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0. Introduction

Let G be a finite abelian group. In this paper, a G-manifold means an unoriented compact
smooth manifold (which may have boundary) together with a smooth action of G. Let T
be a map for m-dimensional G-manifolds which takes its values in the ring Z of rational
integers and is additive with respect to the disjoint union of G-manifolds. We call T a G-SK
invariant if it is invariant under equivariant cuttings and pastings (Schneiden und Kleben in
German) [5, 6, 9]. For example, x given by x® (M) = x(M*) for G-manifolds M is a
G-SK invariant, where y is the Euler characteristic, H is a subgroup of G and M H — {x €
M |hx = x forany h € H}. Further suppose that 7 is defined for all G-manifolds with
various dimensions. Then it is said to be multiplicative if 7(M x N) = T(M) - T (N) for any
G-manifolds M and N. For example, the above x 7 is multiplicative.

The main object of this paper is to characterize a form of multiplicative G-SK invariants.
In [1, 3], the author has discussed such a question in case where G is a cyclic group of finite
order.

In Section 1, we describe the irreducible G-modules and G-slice types. These notions
are needed in order to proceed with our argument.

In Section 2, we first introduce an SK group SK ¢ (d) resulting from equivariant cuttings
and pastings of G-manifolds. In [4, 8], Koshikawa and the author have studied its SK-
module structure, where SK, is an SK ring of closed manifolds (Proposition 2.2). A G-SK
invariant T induces an additive homomorphism S K f (0) — Z. For a slice type o, let x4
be a G-SK invariant defined by x,(M) = x(My), where M, is a G-submanifold of M
with slice types containing o (Definition 2.5). Then, using these x,, we have a basis of a
free Z-module 7;6 consisting of all G-SK invariants [2] (Proposition 2.8). Next we study a
multiplicative G-SK invariant, which is considered to be a ring homomorphism SK f @) —
Z. Such an invariant 7 is said to be of type (G/H) if H is the minimum element (with
respect to the inclusion of subgroups) in the set consisting of those subgroups K of G such
that 7(G/K) # 0 (Definition 2.11). For example, x is of type (G/H). It is seen that T
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is determined by its values on the one-dimensional disk D' (with the trivial action) and G-
manifolds G x g D(V;), where {V;} is the complete set of non-trivial irreducible H-modules
and D(V;) is the associated H-disk (Theorem 2.17). Finally we give a typical example of such
invariants (Example 2.21).

1. Preliminaries

A G-module means a finite-dimensional real vector space together with a linear action
of G. For a subgroup H of G, let C(H) consist of all subgroups J of H such that the quotient
H/J = Z4, a cyclic group of order d (> 2). Then, for J/ € C(H) a non-trivial irreducible
H-module V(J,j) (1 <j < %qb(d) + 1), where ¢ is the Euler phi-function, is defined as
follows.

(1) If d = 2, then the underlying space of V(J, 1) is the set R of real numbers with a
generator of H/J = Z; acting by multiplication by —1.

(2) Ifd = 3, then the underlying space of V(J, ji) is the set C of complex numbers
with a generator of H/J = Zg4 acting by multiplication by exp(2miji/d), where {ji} is the
complete set of integers such that 0 < j; < jo» < -+ < jy@) < d and each ji is prime to d
(cf. [9 ; Theorem 1.6.1]).

If M is a G-manifold and x € M, then there is a Gy-module U, which is equivariantly
diffeomorphic to a G,-neighbourhood of x. Here G, = {g € G | gx = x} is the isotropy
subgroup at x. The module Uy decomposes as U, = R” & V,, where G, acts trivially on

R? and VXG" = {0}. We refer to the pair o, = [Gy; V] as a slice type of x. By a G-slice
type in general, we mean a pair ¢ = [H; V] of a subgroup H of G and an H-module V such
that V# = {0}. An H-module V is a product of non-trivial irreducible H-modules V (J, ji)
with J € C(H). We denote by op the slice type [{1}; {0}], where {1} is the trivial group.
Let St[H] be the set of all slice types 0 = [H; V] and St(G) = UHCG St[H] the set of all
G-slice types. There is a total ordering on St (G) as follows. For any positive divisor k of |G|,
the order of G, let L (k) be the set consisting of all subgroups H of G such that | H| = k. First
order the elements in L (k) appropriately, then give an ordering < on the set |_J, L(k) of all
subgroups of G, preserving inclusion of subgroups, thatis, if H € K then H < K. Let us fix
a subgroup H, then such an ordering leads to the one on the set of all non-trivial irreducible
H-modules: V(Jy, j1) < V(Ja, jo)if Jo» < Jy or J1 = J> and j; < j,. Finally we order the
elements in S7(G) as follows.

