcal{V} = \{a, \gamma_1, \dots, \gamma_{t_H}\}$ and have the form as in (2.17.1). Then an invariant *T'* defined by $T'(M) = (-1)^{\dim(M)}T(M)$ is also multiplicative and is of type $\langle G/H \rangle$. In fact, *T'* coincides

with the one T'' which takes integers $\mathcal{V}'' = \{-a, -\gamma_1, \cdots, -\gamma_{p_H}, \gamma_{p_H+1}, \cdots, \gamma_{t_H}\}$. To show this, write T'' as

$$T''(M) = \sum_{\sigma \in St[H]} (-a)^{\dim(M_{\sigma})} (-\gamma_1)^{a(1)} \cdots (-\gamma_{p_H})^{a(p_H)} \gamma_{\sigma_1} \cdot \chi(M_{\sigma})$$

for a *G*-manifold *M*, where $\sigma_1 = \sigma^H(0, \dots, 0, a(p_H+1), \dots, a(t_H))$ if $\sigma = \sigma^H(a(1), \dots, a(t_H))$. Since $|\sigma| \equiv \sum_{1 \le i \le p_H} a(i) \pmod{2}$ and $\dim(M_{\sigma}) = \dim(M) - |\sigma|$, we have

$$T''(M) = (-1)^{\dim(M)} \sum_{\sigma \in St[H]} a^{\dim(M_{\sigma})} \gamma_{\sigma} \cdot \chi(M_{\sigma}) = (-1)^{\dim(M)} T(M) = T'(M) \,.$$

EXAMPLE 2.21. Finally we consider an invariant *T* of type $\langle G/H \rangle$ which takes integers $\mathcal{V}_H = \{a\} \cup \{\gamma_i \mid 1 \leq i \leq t_H\}$ with *a* or each $\gamma_i \in \{-1, 0, 1\}$ and give some typical example by using the formula (2.17.1). Let $l(\sigma) = \sum_{1 \leq i \leq t_H} a(i)$ be the length of $\sigma = \sigma^H(a(1), \dots, a(p_H); a(p_H + 1), \dots, p(t_H)) \in St[H]$ and $l_2(\sigma) = \sum_{p_H < i \leq t_H} a(i)$ the length of the two-dimensional irreducible *H*-modules in σ . Note that $l_2(\sigma) = |\sigma| - l(\sigma)$.

(i) Suppose that $\gamma_i = 1$ $(1 \le i \le t_H)$, then $\gamma_{\sigma} = 1$ for any $\sigma \in St[H]$. If a = 1, then

$$T(M) = \sum_{|\sigma| \le \dim(M)} \chi(M_{\sigma}) = \chi(M^H)$$

(cf. Remark 2.6). If a = 0, then

$$T(M) = \sum_{|\sigma| \le \dim(M)} 0^{\dim(M_{\sigma})} \chi(M_{\sigma}) = \sum_{|\sigma| = \dim(M)} 0^{0} \chi(M_{\sigma}) = \chi(M^{H, 0}),$$

where $M^{H, 0} = \sum_{|\sigma| = \dim(M)} M_{\sigma}$ is the isolated points of M^{H} (Note that $0^{0} = 1$). If a = -1, then

$$T(M) = \sum_{|\sigma| \le \dim(M)} (-1)^{\dim(M_{\sigma})} \chi(M_{\sigma}) = \chi(M^{H, \text{ ev}}) - \chi(M^{H, \text{ od}})$$

where $M^{H, \text{ ev}}$ (or $M^{H, \text{ od}}$) is the even-dimensional (or odd-dimensional) components of M^{H} respectively.

