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0. Introduction

LetG be a finite abelian group. In this paper, aG-manifold means an unoriented compact
smooth manifold (which may have boundary) together with a smooth action of G. Let T
be a map for m-dimensional G-manifolds which takes its values in the ring Z of rational
integers and is additive with respect to the disjoint union of G-manifolds. We call T a G-SK
invariant if it is invariant under equivariant cuttings and pastings (Schneiden und Kleben in

German) [5, 6, 9]. For example, χH given by χH (M) = χ(MH) for G-manifolds M is a
G-SK invariant, where χ is the Euler characteristic, H is a subgroup of G and MH = {x ∈
M | hx = x for any h ∈ H }. Further suppose that T is defined for all G-manifolds with
various dimensions. Then it is said to be multiplicative if T (M ×N) = T (M) · T (N) for any
G-manifoldsM and N . For example, the above χH is multiplicative.

The main object of this paper is to characterize a form of multiplicativeG-SK invariants.
In [1, 3], the author has discussed such a question in case where G is a cyclic group of finite
order.

In Section 1, we describe the irreducible G-modules and G-slice types. These notions
are needed in order to proceed with our argument.

In Section 2, we first introduce an SK group SKG∗ (∂) resulting from equivariant cuttings
and pastings of G-manifolds. In [4, 8], Koshikawa and the author have studied its SK∗-
module structure, where SK∗ is an SK ring of closed manifolds (Proposition 2.2). A G-SK
invariant T induces an additive homomorphism SKG∗ (∂) → Z. For a slice type σ , let χσ
be a G-SK invariant defined by χσ (M) = χ(Mσ ), where Mσ is a G-submanifold of M
with slice types containing σ (Definition 2.5). Then, using these χσ , we have a basis of a

free Z-module T G∗ consisting of all G-SK invariants [2] (Proposition 2.8). Next we study a

multiplicative G-SK invariant, which is considered to be a ring homomorphism SKG∗ (∂) →
Z. Such an invariant T is said to be of type 〈G/H 〉 if H is the minimum element (with
respect to the inclusion of subgroups) in the set consisting of those subgroups K of G such

that T (G/K) �= 0 (Definition 2.11). For example, χH is of type 〈G/H 〉. It is seen that T
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is determined by its values on the one-dimensional disk D1 (with the trivial action) and G-
manifoldsG×H D(Vi), where {Vi} is the complete set of non-trivial irreducible H -modules
andD(Vi) is the associated H-disk (Theorem 2.17). Finally we give a typical example of such
invariants (Example 2.21).

1. Preliminaries

A G-module means a finite-dimensional real vector space together with a linear action
ofG. For a subgroupH ofG, let C(H) consist of all subgroups J ofH such that the quotient
H/J ∼= Zd , a cyclic group of order d (≥ 2). Then, for J ∈ C(H) a non-trivial irreducible

H -module V (J, j) (1 ≤ j < 1
2φ(d) + 1), where φ is the Euler phi-function, is defined as

follows.
(1) If d = 2, then the underlying space of V (J, 1) is the set R of real numbers with a

generator of H/J ∼= Z2 acting by multiplication by −1.
(2) If d ≥ 3, then the underlying space of V (J, jk) is the set C of complex numbers

with a generator of H/J ∼= Zd acting by multiplication by exp(2πijk/d), where {jk} is the
complete set of integers such that 0 < j1 < j2 < · · · < jφ(d) < d and each jk is prime to d
(cf. [9 ; Theorem 1.6.1]).

If M is a G-manifold and x ∈ M , then there is a Gx-module Ux which is equivariantly
diffeomorphic to a Gx -neighbourhood of x. Here Gx = {g ∈ G | g x = x} is the isotropy
subgroup at x. The module Ux decomposes as Ux = Rp ⊕ Vx , where Gx acts trivially on

Rp and V Gxx = {0}. We refer to the pair σx = [Gx;Vx] as a slice type of x. By a G-slice
type in general, we mean a pair σ = [H ;V ] of a subgroupH of G and an H -module V such

that VH = {0}. An H -module V is a product of non-trivial irreducible H -modules V (J, jk)
with J ∈ C(H). We denote by σ0 the slice type [{1}; {0}], where {1} is the trivial group.
Let St[H ] be the set of all slice types σ = [H ;V ] and St (G) = ⋃

H⊆G St[H ] the set of all
G-slice types. There is a total ordering on St (G) as follows. For any positive divisor k of |G|,
the order ofG, let L(k) be the set consisting of all subgroupsH ofG such that |H | = k. First
order the elements in L(k) appropriately, then give an ordering < on the set

⋃
k L(k) of all

subgroups ofG, preserving inclusion of subgroups, that is, if H ⊆ K then H ≤ K . Let us fix
a subgroup H , then such an ordering leads to the one on the set of all non-trivial irreducible
H -modules: V (J1, j1) < V (J2, j2) if J2 < J1 or J1 = J2 and j1 < j2. Finally we order the
elements in St (G) as follows.