() [H;V]<[K;W]ifdim(V) < dim(W).

(2) Suppose that dim(V) = dim(W), then [H; V] < [K; W]if H < K.

(3) Suppose that dim(V) = dim(W) and H = K, then [H; V] < [H; W]if V <
W in the ordering of H-modules induced lexicographically from the one of all non-trivial
irreducible H-modules: Vi < Vo < --- < V;, (cf. [9; Section 1.7]). Here, by the definition
of the total ordering, there is an integer py such that the underlying space of each V; (1 <i <
pr)is R, whilethe oneof each V; (py < i < ty)is C. Weregard py = 0if H is an odd order
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group. A slice type o € St[H] is therefore of the form o = o (a(1),--- ,a(pn); a(py +
D, ,attn) =[H; T]; ‘/l.“(i)] for some integers a (i) (> 0).

DEFINITION 1.1. Let W be a K-module and H a subgroup of K. Then denote by W
an H-module W induced from H € K. Let {W;} : Wi < --- < Wy < Wpeq1 <+ < Wy
be the set of all non-trivial irreducible K-modules. If T = [K; W] € St[K], W = ]_[j Wj.’(j),
b(j)
(H)>
where the product is taken over all j such that (W;)y) are non-trivial H-modules. Since

is a slice type, then we define a slice type 7(y) € St[H] by v(zy = [H; V],V = ]_[j(Wj)

Wi)qyy =Ror R2, a trivial H-module (1 < j < tg), we have that 7((1y) = 09. We call
dim(W) = Zlgjgp[( b(j)+2 ZpK<j§t1< b(j) the dimension of 7 and denote it by |z|.

REMARK 1.2. (i) More precisely, let W; = V (L, my) forsome L C K with K/L =
Z, and an integer my such that 0 < my < a, (mg,a) = 1. Then (W;)gy = V(LN H, m')
with0 < m' < b, (m’,b) = 1, where H/(L N H) = LH/L = Z;. The integer m’ is
determined by the action LH /L on (W;)x) induced from the one of K/L on W;. We see
that (W;)g) is the trivial H-module R or R? only if H C L. It follows that the difference
IT| — |z(a)l is the sum of dim(W;) (=1 or 2) with H C L.

(i) Wy = RFI-IFenl x v as an H-module and W = (W) = RIFI=I7anl x (0}
has slice types 7(yy (H € U C K) as a K-invariant subspace of W. Note that t(y) < 7
because |7(y)| < |7].

(iii) Letuswrite t = tX(b(1), -+, b(pk); b(pk + 1), --- , b(tk)) for t in Definition
1.1. Then we have t(y) = o), - ,alpu);alpu + 1), ,a(ty)) , where

ay= Y b(H+2 Y b()(A<i<pm),

JjeJ @) JeJ" (@) (12.1)
ai)= Y b(j) (pu <i<tn).
JeJ ()

The sets J (i) = J(H, K; i), J'(i) and J” (i) are as follows: J (i) (0 < i < ty) are subsets of
J(K)=1{j|1<j<tk}givenby

J@)=J'OUJ"()ifl <i < py, where

JO =Wy =Vi,1 <j<pkx} and J"G)={j | (W) = V3 pk < j <tk}.
JO={jlWp)uy=Vi,px <j=<tk}ifpy <i <ty.

JO)=JKN\ | JG)=JOUJI0), where

I<i<ty

J'©0)={j|(Wjan =R, 1= j < pgyand J"(0) = {j | W)y =R®, px < j <ix}.

The set J(K) is a disjoint union of these J (i) = J(H, K;i) (0 <i <tp).
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@iv) It follows that

el — el = Y b(D+2 Y b(). (12.2)

Jel’(0) jed"(0)
2. Multiplicative G-SK invariants

Let N; (i = 1,2) be m-dimensional G-manifolds, L an G-invariant codimension zero
submanifold of each boundary dN; and ¢, ¥ : L — L G-equivariant diffeomorphisms.
Pasting along L, we have G-manifolds M; = Ny U, N> and M = Ny Uy N;. Then M;
and M, are said to be obtained from each other by an equivariant cutting and pasting (G-SK
process). Let Mg (9) be the set of all m-dimensional G-manifolds with boundary, which is
an abelian semigroup with respect to the disjoint union + and has a zero given by the empty
set .