(ii) Suppose that $\gamma_i = -1$ $(1 \le i \le t_H)$, then $\gamma_\sigma = (-1)^{l(\sigma)}$ for any $\sigma \in St[H]$. If a = 1, then

$$T(M) = \sum_{|\sigma| \le \dim(M)} (-1)^{l(\sigma)} \chi(M_{\sigma}) = \chi(M_+^H) - \chi(M_-^H),$$

where M_+^H (or M_-^H) is the subset of M^H consisting of those points x having slice types σ_x with $l(\sigma_x)$ even (or odd) respectively. If a = 0, then

$$T(M) = \sum_{|\sigma| = \dim(M)} 0^0 (-1)^{l(\sigma)} \chi(M_{\sigma}) = \chi(M_+^{H, 0}) - \chi(M_-^{H, 0}),$$

where
$$M_{\varepsilon}^{H, 0} = M_{\varepsilon}^{H} \cap M^{H, 0}$$
 ($\varepsilon = +$ or $-$). If $a = -1$, then

$$T(M) = \sum_{|\sigma| \le \dim(M)} (-1)^{\dim(M_{\sigma}) + l(\sigma)} \chi(M_{\sigma}) = (-1)^{\dim(M)} \{ \chi(M_{2, +}^{H}) - \chi(M_{2, -}^{H}) \}$$

because dim $(M_{\sigma}) + l(\sigma) = \dim(M) - l_2(\sigma)$, where $M_{2,+}^H$ (or $M_{2,-}^H$) is the subset of M^H consisting of those points *x* having slice types σ_x with $l_2(\sigma_x)$ even (or odd) respectively.

(iii) Finally, suppose that $\gamma_i = 0$ $(1 \le i \le t_H)$, then $\gamma_{\sigma} = 0^0 \cdots 0^0 = 1$ if $\sigma = \sigma^H(\mathbf{0})$ or zero otherwise. If a = 1, then

$$T(M) = \gamma_{\sigma^H(\mathbf{0})} \chi(M_{\sigma^H(\mathbf{0})}) = \chi(M_{\sigma^H(\mathbf{0})}),$$

where $M_{\sigma^H(\mathbf{0})}$ is the components of M^H with $\dim(M_{\sigma^H(\mathbf{0})}) = \dim(M) - |\sigma^H(\mathbf{0})| = \dim(M)$. If a = 0, then

$$T(M) = 0^{\dim(M)} \gamma_{\sigma^{H}(\mathbf{0})} \chi(M_{\sigma^{H}(\mathbf{0})}) = \begin{cases} \chi(M^{H}) & \text{if } \dim(M) = 0\\ 0 & \text{if } \dim(M) > 0 \,. \end{cases}$$

If a = -1, then

$$T(M) = (-1)^{\dim(M_{\sigma^{H}(\mathbf{0})})} \gamma_{\sigma^{H}(\mathbf{0})} \chi(M_{\sigma^{H}(\mathbf{0})}) = (-1)^{\dim(M)} \chi(M_{\sigma^{H}(\mathbf{0})})$$

In a similar way, we have another examples.

References

- [1] T. HARA, Equivariant SK invariants on \mathbb{Z}_{2^r} -manifolds with boundary, Kyushu J. Math. 53 (1999), 17–36.
- [2] T. HARA, Equivariant cutting and pasting of *G*-manifolds, Tokyo J. Math. 23 (2000), 69–85.
- [3] T. HARA, Multiplicative SK invariants on \mathbb{Z}_n -manifolds with boundary, to appear in Rocky Mountain J. Math.
- [4] T. HARA and H. KOSHIKAWA, Cutting and pasting of *G*-manifolds with boundary, Kyushu J. Math. **51** (1997), 165–178.
- [5] K. JÄNICH, On invariants with the Novikov additive property, Math. Ann. 184 (1969), 65–77.
- [6] U. KARRAS, M. KRECK, W. D. NEUMANN and E. OSSA, *Cutting and Pasting of Manifolds; SK-Groups*, Publish or Perish (1973).
- [7] K. KAWAKUBO, *The Theory of Transformation Groups*, Oxford Univ. Press (1991).
- [8] H. KOSHIKAWA, SK group of manifolds with boundary, Kyushu J. Math. 49 (1995), 47–57.
- [9] C. KOSNIOWSKI, Actions of Finite Abelian Groups, Pitman (1978).

Present Address: DEPARTMENT OF MATHEMATICS, FACULTY OF ENGINEERING, TOKYO UNIVERSITY OF SCIENCE, KAGURAZAKA, SHINJUKU-KU, TOKYO, 162–8601 JAPAN. *e-mail*: hara@rs.kagu.tus.ac.jp