(1) [H ;V ] < [K;W ] if dim(V ) < dim(W).
(2) Suppose that dim(V ) = dim(W), then [H ;V ] < [K;W ] if H < K .
(3) Suppose that dim(V ) = dim(W) and H = K , then [H ;V ] < [H ;W ] if V <

W in the ordering of H -modules induced lexicographically from the one of all non-trivial
irreducible H -modules: V1 < V2 < · · · < VtH (cf. [9 ; Section 1.7]). Here, by the definition
of the total ordering, there is an integer pH such that the underlying space of each Vi (1 ≤ i ≤
pH ) is R, while the one of each Vi (pH < i ≤ tH ) is C. We regardpH = 0 ifH is an odd order
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group. A slice type σ ∈ St[H ] is therefore of the form σ = σH (a(1), · · · , a(pH ); a(pH +
1), · · · , a(tH )) = [H ; ∏

i V
a(i)
i ] for some integers a(i) (≥ 0).

DEFINITION 1.1. LetW be aK-module andH a subgroup ofK . Then denote byW(H)

anH -moduleW induced fromH ⊆ K . Let {Wj } : W1 < · · · < WpK < WpK+1 < · · · < WtK

be the set of all non-trivial irreducibleK-modules. If τ = [K;W ] ∈ St[K], W = ∏
j W

b(j)
j ,

is a slice type, then we define a slice type τ(H) ∈ St[H ] by τ(H) = [H ;V ], V = ∏
j (Wj )

b(j)

(H) ,

where the product is taken over all j such that (Wj )(H) are non-trivial H -modules. Since

(Wj )({1}) = R or R2, a trivial H -module (1 ≤ j ≤ tK ), we have that τ({1}) = σ0. We call
dim(W) = ∑

1≤j≤pK b(j)+ 2
∑
pK<j≤tK b(j) the dimension of τ and denote it by |τ |.

REMARK 1.2. (i) More precisely, let Wj = V (L,mk) for some L ⊂ K withK/L ∼=
Za and an integer mk such that 0 < mk < a, (mk, a) = 1. Then (Wj )(H) = V (L ∩ H,m′)
with 0 < m′ < b, (m′, b) = 1, where H/(L ∩ H) = LH/L ∼= Zb . The integer m′ is
determined by the action LH/L on (Wj )(H) induced from the one of K/L on Wj . We see

that (Wj )(H) is the trivial H -module R or R2 only if H ⊆ L. It follows that the difference
|τ | − |τ(H)| is the sum of dim(Wj ) (= 1 or 2) with H ⊆ L.

(ii) W(H) = R|τ |−|τ(H)| × V as an H -module and WH = (W(H))
H = R|τ |−|τ(H)| × {0}

has slice types τ(U) (H ⊆ U ⊆ K) as a K-invariant subspace of W . Note that τ(U) ≤ τ

because |τ(U)| ≤ |τ |.
(iii) Let us write τ = τK(b(1), · · · , b(pK); b(pK + 1), · · · , b(tK)) for τ in Definition

1.1. Then we have τ(H) = σH (a(1), · · · , a(pH ); a(pH + 1), · · · , a(tH )) , where

a(i) =
∑
j∈J ′(i)

b(j)+ 2
∑

j∈J ′′(i)
b(j) (1 ≤ i ≤ pH ) ,

a(i) =
∑
j∈J (i)

b(j) (pH < i ≤ tH ) .
(1.2.1)

The sets J (i) = J (H,K; i), J ′(i) and J ′′(i) are as follows: J (i) (0 ≤ i ≤ tH ) are subsets of
J (K) = {j | 1 ≤ j ≤ tK } given by

J (i) = J ′(i) ∪ J ′′(i) if 1 ≤ i ≤ pH , where

J ′(i) = {j | (Wj )(H) = Vi, 1 ≤ j ≤ pK } and J ′′(i) = {j | (Wj )(H) = V 2
i , pK < j ≤ tK } .

J (i) = {j | (Wj )(H) = Vi, pK < j ≤ tK } if pH < i ≤ tH .

J (0) = J (K)\
⋃

1≤i≤tH
J (i) = J ′(0) ∪ J ′′(0) , where

J ′(0) = {j | (Wj )(H) = R, 1 ≤ j ≤ pK} and J ′′(0) = {j | (Wj )(H) = R2, pK < j ≤ tK } .

The set J (K) is a disjoint union of these J (i) = J (H,K; i) (0 ≤ i ≤ tH ).
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(iv) It follows that

|τ | − |τ(H)| =
∑

j∈J ′(0)
b(j)+ 2

∑
j∈J ′′(0)

b(j) . (1.2.2)

2. Multiplicative G-SK invariants

Let Ni (i = 1, 2) be m-dimensional G-manifolds, L an G-invariant codimension zero
submanifold of each boundary ∂Ni and ϕ,ψ : L → L G-equivariant diffeomorphisms.
Pasting along L, we have G-manifolds M1 = N1 ∪ϕ N2 and M2 = N1 ∪ψ N2. Then M1

and M2 are said to be obtained from each other by an equivariant cutting and pasting (G-SK
process). Let MG

m(∂) be the set of all m-dimensional G-manifolds with boundary, which is
an abelian semigroup with respect to the disjoint union + and has a zero given by the empty
set ∅.

DEFINITION 2.1 (cf. [6 ; Chapter 1]). G-manifolds M1 and M2 ∈ MG
m(∂) are said to

be G-SK equivalent, in symbols M1 ∼ M2, if there is a G-manifold P ∈ MG
m(∂) such that

M1 +P andM2 +P can be obtained from each other by a finite sequence ofG-SK processes.