DEFINITION 2.1 (cf. [6 ; Chapter 1]). G-manifolds M| and M3 € M,(,f (0) are said to

be G-SK equivalent, in symbols M| ~ M5, if there is a G-manifold P € Mg(a) such that
M + P and M3+ P can be obtained from each other by a finite sequence of G-SK processes.

The G-SK equivalence ~ is an equivalence relation on ./\/lnGl (0) and the set Mg(a) ]/~
of all equivalence classes is a cancellative abelian semigroup. Denote by [M] the equivalence
class containing a G-manifold M. Let SK ,g (0) be the Grothendieck group of Mg @)/ ~. We
then have a graded SK,-module SK*G(S) =®D,.~0 SK,g(E)) given by the cartesian product
of manifolds. Here SK is an SK ring of closed ma_nifolds, which is a polynomial ring over Z
with a generator « represented by the real projective plane RP2 (cf. [9; Theorem 2.5.1 ()]).

PROPOSITION 2.2 (cf. [4; Proposition 1.13]). SKf () is a free SK «-module with basis
B ={[G xu D(0)],[G xg D(c xR)]| o =1[H; V] € St(G)}, where D(¢) = D(V) is the
associated H-disk.

Let M x N be the cartesian product of G-manifolds M and N (with straightening the
angle). This product makes SK¢ (9) an SK-algebra.

Foro = o (a(l), -+ ,a(ty)) and v = a ¥ (b(1),---,b(ty)) € St[H], we denote by
o x T theslicetype o x T = cH@a()+bQ), - ,alty) + blty)).

LEMMA 2.3 (cf. [2; Lemma 3.6]). A multiplicative relations for the basis elements in
B are given by the following.

(i) [G xu D()]-[G xgx D(t)] = a(H, K)ID1[G xunk D(o(Hnk) X T(HAK))]
for any o € St[H] and t € St[K], where a(H, K) = (|G||H N K|)/(|H||K]|) and b =
lo| = lownk)l + 1Tl — lT@Enk) |-

(i) ¥ y=x-3=x-yand &) = ax for any elements x, y, where ¥ = [D'] - x in
general.

(ii<) In particular, @ = [D?] in SK2(9), where SK.(3) = SKV(9) is an SK ring of
manifolds with boundary.
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DEFINITION 2.4 (cf. [5], [6 ; Chapter 1] and [9 ; Definition 5.2.5]). LetT : /\/l,(,f (@) —>
Z be an additive map, thatis, if M = M) + My then T(M) = T (M) + T(M>). Wecall T a
G-SKinvariantif T is invariant under G-SK process, thatis T (N1 Uy, N2) = T (N1 Uy N2) for
any G-diffeomorphisms ¢, ¢ : L — L in the beginning of this section. The map T induces
an additive homomorphism T : SKC(d) — Z naturally. Denote by 7,¢ the set of all these
G-SK invariants, which is a Z-module under the natural addition.

From now on, T is simply called an invariant. We sometimes write 7' (M) instead of
T (x) for x = [M] if no confusion can arise.

DEFINITION 2.5. Let M be a G-manifold and o € St[H] with H C G. Then define
M, = {x € M(yy|ox = o}, where My = M with the induced action of H and o, is the
slice type of x in Mp).

REMARK 2.6. In other words, M, is the set consisting of those points x € M whose
slice types o, satisfy that (0,,)(y) = o. By the slice theorem, M,; is a G-invariant submanifold
of M with dim(M,) = dim(M) — |o| and (M) = (0M) (cf. [7 ; Theorem 4.14]). In case
o = op, we have My, = M. As an example, let M = G xg D(z) for T € St[K]. Then
M, = |G/K|D"=FFenlin My = G xx DRIT-I"! x V) if H CKand o = 1) =
[H; V], while M, = @ otherwise (cf. Definition 1.1 and Remark 1.2 (ii)). In general, a
submanifold M* = (M) decomposes as M" = 3" ¢,y My. For o € St[H], we
have (M x N), = Z(G/J/,)(M(,/ x N,») summing over all pairs (¢/, 0”) € St[H] x St[H]
such that o’ x 6” = o. Hence the following product formula holds:

XM X NYg)= Y x(Mg) - x(No). 2.6.1)
(0’,0”)
EXAMPLE 2.7. A map yx, defined by x,(M) = x (M) is an invariant because M1 ~
M; implies (M1); ~ (M2), naturally. Note that x5, = x. Let M = G xg D(7) for
T € St[K]. Then xo (M) = |G/K|if H C K and 0 = 1(p), while x,(M) = 0 otherwise.
Furthermore, for a subgroup H of G, the map x” defined by x (M) = x(M™) is also an
invariant and the equality x 7 = Y oe st[H] Xo holds in 7.6 (cf. Remark 2.6).

Let H be a subgroup of G. Then, by using the total ordering on the set of all subgroups
of G in Section 1, define inductively integers ny (K) for subgroups K with H € K C G as
follows:

nu(H)=1, nu(K)=|K/H|— Y  nu(L).
HCLCK

Here L C K means that L is a proper subgroup of K. If H = {1}, then the integers
n(1}(K) coincide with those n; in [7; Definition 5.3]. For 0 € St[H] and a subgroup K

with H C K C G, let Sk (o) be the set consisting of those slice types T € St[K] such that
T(H) = O.
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PROPOSITION 2.8 (cf. [2; Theorem 2.6 and Remark 2.8]). For o € St[H], define an
invariant 65 by

ea=|G/H|—1{xg+ > nH(K)< > x)}

HCKCG 1€Sk (o)

Then we have the following.

(i) Let t € St[U] for a subgroup U of G. Then 6,(G xy D(t)) = 1ifU D H and
0 = T(H), while 0, (G xy D(t)) = 0 otherwise.

(ii)) The set {6, | 0 € St(G), |o| < m} provides a basis for TmG as a free Z-module.

DEFINITION 2.9. Assume that an invariant 7 is defined for all G-manifolds. Then it
is said to be multiplicative if T(M x N) = T'(M) - T (N) for any G-manifolds M and N. The

map T induces a ring homomorphism T : SKC (3) — Z.

Let pt be the one-point set. We see that T (pt) = 0 or 1 because T(pt)2 = T(pt). If
T (pt) = 0, then T is trivial, that is 7 = 0. From now on, we treat a non-trivial invariant 7,
which therefore takes the value 7'(pt) = 1.

The remainder of this paper are devoted to studying of a form of (non-trivial) multiplica-
tive invariants.

In case of the trivial group G = {1}, we have the following.

PROPOSITION 2.10 (cf. [1; Proposition 3.4]). A multiplicative invariant To:SK(9) —
Z is uniquely determined by the value a = To(DY) and has a form To(M) = adim(M)x (M).
Here, ifa = 0, then al is regarded as 1.

We next consider the case where G # {1}. Given a multiplicative invariant 7', let Cr
be the set consisting of all subgroups K of G such that T(G/K) # 0. Note that C; # @
because T(pt) = T(G/G) = 1 and G € Cr. Itis seen that Cr has the minimum element
H = Ngec, K (with respect to the inclusion C of subgroups). Indeed there is a non-zero
integer k such thatk-G/H = ercr G/K by Lemma 2.3 (i). This impliesthatk-T(G/H) =
HKECT T(G/K) and hence T(G/H) # 0. In other words, such an H is the subgroup which
satisfies the condition that 7(G/H) # 0 and T (G/U) = 0 for any proper subgroups U of H.

DEFINITION 2.11. The above T is said to be of type (G/H ).
Note that G/H = G x gy D(c"(0)), where 67 (0) =" (0,---,0;0,---,0).

PROPOSITION 2.12. IfT is of type (G), then T (M) = To(My) for any G-manifold M,
where Ty is the invariant in Proposition 2.10 given by a = T(D") and Mo = M with ignoring
group action.

PROOF. Since M x G = My x G as G-manifolds, we have T (M) = T (My) = To(Mop)
because T (G) # 0. g.e.d.

We next study an invariant of type (G/H) with H # {1}.
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LEMMA 2.13. IfT isof type (G/H), then
(i) T(G xy D(o)) =0 forany slice type o € St[U] with U 2 H.
(il)) T(G/K)=|G/K| forany K 2 H. In particular, B = T(G/H) = |G/H|.

PROOF. For subgroups P, Q of G and o € St[P], we have
T(G xp D(0)) - T(G/Q) =a(P. Q) - T(D") - T(G xpng D(opng)))  (2.13.1)

by Lemma 2.3 (i), where b = |o| — |o(pn)|. First, set P = Q = U for a proper subgroup U
of H, then

T(G xy D(0)) - T(G/U) = |G/U|-T(D®) - T(G xy D()).