The G-SK equivalence ∼ is an equivalence relation on MG
m(∂) and the set MG

m(∂)/ ∼
of all equivalence classes is a cancellative abelian semigroup. Denote by [M] the equivalence
class containing aG-manifoldM . Let SKG

m (∂) be the Grothendieck group of MG
m(∂)/ ∼. We

then have a graded SK∗-module SKG∗ (∂) = ⊕
m≥0 SK

G
m (∂) given by the cartesian product

of manifolds. Here SK∗ is an SK ring of closed manifolds, which is a polynomial ring over Z
with a generator α represented by the real projective plane RP 2 (cf. [9; Theorem 2.5.1 (i)]).

PROPOSITION 2.2 (cf. [4; Proposition 1.13]). SKG∗ (∂) is a free SK∗-module with basis
B = {[G×H D(σ)], [G×H D(σ × R)] | σ = [H ;V ] ∈ St (G)}, whereD(σ) = D(V ) is the
associated H -disk.

Let M × N be the cartesian product of G-manifolds M and N (with straightening the
angle). This product makes SKG∗ (∂) an SK∗-algebra.

For σ = σH (a(1), · · · , a(tH )) and τ = σH (b(1), · · · , b(tH )) ∈ St[H ], we denote by
σ × τ the slice type σ × τ = σH (a(1)+ b(1), · · · , a(tH )+ b(tH )).

LEMMA 2.3 (cf. [2; Lemma 3.6]). A multiplicative relations for the basis elements in
B are given by the following.

(i) [G ×H D(σ)] · [G ×K D(τ)] = a(H,K)[Db][G ×H∩K D(σ(H∩K) × τ(H∩K))]
for any σ ∈ St[H ] and τ ∈ St[K], where a(H,K) = (|G||H ∩ K|)/(|H ||K|) and b =
|σ | − |σ(H∩K)| + |τ | − |τ(H∩K)|.

(ii) x̂ · y = x · ŷ = x̂ · y and (̂̂x) = αx for any elements x, y, where x̂ = [D1] · x in
general.

(ii-i) In particular, α = [D2] in SK2(∂), where SK∗(∂) = SK
{1}∗ (∂) is an SK ring of

manifolds with boundary.
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DEFINITION 2.4 (cf. [5], [6 ; Chapter 1] and [9 ; Definition 5.2.5]). Let T : MG
m(∂) →

Z be an additive map, that is, if M = M1 +M2 then T (M) = T (M1)+ T (M2). We call T a
G-SK invariant if T is invariant underG-SK process, that is T (N1 ∪ϕ N2) = T (N1 ∪ψ N2) for
any G-diffeomorphisms ϕ,ψ : L → L in the beginning of this section. The map T induces

an additive homomorphism T : SKG∗ (∂) → Z naturally. Denote by T G
m the set of all these

G-SK invariants, which is a Z-module under the natural addition.

From now on, T is simply called an invariant. We sometimes write T (M) instead of
T (x) for x = [M] if no confusion can arise.

DEFINITION 2.5. Let M be a G-manifold and σ ∈ St[H ] with H ⊆ G. Then define
Mσ = {x ∈ M(H) | σx = σ }, where M(H) = M with the induced action of H and σx is the
slice type of x in M(H).

REMARK 2.6. In other words, Mσ is the set consisting of those points x ∈ M whose
slice types σx satisfy that (σx)(H) = σ . By the slice theorem,Mσ is aG-invariant submanifold
of M with dim(Mσ ) = dim(M)− |σ | and ∂(Mσ ) = (∂M)σ (cf. [7 ; Theorem 4.14]). In case
σ = σ0, we have Mσ0 = M . As an example, let M = G ×K D(τ) for τ ∈ St[K]. Then

Mσ = |G/K|D|τ |−|τ(H)| in M(H) = G ×K D(R|τ |−|τ(H) | × V ) if H ⊆K and σ = τ(H) =
[H ;V ], while Mσ = ∅ otherwise (cf. Definition 1.1 and Remark 1.2 (ii)). In general, a

submanifold MH = (M(H))
H decomposes as MH = ∑

σ∈St [H ]Mσ . For σ ∈ St[H ], we

have (M × N)σ = ∑
(σ ′,σ ′′)(Mσ ′ × Nσ ′′) summing over all pairs (σ ′, σ ′′) ∈ St[H ] × St[H ]

such that σ ′ × σ ′′ = σ . Hence the following product formula holds:

χ((M × N)σ ) =
∑
(σ ′,σ ′′)

χ(Mσ ′) · χ(Nσ ′′) . (2.6.1)

EXAMPLE 2.7. A map χσ defined by χσ (M) = χ(Mσ ) is an invariant because M1 ∼
M2 implies (M1)σ ∼ (M2)σ naturally. Note that χσ0 = χ . Let M = G ×K D(τ) for
τ ∈ St[K]. Then χσ (M) = |G/K| if H ⊆ K and σ = τ(H), while χσ (M) = 0 otherwise.

Furthermore, for a subgroup H of G, the map χH defined by χH (M) = χ(MH ) is also an

invariant and the equality χH = ∑
σ∈St [H ] χσ holds in T G

m (cf. Remark 2.6).