Since T(G/U) = 0 by definition and T(D% = 1, we have T(G xy D(c)) = 0. Next,
set P = U for U 2 H and Q = H in (2.13.1). The right-hand side vanishes because
U N H is a proper subgroup of H, while T(G/H) = B # 0 in the left-hand side. Thus
T (G xy D(¢)) = 0 and (i) is obtained. To show (ii), set P = K, o0 = o X (0) for K D H and
QO =Hin(2.13.1),then T(G/K)-8 =a(K, H)-S. Hence T(G/K) = a(K, H) = |G/K|.
g.e.d.
LEMMA 2.14. For subgroups H and K with H C K C G, let J(K) = |J; J (i) and
J(i) = J(H, K;i) be the partition in Remark 1.2 (iii). Let 0; = GK(ej), where € has
components zero except for its j-th component, which is equalto 1 (1 < j < tg). Then we
have

()
o) if jeJ),
() =q0fe) if jeJ@ (N <i<pu,1<j<pkori>pu,j>pk),
of(2e) if jeJ@)(1<i<pu.j>pk).
Further, if T is an invariant of type (G/H), then
(i)
|G/K|-a if jeJO) (A=) =<pk),
|G/K|-a* if j€JO) (> px).
IG/K|-yi if jeJ@) (1 <i=<pu,1=<j=<pkori>py,j>pk),
IG/K|-y? if jeJ@) (A <i<pn.j>pk),

T(GxgD(oj)) =

where a = T(D') and y; is the integer given by y; = |G/H|’1 - T(G xg Dot (e)))
(I <i=<ty).

Note that G xg D(0;) = G xg D(W;j), where {W,} is the set of non-trivial irreducible
K-modules.

PROOF OF THE LEMMA. Write (o) sy as (6)) (i) = o (a(1), -+ ,a(pn); a(pn +
1),---,a(ty)). Suppose that j € J(i) = J'(i) U J"(@i) forsome i (1 < i < pg). Then



268 TAMIO HARA

a@i) =1 (resp. a(i) = 2)if j € J'(i) (resp. j € J”(i)) and a(k) = 0if k # i by the first
equality in (1.2.1). Hence (o) (n) = o (e;) if 1 < j < px ora ¥ (2¢;) if j > pk. Similarly
(o)) = ofl(e;) if i > py,j > pk. Finally (6;)) = 0¥ (0) if and only if j € J(0).
Thus (i) follows. Next we prove (ii). PutA; = T(G xg D(0j)) and §; = T (G x g D(oH (e)))
for convenience. We have A ;- T(G/H) = |G/K|ab~T(G x g D((0j)#))) by (2.13.1), where
b = |oj| — [(6j)m)l. This implies that
A =I|G/K|IG/H| \a® - T(G xu Do) ) (2.14.1)
because T(G/H) = |G/H| by Lemma 2.13 (ii). Suppose first that j € J(i) withi > 1. In
this case, we see that |o| = [(0)m)| and b = 0 by (i). Since T is non-trivial, we note that
a® = T(D% = 1 even if a = 0. Hence
- {|G/K||G/H|_1 &ifje () (1 <i<py.1<j<pkori>pu.j>pK).
"7 IG/KIIG/HI™ - T(G x i Dot 2e))if j € J() (1 <i < pu,j > px)-
(2.14.2)
In the second case, since Eiz =|G/H|-T(Gxg D(of (2¢)))) by Lemma 2.3 (i), we have ; =
|G/K||G/H| ™% gl?. Now consider the case where K = G for the first equality in (2.14.2)
and denote by y; the integer T(D(O’G(Ej))) if 1 <i < py (and some j € J(H, G; i) with
1<j<pg)ori > py (andsome j € J(H, G;i)with j > pg). Theny; = |G/H|™" - &
(1 <i < ty). Taking this in (2.14.2), we have A; = |G/K| - ; in the first case or |G /K| - yl.2
in the second one. Next, in case j € J(0), itis seen that A ; = |G/K |a® by (2.14.1) because
@) = ot (0)and T (G x y D(c(0))) = |G/H| by Lemma 2.13 (ii). Since b = lojl =1
if ]l <j < pgor2ifj > pg, the result follows. g.e.d.
DEFINITION 2.15. The above T is said to take a class of integers V = {a} U {y; |1 <
i < ty). The integer a or y; is given by a = T(DY) or y; = |G/H|™' - T(G xy D(V;))
respectively, where {V; | 1 <i < ty} is the set of non-trivial irreducible H-modules.

LEMMA 2.16. Let T be the invariant in the above lemma. Then we have
T(G xk D(0)) = |G/K|-aI7lounly, (2.16.1)

for any slice type o € St[K] with K 2 H, where Y5, = [L yl.a(i) if oy =
oflal), - ,alpr);alpy+1), -, a(ty)). We regard a° (or)/l-o) aslifa=0(ry; =0)
respectively.

PROOF. Writeo aso = oX(b(1), -+, b(pg); b(pk +1), -+, b(tg)) and set o (j) =
a®(0,--+,b(j),0,---,0) (1 < j < 1g). Since o = []; 0(j) and o (j) = o ¥ (e))?V, we
have |G/K|'"*~'[G xx D(0)] = [];IG xx D(o(j))]and |G/K "G xk D(o(j))] =
[G xk D(cX(e;))1""") by using Lemma 2.3 (i) inductively. Then it follows that

T(G xx D (j)) = |G/K|'PD 35D (1 < j <),
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where A; = T(G xg DX (e;))). Further, we have

T(G xx D()) = |G/K|'""* [[T(G xx D(@(j))
j
i (o b(j)
= |G/K|'"7*%|G/K|'Kx ! )ij’
J

= |G/K|1’l(")l_[L,-, (2.16.2)
i

where [(0) = ¥ ;b(j) and Li = []jc; 27" JG) = J(H. K1) (0 < i < ty) asin
Lemma 2.14. It follows from Remark 1.2 (iii) and Lemma 2.14 (ii) that L; = |G/K|10a“'0 if

i =00r|G/K['y%if1 <i <ty,wherel; =3 ;i b(j)and

S b +2 Y b(j)=lo] —loun|ifi =0,
JjeJ'(0) Jj€J"(0)

o] 2 b(D+2 D b()=a@)ifl <i < pu,
JjeJ' (@) JjeJ" (@)
Y b()=al)if pu <i <tn.
JjeJ @)

Note that } y_;,. i = I(c). Hence we obtain the desired formula by substituting L; in
(2.16.2). Let 0 = 0" (0) in (2.16.1). Then T(G/H) = |G/H| ~a0yay(0) which is equal to
|G/H| by Lemma 2.13 (ii). Hence aoylo e y,% = 1 and this means that a° or each yl.O must
be regarded as 1 even if a or y; = 0 respectively. g.e.d.

THEOREM 2.17. Let T be a (non-trivial ) multiplicative invariant of type (G/H ) with
H # {1}. Then it is uniquely determined by a class of integers V = {a}U{y; |1 <i <tg}in
Definition 2.15 and has a form

T(M)= Y a"My, . x(M,) (2.17.1)
ceSt[H]

for any G-manifold M. If a or y; = 0 for some i, then we regard a° or yio as 1 respectively.

PROOF.  Since y, Yy = Y5 for any o’ and o” € St[H] such that 0’ x " = o, the
above T is multiplicative by making use of the product formula (2.6.1). We see that T takes
integers V = {a, y;}. In fact, let 0 € St[H], then xo(DY = 1if o = 0" (0) or zero
otherwise. Hence T(D') = a'y,s() - 1 = a. Further x,(G xu D(c" (¢;))) = |G/H]| if
o = ot (e;) or zero otherwise (1 < i < ), which implies that T(G x g Dot (e))) =
aoy(,y(el_) -|G/H| = y; - |G/H]|. Therefore, T takes integers in V' and is determined by the
class V. On the other hand, T(G/H) = aoycy(o) -|G/H| = |G/H| and T(G/U) = 0 for
any proper subgroup U of H. This verifies that T is of type (G/H) (cf. Definition 2.11).
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Let I be an invariant which is not necessarily multiplicative. To proceed with our proof, for
an integer j (> 0), consider an invariant /() defined by I(;)(M) = I (M) if j = dim(M) or
zero if j # dim(M). Now let T be any multiplicative invariant of type (G/H), which takes
integers V = {a, y;}. We show that T has a form in (2.17.1), or equivalently has a form