Let H be a subgroup of G. Then, by using the total ordering on the set of all subgroups
of G in Section 1, define inductively integers nH (K) for subgroups K with H ⊆ K ⊆ G as
follows:

nH (H) = 1 , nH (K) = |K/H | −
∑

H⊆L⊂K
nH (L) .

Here L ⊂ K means that L is a proper subgroup of K . If H = {1}, then the integers
n{1}(K) coincide with those ni in [7; Definition 5.3]. For σ ∈ St[H ] and a subgroup K
with H ⊂ K ⊆ G, let SK(σ) be the set consisting of those slice types τ ∈ St[K] such that
τ(H) = σ .



266 TAMIO HARA

PROPOSITION 2.8 (cf. [2; Theorem 2.6 and Remark 2.8]). For σ ∈ St[H ], define an
invariant θσ by

θσ = |G/H |−1
{
χσ +

∑
H⊂K⊆G

nH (K)

( ∑
τ∈SK(σ)

χτ

)}
.

Then we have the following.
(i) Let τ ∈ St[U ] for a subgroup U of G. Then θσ (G ×U D(τ)) = 1 if U ⊇ H and

σ = τ(H), while θσ (G×U D(τ)) = 0 otherwise.

(ii) The set {θσ | σ ∈ St (G), |σ | ≤ m} provides a basis for T G
m as a free Z-module.

DEFINITION 2.9. Assume that an invariant T is defined for all G-manifolds. Then it
is said to be multiplicative if T (M ×N) = T (M) ·T (N) for anyG-manifoldsM andN . The

map T induces a ring homomorphism T : SKG∗ (∂) → Z.

Let pt be the one-point set. We see that T (pt) = 0 or 1 because T (pt)2 = T (pt). If
T (pt) = 0, then T is trivial, that is T ≡ 0. From now on, we treat a non-trivial invariant T ,
which therefore takes the value T (pt) = 1.

The remainder of this paper are devoted to studying of a form of (non-trivial) multiplica-
tive invariants.

In case of the trivial groupG = {1}, we have the following.

PROPOSITION 2.10 (cf. [1; Proposition 3.4]). A multiplicative invariant T0:SK∗(∂)→
Z is uniquely determined by the value a = T0(D

1) and has a form T0(M) = adim(M)χ(M).

Here, if a = 0, then a0 is regarded as 1.

We next consider the case where G �= {1}. Given a multiplicative invariant T , let CT
be the set consisting of all subgroups K of G such that T (G/K) �= 0. Note that CT �= ∅
because T (pt) = T (G/G) = 1 and G ∈ CT . It is seen that CT has the minimum element
H = ∩K∈CT K (with respect to the inclusion ⊆ of subgroups). Indeed there is a non-zero
integer k such that k ·G/H = ∏

K∈CT G/K by Lemma 2.3 (i). This implies that k ·T (G/H) =∏
K∈CT T (G/K) and hence T (G/H) �= 0. In other words, such an H is the subgroup which

satisfies the condition that T (G/H) �= 0 and T (G/U) = 0 for any proper subgroupsU ofH .

DEFINITION 2.11. The above T is said to be of type 〈G/H 〉.
Note that G/H = G×H D(σ

H (0)), where σH (0) = σH (0, · · · , 0; 0, · · · , 0).

PROPOSITION 2.12. If T is of type 〈G〉, then T (M) = T0(M0) for anyG-manifoldM,

where T0 is the invariant in Proposition 2.10 given by a = T (D1) andM0 = M with ignoring
group action.

PROOF. SinceM×G ∼= M0 ×G asG-manifolds, we have T (M) = T (M0) = T0(M0)

because T (G) �= 0. q.e.d.

We next study an invariant of type 〈G/H 〉 with H �= {1}.
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LEMMA 2.13. If T is of type 〈G/H 〉, then
(i) T (G×U D(σ)) = 0 for any slice type σ ∈ St[U ] with U � H .

(ii) T (G/K) = |G/K| for any K ⊇ H . In particular, β = T (G/H) = |G/H |.
PROOF. For subgroups P,Q of G and σ ∈ St[P ], we have

T (G×P D(σ)) · T (G/Q) = a(P,Q) · T (Db) · T (G×P∩Q D(σ(P∩Q))) (2.13.1)

by Lemma 2.3 (i), where b = |σ | − |σ(P∩Q)|. First, set P = Q = U for a proper subgroupU
of H , then

T (G×U D(σ)) · T (G/U) = |G/U | · T (D0) · T (G×U D(σ)) .

Since T (G/U) = 0 by definition and T (D0) = 1, we have T (G ×U D(σ)) = 0. Next,
set P = U for U � H and Q = H in (2.13.1). The right-hand side vanishes because
U ∩ H is a proper subgroup of H , while T (G/H) = β �= 0 in the left-hand side. Thus

T (G×U D(σ)) = 0 and (i) is obtained. To show (ii), set P = K, σ = σK(0) forK ⊇ H and
Q = H in (2.13.1), then T (G/K) · β = a(K,H) · β. Hence T (G/K) = a(K,H) = |G/K|.

q.e.d.