T =Y a"Voxowtioh: (2.17.2)
k, o

where X, (j) = (Xo)(j) in the sense mentioned above and the sum is taken over all slice types
o € St[H] and the integer k (> 0) (Remark. Note that x, ;) may be defined for j > |o]
because M, = ¢ if dim(M) < |o|. Thus, j is written as j = k + |o]| for some &k > 0.
If dim(M) = k + |o|, then k = dim(M) — |o| = dim(M,) as in (2.17.1) (cf. Remark
2.6).). Now let us consider an invariant 8, ;) = (05)(;) for 8, in Proposition 2.8. Since
T eTC =3,T% wecan write T as T = Y, do.(k+/o])0o.(k+]o|) SUmming over all
o € St(G) and k > 0. To begin with, we show that as (x+|o|) = O for each o € St[U]
with U 2 H and k > 0. Recall the total ordering < on St(G) and rename the slice types
o € UU;}H St[U] as p1 = 09 < p2 < p3 < ---. First it follows that T(Dk x G) =
Aoy, (k) * g (DX X G) = agy ) - |G ™ X (D* X G) = aqy, k) because b5, = |G|~ (x +n) by
definition, where 1 is a sum of x; with t # og. Since T is of type (G/H) with H # {1},
we have T(G) = 0 and T(D* x G) = T(DX) - T(G) = 0. Thus ay, ) = O for each
k > 0. Next suppose that Ap;, (k+lpjl) = 0 for any p; with 1 < j < ¢t and k > 0. Let take
M = D¥ x G xy D(p;). Then T(M) = T(D*) - T(G xy D(p;)) = 0 by Lemma 2.13 (i),
while
T(M) =) a0 Gerloh M) = D~ Aoy (el
LCU LCU

because 0(p,) . (k+1p:) (M) = (), (G xu D(p;)) = 1 by Proposition 2.8 (i). If L is a proper
subgroup of U, then (pr)() = pj, for some ji < . Hence a(p,),,.(k+|p ) Vanishes by the
inductive assumption and so does a,,, (k+|p,|)- Therefore T is written as

T= Y PottiohXotloh+ D > Quseh Kty (217.3)
oeSt[H], k>0 HCKCG teSt[K], k>0

for some rational numbers Py ;) and QO ) (See the expression of 6, in Proposition 2.8.).
Next we prove that

Py (ko)) = Vo (2.17.4)

for any o € St[H] and k (> 0). To show this, consider the value T'(M) for M = D¥ x G xy
D(o). Then we have that T (M) = o,(k+|o]) * Xo (M) = Po"(k_l’_lo'l) -|G/H]| by (2.17.3), while
T(M)=T(D"-T(GxyD(c)) = a*-|G/H|a"y, by (2.16.1). Therefore we obtain (2.17.4).
We recall that a° (or yl.o) is regarded as 1 even if a = 0 (or y; = 0) respectively as remarked
in the proof of Lemma 2.16. To complete the proof, we must show that QO (x+|z) = 0. Let
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us fix an integer k (> 0). Then, for M = DF x G xx D(t) (t € St[K],H C K C G), we
have that T(M) = x + y by (2.17.3) and Remark 2.6, where
X = Pry (k+tl) © Xroy. kel (M)

y= Z Qv (ki) * Xy, etz (M) -
HCUCK

(2.17.5)

It follows that
X = ak+|‘(\*|f(H)‘yr(H) -|G/K| = ak . |G/K|a|r\f|r(ﬂ)|yt(m

by Example 2.7 and (2.17.4), which means that x = T(Dk) -T(G xg D(r)) = T(M) by
(2.16.1). Hence y = 0 and

Z Oryy. tktlzh =0
HCUCK
because Xr(u)(M) =|G/K|(H Cc U C K). Wecanorderthese U : H < U < --- <
U, = K by using the total ordering in Section 1. Then the inductive argument gives that
O+, (k+|zp = 0. Hence T has the desired form (2.17.2). g.e.d.

REMARK 2.18. In case where G = {1}, we have that St[{1}] = {oo} and x5, = x.

Then the invariant in (2.17.1) has the form 7(M) = a9™™) y (M) because My, = M, where
Yo, 1s regarded as 1 formally (cf. Remark 2.6 and Example 2.7). Such a T coincides with Ty
in Proposition 2.10.

We have shown that SK,(9) = Z[[D!]] as a polynomial ring over Z. Further, an element
x € SK,(0) is determined by the value x (x) and [M] = x (M) - [D1]dimM) for any manifold
M (cf. [8; Theorem 1.2]).

COROLLARY 2.19. Let R : SK*G(a) — SK.(0) be a (non-trivial ) ring homomor-
phism, then it has a form

RIMY) = Y a™My, M,1= Y a" My, x(M,) - [D']I M)
oeSt[H] oeSt[H]
foran H C G and a class of integers Vg = {yi | 1 < i < ty}, where a = x(R(D")) and
vi =|G/H|™'- x(R(G xy D(V}))) as in Definition 2.15.

PROOF. Consider amap T = x o R : SKY(d) — Z, then it is a multiplicative
invariant and has a form 7 = x o Rg as in (2.17.1), where Ry : SK*G(a) — SK,(0) is
given by Ro(IM1) = 3, s ™My, - [M,]. Since x(RAIMD) = x(Ro(IM1)), we
have R([M]) = Ro([M]) for any [ M] as mentioned above. Thus, R = Ry. g.e.d.

REMARK 2.20. Leta multiplicative invariant T of type (G/H ) be determined by inte-
gers V = {a, y1, - , ¥4, } and have the form as in (2.17.1). Then an invariant 7’ defined by

T'(M) = (=)™ T (p1) is also multiplicative and is of type (G/H). In fact, T’ coincides
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with the one 7" which takes integers V" = {—a, =1, -+ , —Vpy+ Vpy+1, " ** » Viy }. To show
this, write T" as

"M)=" (=a) ™M) (—y) oDy ) Py x (M)
oeSt[H]

for a G-manifold M, where o1 = (0, --- ,0,a(pg+1),--- ,a(ty))ifo = (a(l),---,
a(ty)). Since |o| = leiszm a(i) (mod 2) and dim(M,) = dim(M) — |o|, we have

T"(M) = (=18 N~ gdimMo)y oy (M) = (=)D T (M) = T'(M) .
oeSt[H]

EXAMPLE 2.21. Finally we consider an invariant 7 of type (G/H) which takes in-
tegers Vg = {alU{y; | 1 < i < ty} with a or each y; € {—1,0, 1} and give some
typical example by using the formula (2.17.1). Let I(c) = leism a(i) be the length of
o =o@), - ,alpn);alpy +1),---, pn)) € St{Hl and (o) = Y, _i;, a(Q)
the length of the two-dimensional irreducible H-modules in o. Note that [ (o) = |o| — [(0).

(i) Supposethaty; =1 (1 <i <ty),theny, = 1forany o € St[H]. Ifa = 1, then

T(M)= Y x(My)=xM")
lo|<dim(M)

(cf. Remark 2.6). If a = 0, then

TM)= Y 0MIyMyy = Y 0% (My) = x(M*0),
|| <dim(M) |o|=dim(M)

where M1 0 = Zlal:dim(M) M, is the isolated points of M (Note that 00 = 1). Ifa = —1,
then
T(M)y= Y (DI (M) = x (M) — (M09,
lo|<dim(M)

where M- ¢ (or M- °) is the even-dimensional (or odd-dimensional) components of M
respectively.

(i) Suppose that y; = —1 (1 <i < ty), then y, = (=D for any o € St[H]. If
a = 1, then

T(M)y= Y (=D'DxMy) = xMi) - x(m¥),
lo|<dim(M)

where M f (or M) is the subset of M consisting of those points x having slice types oy
with /(o) even (or odd) respectively. If a = 0, then

TMy= Y =Dy = xmi %) — x ™,
|o|=dim(M)
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where MH- 0 = MH 0 MH- 0 (e = + or —). Ifa = —1, then

TM)= Y (DI (M) = (DI M) - x (M)
|o'|=dim(M)

because dim(My) + (o) = dim(M) — I;(o), where M£1+ (or Mf ) is the subset of M7
consisting of those points x having slice types o, with I (o) even (or odd) respectively.

(iii) Finally, suppose that y; = 0 (1 <i < ty), then y, = 00...0=1ifo =" (0)
or zero otherwise. If a = 1, then

T(M) = yorgyx (Mgt ) = X (Mgu )

where M, g, is the components of M with dim(M, # ) = dim(M) —|o# (0)| = dim(M).
If a = 0, then

x(MHY if dim(M) =0

T (M) = 0%m() M =
() YorwXMonw) =1, if dim(M) > 0.

If a = —1, then

dim(M, 1 )

T(M) = (1) VortyX Mgng) = (=DM x (M1 g) .

In a similar way, we have another examples.
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