LEMMA 2.14. For subgroups H and K with H ⊂ K ⊆ G, let J (K) = ⋃
i J (i) and

J (i) = J (H,K; i) be the partition in Remark 1.2 (iii). Let σj = σK(ej ), where ej has
components zero except for its j -th component, which is equal to 1 (1 ≤ j ≤ tK). Then we
have

(i)

(σj )(H) =

⎧⎪⎪⎨⎪⎪⎩
σH (0) if j ∈ J (0) ,
σH (ei ) if j ∈ J (i) (1 ≤ i ≤ pH , 1 ≤ j ≤ pK or i > pH , j > pK) ,

σH (2ei ) if j ∈ J (i) (1 ≤ i ≤ pH , j > pK) .

Further, if T is an invariant of type 〈G/H 〉, then
(ii)

T (G×KD(σj )) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
|G/K| · a if j ∈ J (0) (1 ≤ j ≤ pK) ,

|G/K| · a2 if j ∈ J (0) (j > pK) ,
|G/K| · γi if j ∈ J (i) (1 ≤ i ≤ pH , 1 ≤ j ≤ pK or i>pH , j>pK) ,

|G/K| · γ 2
i if j ∈ J (i) (1 ≤ i ≤ pH , j > pK) ,

where a = T (D1) and γi is the integer given by γi = |G/H |−1 · T (G ×H D(σH (ei )))
(1 ≤ i ≤ tH ).

Note that G×K D(σj ) = G×K D(Wj ), where {Wj } is the set of non-trivial irreducible
K-modules.

PROOF OF THE LEMMA. Write (σj )(H) as (σj )(H) = σH (a(1), · · · , a(pH ); a(pH +
1), · · · , a(tH )). Suppose that j ∈ J (i) = J ′(i) ∪ J ′′(i) for some i (1 ≤ i ≤ pH ). Then



268 TAMIO HARA

a(i) = 1 (resp. a(i) = 2) if j ∈ J ′(i) (resp. j ∈ J ′′(i)) and a(k) = 0 if k �= i by the first
equality in (1.2.1). Hence (σj )(H) = σH (ei ) if 1 ≤ j ≤ pK or σH (2ei ) if j > pK . Similarly

(σj )(H) = σH (ei ) if i > pH , j > pK . Finally (σj )(H) = σH (0) if and only if j ∈ J (0).

Thus (i) follows. Next we prove (ii). Put λj = T (G×KD(σj )) and ξi = T (G×HD(σ
H (ei )))

for convenience. We have λj ·T (G/H) = |G/K|ab ·T (G×H D((σj )(H))) by (2.13.1), where
b = |σj | − |(σj )(H)|. This implies that

λj = |G/K||G/H |−1ab · T (G×H D((σj )(H))) (2.14.1)

because T (G/H) = |G/H | by Lemma 2.13 (ii). Suppose first that j ∈ J (i) with i ≥ 1. In
this case, we see that |σj | = |(σj )(H)| and b = 0 by (i). Since T is non-trivial, we note that

a0 = T (D0) = 1 even if a = 0. Hence

λj =
{ |G/K||G/H |−1 · ξi if j ∈ J (i) (1 ≤ i ≤ pH , 1 ≤ j ≤ pK or i > pH , j > pK) ,

|G/K||G/H |−1 · T (G×H D(σ
H (2ei))) if j ∈ J (i) (1 ≤ i ≤ pH , j > pK) .

(2.14.2)

In the second case, since ξ2
i = |G/H |·T (G×HD(σ

H (2ei ))) by Lemma 2.3 (i), we have λj =
|G/K||G/H |−2 · ξ2

i . Now consider the case where K = G for the first equality in (2.14.2)

and denote by γi the integer T (D(σG(ej ))) if 1 ≤ i ≤ pH (and some j ∈ J (H,G; i) with

1 ≤ j ≤ pG) or i > pH (and some j ∈ J (H,G; i) with j > pG). Then γi = |G/H |−1 · ξi
(1 ≤ i ≤ tH ). Taking this in (2.14.2), we have λj = |G/K| · γi in the first case or |G/K| · γ 2

i

in the second one. Next, in case j ∈ J (0), it is seen that λj = |G/K|ab by (2.14.1) because

(σj )(H) = σH (0) and T (G×HD(σ
H (0))) = |G/H | by Lemma 2.13 (ii). Since b = |σj | = 1

if 1 ≤ j ≤ pK or 2 if j > pK , the result follows. q.e.d.

DEFINITION 2.15. The above T is said to take a class of integers V = {a} ∪ {γi | 1 ≤
i ≤ tH }. The integer a or γi is given by a = T (D1) or γi = |G/H |−1 · T (G ×H D(Vi))

respectively, where {Vi | 1 ≤ i ≤ tH } is the set of non-trivial irreducibleH -modules.

LEMMA 2.16. Let T be the invariant in the above lemma. Then we have

T (G×K D(σ)) = |G/K| · a|σ |−|σ(H)|γσ(H) (2.16.1)

for any slice type σ ∈ St[K] with K ⊇ H, where γσ(H) = ∏
i γ

a(i)
i if σ(H) =

σH (a(1), · · · , a(pH ); a(pH+1), · · · , a(tH )). We regard a0 (or γ 0
i ) as 1 if a = 0 (or γi = 0)

respectively.

PROOF. Write σ as σ = σK(b(1), · · · , b(pK); b(pK +1), · · · , b(tK)) and set σ(j) =
σK(0, · · · , b(j), 0, · · · , 0) (1 ≤ j ≤ tK ). Since σ = ∏

j σ (j) and σ(j) = σK(ej )b(j), we

have |G/K|tK−1[G×K D(σ)] = ∏
j [G×K D(σ(j))] and |G/K|b(j)−1[G×K D(σ(j))] =

[G×K D(σ
K(ej ))]b(j) by using Lemma 2.3 (i) inductively. Then it follows that

T (G×K D(σ(j))) = |G/K|1−b(j) · λb(j)j (1 ≤ j ≤ tK) ,
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where λj = T (G×K D(σ
K(ej ))). Further, we have

T (G×K D(σ)) = |G/K|1−tK ∏
j

T (G×K D(σ(j)))

= |G/K|1−tK |G/K|tK−l(σ )∏
j

λ
b(j)

j

= |G/K|1−l(σ )∏
i

Li , (2.16.2)

where l(σ ) = ∑
j b(j) and Li = ∏

j∈J (i) λ
b(j)

j , J (i) = J (H,K; i) (0 ≤ i ≤ tH ) as in

Lemma 2.14. It follows from Remark 1.2 (iii) and Lemma 2.14 (ii) that Li = |G/K|l0as0 if
i = 0 or |G/K|li γ si if 1 ≤ i ≤ tH , where li = ∑

j∈J (i) b(j) and

si =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j∈J ′(0)

b(j)+ 2
∑

j∈J ′′(0)
b(j) = |σ | − |σ(H)| if i = 0 ,

∑
j∈J ′(i)

b(j)+ 2
∑

j∈J ′′(i)
b(j) = a(i) if 1 ≤ i ≤ pH ,∑

j∈J (i)
b(j) = a(i) if pH < i ≤ tH .

Note that
∑

0≤i≤tH li = l(σ ). Hence we obtain the desired formula by substituting Li in

(2.16.2). Let σ = σH (0) in (2.16.1). Then T (G/H) = |G/H | · a0γσH (0) which is equal to

|G/H | by Lemma 2.13 (ii). Hence a0γ 0
1 · · · γ 0

tH
= 1 and this means that a0 or each γ 0

i must
be regarded as 1 even if a or γi = 0 respectively. q.e.d.

THEOREM 2.17. Let T be a (non-trivial ) multiplicative invariant of type 〈G/H 〉 with
H �= {1}. Then it is uniquely determined by a class of integers V = {a} ∪ {γi | 1 ≤ i ≤ tH } in
Definition 2.15 and has a form

T (M) =
∑

σ∈St [H ]
adim(Mσ )γσ · χ(Mσ ) (2.17.1)

for any G-manifoldM . If a or γi = 0 for some i, then we regard a0 or γ 0
i as 1 respectively.

PROOF. Since γσ ′γσ ′′ = γσ for any σ ′ and σ ′′ ∈ St[H ] such that σ ′ × σ ′′ = σ , the
above T is multiplicative by making use of the product formula (2.6.1). We see that T takes

integers V = {a, γi}. In fact, let σ ∈ St[H ], then χσ (D1) = 1 if σ = σH (0) or zero

otherwise. Hence T (D1) = a1γσs(0) · 1 = a. Further χσ (G ×H D(σ
H (ei ))) = |G/H | if

σ = σH (ei ) or zero otherwise (1 ≤ i ≤ tH ), which implies that T (G ×H D(σ
H (ei ))) =

a0γσH (ei ) · |G/H | = γi · |G/H |. Therefore, T takes integers in V and is determined by the

class V . On the other hand, T (G/H) = a0γσH (0) · |G/H | = |G/H | and T (G/U) = 0 for
any proper subgroup U of H . This verifies that T is of type 〈G/H 〉 (cf. Definition 2.11).
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Let I be an invariant which is not necessarily multiplicative. To proceed with our proof, for
an integer j (≥ 0), consider an invariant I(j) defined by I(j)(M) = I (M) if j = dim(M) or
zero if j �= dim(M). Now let T be any multiplicative invariant of type 〈G/H 〉, which takes
integers V = {a, γi}. We show that T has a form in (2.17.1), or equivalently has a form

T =
∑
k, σ

akγσχσ,(k+|σ |), (2.17.2)

where χσ,(j) = (χσ )(j) in the sense mentioned above and the sum is taken over all slice types
σ ∈ St[H ] and the integer k (≥ 0) (Remark. Note that χσ,(j) may be defined for j ≥ |σ |
because Mσ = ∅ if dim(M) < |σ |. Thus, j is written as j = k + |σ | for some k ≥ 0.
If dim(M) = k + |σ |, then k = dim(M) − |σ | = dim(Mσ ) as in (2.17.1) (cf. Remark
2.6).). Now let us consider an invariant θσ,(j) = (θσ )(j) for θσ in Proposition 2.8. Since

T ∈ T G∗ = ∑
m T G

m , we can write T as T = ∑
k,σ aσ,(k+|σ |)θσ,(k+|σ |) summing over all

σ ∈ St(G) and k ≥ 0. To begin with, we show that aσ,(k+|σ |) = 0 for each σ ∈ St[U ]
with U � H and k ≥ 0. Recall the total ordering < on St(G) and rename the slice types

σ ∈ ⋃
U�H St[U ] as ρ1 = σ0 < ρ2 < ρ3 < · · · . First it follows that T (Dk × G) =

aσ0,(k) · θσ0(D
k ×G) = aσ0,(k) · |G|−1χ(Dk ×G) = aσ0,(k) because θσ0 = |G|−1(χ + η) by

definition, where η is a sum of χτ with τ �= σ0. Since T is of type 〈G/H 〉 with H �= {1},
we have T (G) = 0 and T (Dk × G) = T (Dk) · T (G) = 0. Thus aσ0,(k) = 0 for each
k ≥ 0. Next suppose that aρj ,(k+|ρj |) = 0 for any ρj with 1 ≤ j < t and k ≥ 0. Let take

M = Dk ×G ×U D(ρt ). Then T (M) = T (Dk) · T (G ×U D(ρt )) = 0 by Lemma 2.13 (i),
while

T (M) =
∑
L⊆U

a(ρt )(L),(k+|ρt |)θ(ρt )(L),(k+|ρt |)(M) =
∑
L⊆U

a(ρt )(L),(k+|ρt |)

because θ(ρt )(L),(k+|ρt |)(M) = θ(ρt )(L) (G×UD(ρt )) = 1 by Proposition 2.8 (i). IfL is a proper
subgroup of U , then (ρt )(L) = ρjL for some jL < t . Hence a(ρt )(L),(k+|ρt |) vanishes by the
inductive assumption and so does aρt ,(k+|ρt |). Therefore T is written as

T =
∑

σ∈St [H ], k≥0

Pσ,(k+|σ |)χσ,(k+|σ |) +
∑

H⊂K⊆G

∑
τ∈St [K], k≥0

Qτ,(k+|τ |)χτ,(k+|τ |) (2.17.3)

for some rational numbers Pσ,(l) and Qτ,(l) (See the expression of θσ in Proposition 2.8.).
Next we prove that

Pσ,(k+|σ |) = akγσ (2.17.4)

for any σ ∈ St[H ] and k (≥ 0). To show this, consider the value T (M) forM = Dk ×G×H

D(σ). Then we have that T (M) = Pσ,(k+|σ |) ·χσ (M) = Pσ,(k+|σ |) · |G/H | by (2.17.3), while

T (M) = T (Dk)·T (G×HD(σ)) = ak ·|G/H |a0γσ by (2.16.1). Therefore we obtain (2.17.4).

We recall that a0 (or γ 0
i ) is regarded as 1 even if a = 0 (or γi = 0) respectively as remarked

in the proof of Lemma 2.16. To complete the proof, we must show that Qτ,(k+|τ |) = 0. Let
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us fix an integer k (≥ 0). Then, for M = Dk ×G ×K D(τ) (τ ∈ St[K],H ⊂ K ⊆ G), we
have that T (M) = x + y by (2.17.3) and Remark 2.6, where⎧⎪⎨⎪⎩

x = Pτ(H),(k+|τ |) · χτ(H),(k+|τ |)(M)

y =
∑

H⊂U⊆K
Qτ(U),(k+|τ |) · χτ(U),(k+|τ |)(M) . (2.17.5)

It follows that

x = ak+|τ |−|τ(H)|γτ(H) · |G/K| = ak · |G/K|a|τ |−|τ(H)|γτ(H)

by Example 2.7 and (2.17.4), which means that x = T (Dk) · T (G ×K D(τ)) = T (M) by
(2.16.1). Hence y = 0 and ∑

H⊂U⊆K
Qτ(U),(k+|τ |) = 0

because χτ(U) (M) = |G/K| (H ⊂ U ⊆ K). We can order these U : H < U1 < · · · <
Up = K by using the total ordering in Section 1. Then the inductive argument gives that
Qτ,(k+|τ |) = 0. Hence T has the desired form (2.17.2). q.e.d.

REMARK 2.18. In case where G = {1}, we have that St[{1}] = {σ0} and χσ0 = χ .

Then the invariant in (2.17.1) has the form T (M) = adim(M)χ(M) becauseMσ0 = M , where
γσ0 is regarded as 1 formally (cf. Remark 2.6 and Example 2.7). Such a T coincides with T0

in Proposition 2.10.

We have shown that SK∗(∂) ∼= Z[[D1]] as a polynomial ring over Z. Further, an element

x ∈ SK∗(∂) is determined by the value χ(x) and [M] = χ(M) · [D1]dim(M) for any manifold
M (cf. [8; Theorem 1.2]).

COROLLARY 2.19. Let R : SKG∗ (∂) → SK∗(∂) be a (non-trivial ) ring homomor-
phism, then it has a form

R([M]) =
∑

σ∈St [H ]
adim(Mσ )γσ · [Mσ ] =

∑
σ∈St [H ]

adim(Mσ )γσχ(Mσ ) · [D1]dim(Mσ )

for an H ⊆ G and a class of integers VH = {γi | 1 ≤ i ≤ tH }, where a = χ(R(D1)) and

γi = |G/H |−1 · χ(R(G×H D(Vi))) as in Definition 2.15.

PROOF. Consider a map T = χ ◦ R : SKG∗ (∂) → Z, then it is a multiplicative

invariant and has a form T = χ ◦ R0 as in (2.17.1), where R0 : SKG∗ (∂) → SK∗(∂) is

given by R0([M]) = ∑
σ∈St [H ] adim(Mσ )γσ · [Mσ ]. Since χ(R([M])) = χ(R0([M])), we

have R([M]) = R0([M]) for any [M] as mentioned above. Thus, R = R0. q.e.d.

REMARK 2.20. Let a multiplicative invariant T of type 〈G/H 〉 be determined by inte-
gers V = {a, γ1, · · · , γtH } and have the form as in (2.17.1). Then an invariant T ′ defined by

T ′(M) = (−1)dim(M)T (M) is also multiplicative and is of type 〈G/H 〉. In fact, T ′ coincides
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with the one T ′′ which takes integers V ′′ = {−a,−γ1, · · · ,−γpH , γpH+1, · · · , γtH }. To show
this, write T ′′ as

T ′′(M) =
∑

σ∈St [H ]
(−a)dim(Mσ )(−γ1)

a(1) · · · (−γpH )a(pH )γσ1 · χ(Mσ )

for aG-manifoldM , where σ1 = σH (0, · · · , 0, a(pH+1), · · · , a(tH )) if σ = σH (a(1), · · · ,
a(tH )). Since |σ | ≡ ∑

1≤i≤pH a(i) (mod 2) and dim(Mσ ) = dim(M)− |σ |, we have

T ′′(M) = (−1)dim(M)
∑

σ∈St [H ]
adim(Mσ )γσ · χ(Mσ ) = (−1)dim(M)T (M) = T ′(M) .

EXAMPLE 2.21. Finally we consider an invariant T of type 〈G/H 〉 which takes in-
tegers VH = {a} ∪ {γi | 1 ≤ i ≤ tH } with a or each γi ∈ {−1, 0, 1} and give some
typical example by using the formula (2.17.1). Let l(σ ) = ∑

1≤i≤tH a(i) be the length of

σ = σH (a(1), · · · , a(pH ); a(pH + 1), · · · , p(tH )) ∈ St[H ] and l2(σ ) = ∑
pH<i≤tH a(i)

the length of the two-dimensional irreducibleH -modules in σ . Note that l2(σ ) = |σ | − l(σ ).
(i) Suppose that γi = 1 (1 ≤ i ≤ tH ), then γσ = 1 for any σ ∈ St[H ]. If a = 1, then

T (M) =
∑

|σ |≤dim(M)

χ(Mσ ) = χ(MH)

(cf. Remark 2.6). If a = 0, then

T (M) =
∑

|σ |≤dim(M)

0dim(Mσ )χ(Mσ ) =
∑

|σ |=dim(M)

00χ(Mσ ) = χ(MH, 0) ,

whereMH, 0 = ∑
|σ |=dim(M) Mσ is the isolated points ofMH (Note that 00 = 1). If a = −1,

then
T (M) =

∑
|σ |≤dim(M)

(−1)dim(Mσ )χ(Mσ ) = χ(MH, ev)− χ(MH, od) ,

where MH, ev (or MH, od) is the even-dimensional (or odd-dimensional) components of MH

respectively.

(ii) Suppose that γi = −1 (1 ≤ i ≤ tH ), then γσ = (−1)l(σ ) for any σ ∈ St[H ]. If
a = 1, then

T (M) =
∑

|σ |≤dim(M)

(−1)l(σ )χ(Mσ ) = χ(MH+ )− χ(MH− ) ,

where MH+ (or MH− ) is the subset of MH consisting of those points x having slice types σx
with l(σx) even (or odd) respectively. If a = 0, then

T (M) =
∑

|σ |=dim(M)

00(−1)l(σ )χ(Mσ ) = χ(M
H, 0
+ )− χ(M

H, 0
− ) ,
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where MH, 0
ε = MH

ε ∩MH, 0 (ε = + or −). If a = −1, then

T (M) =
∑

|σ |≤dim(M)

(−1)dim(Mσ )+l(σ )χ(Mσ ) = (−1)dim(M){χ(MH
2, +)− χ(MH

2, −)}

because dim(Mσ ) + l(σ ) = dim(M) − l2(σ ), where MH
2, + (or MH

2, −) is the subset of MH

consisting of those points x having slice types σx with l2(σx) even (or odd) respectively.

(iii) Finally, suppose that γi = 0 (1 ≤ i ≤ tH ), then γσ = 00 · · · 00 = 1 if σ = σH (0)
or zero otherwise. If a = 1, then

T (M) = γσH (0)χ(MσH (0)) = χ(MσH (0)) ,

whereMσH(0) is the components ofMH with dim(MσH (0)) = dim(M)−|σH(0)| = dim(M).
If a = 0, then

T (M) = 0dim(M)γσH (0)χ(MσH (0)) =
{
χ(MH) if dim(M) = 0

0 if dim(M) > 0 .

If a = −1, then

T (M) = (−1)dim(M
σH (0))γσH (0)χ(MσH (0)) = (−1)dim(M)χ(MσH (0)) .

In a similar way, we have another examples.
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