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Abstract. In this article, we improve and generalize the result of [O]; the one is the necessary and sufficient
condition of the minimality of Lagrangian submanifolds in adjoint orbits, which are Hermitian symmetric spaces, and
the other is the necessary and sufficient condition of the Hamiltonian stability of minimal Lagrangian submanifolds
in adjoint orbits, which are not necessarily Hermitian symmetric spaces.

1. Introduction

Let (M,ω) be a compact Kähler manifold, and L ⊂ M a compact minimal Lagrangian
submanifold. Here we say a submanifold L minimal, if it has extremal volume under all
smooth variations of L. In [Oh], Y.-G. Oh investigated the second variation of volume at L,
and then defined the notion of “Hamiltonian stability”; L is called Hamiltonian stable if the
second variation of volume is nonnegative for all Hamiltonian deformations of L. One of the
main results in [Oh] is the following;

THEOREM 1.1 ([Oh]). Let (M,ω) be a compact Kähler-Einstein manifold with ρ =
cω, where ρ is the Ricci form of (M,ω). For a compact minimal Lagrangian submanifold
L ⊂ M, this is Hamiltonian stable if and only if λ1(L) ≥ c, where λ1(L) is the first positive
eigenvalue of the Laplacian �L which acts on C∞(L).

In view of this theorem, it is an interesting problem to investigate λ1(L) for a compact
minimal Lagrangian submanifold L in a Kähler-Einstein manifold. The well-known examples
of Kähler-Einstein manifolds are orbits of the adjoint representation of a compact semisimple
Lie group on its Lie algebra; let G be a compact semisimple Lie group, g its Lie algebra, 〈 , 〉
an AdG-invariant inner product on g, and M an adjoit orbit in g. Suppose that the Lie group G

acts on M effectively. In this paper, when we say “adjoint orbit”, we suppose that it satisfies
this condition. Then M has the canonical complex structure J , and the canonical symplectic
form F which is Kähler with respect to J (see [B] or Section 2 below). Note here that the
2-form ω associated with 〈 , 〉|M and J , which is defined by ω(X, Y ) = 〈JX, Y 〉|M , is not
always Kähler but Hermitian.
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The main theorem of [O] is the following.

THEOREM 1.2 ([O]). Let (M2m, J, 〈 , 〉|M) be an adjoint orbit in g. Suppose that ω =
αF and that 〈 , 〉|M is Kähler-Einstein with its Ricci form ρ = cω for a positive constant
c. Let x : M → g denote the inclusion. Then the following conditions are equivalent for a
minimal Lagrangian submanifold L;

(1) L is Hamiltonian stable.
(2) λ1(L) = c.
(3) All of the coordinate functions of x|L, xi

|L, are eigenfunctions of L with c = λ1(L).

Note here that, by the assumption, (M, J, 〈 , 〉|M) is a Hermitian symmetric space.

For example, the adjoint orbit which satisfies the assumption of Theorem 1.2 is the orbit
of

su(n) � √−1

(
λIp 0

0 µIn−p

)
(λ, µ ∈ R, λ − µ > 0, pλ + (n − p)µ = 0)

by the adjoint action of SU(n), where Ip ∈ gl(p) and In−p ∈ gl(n − p) are the identity
matrixes. It is diffeomorphic to the complex Grassmann manifold Grn,p(C).

In this paper, we improve this theorem as follows.

THEOREM 1.3. Let (M2m, J, 〈 , 〉|M) be an adjoint orbit in g. Suppose that ω = αF

and that 〈 , 〉|M is Kähler-Einstein with its Ricci form ρ = cω for a positive constant c.
Denote its embedding by x : M → g. Then the following conditions are equivalent for a
Lagrangian submanifold L;

(1) L ⊂ M is minimal.
(2) �Lx|L = cx|L.

(3) The embedding x|L : L → Sdim G−1(
√

m/c) is minimal.

On the other hand, if the adjoint orbit (M, 〈 , 〉|M) does not satisfy the condition ω =
αF , we cannot say about the minimality of Lagrangian submanifolds, but we can generalize
Theorem 1.2 as follows.

THEOREM 1.4. Let (M2m, J ) be an adjoint orbit in g and x : M → g denote the
embedding. Suppose that a G-invariant Kähler metric g is Kähler-Einstein with its Ricci
form ρ(X, Y ) = cg (JX, Y ) for a positive constant c and that �M,g x = 2cx. Then the
following three conditions are equivalent, for a compact minimal Lagrangian submanifold
L ⊂ M with

∫
L

x|Ldv = 0.
1. L is Hamiltonian stable.
2. λ1(L) = c.
3. All of the coordinate functions of x|L, xi

|L, are c = λ1(L)-eigenfunctions.

In this case, (M, J, g ) is not necessarily a Hermitian symmetric space.

Recently, by Goldstein [G], the following theorem was proved.
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THEOREM 1.5 ([G]). Let (M,ω) be a Kähler manifold, L ⊂ M an oriented closed
minimal Lagrangian submanifold and V a holomorphic vector field defined in a neighbour-
hood of L in M . Then ∫

L

divC V dv = 0 .

Note here that, we call a vector field V holomorphic if V − iJV ∈ Γ (T 1,0M) is
the holomorphic section, or equivalently, if the endmorphism X 
→ ∇XV of TmM is J -
linear. For a holomorphic vector field V , divC V = traceC(X 
→ ∇XV ) is well-defined and
2 Re divC V = div V . On the other hand, if (M,ω) is Kähler-Einstein with its Ricci form
ρ = cω and λ1(M) = 2c, then grad u is holomorphic, for any first eigenfunction u of the
Laplacian �M . So, by Theorem 1.5, the condition

∫
L x|Ldv = 0 automatically holds, for any

oriented minimal Lagrangian submanifold.
Examples of adjoint orbits which satisfy the assumption of Theorem 1.4 are given in

Section 4.

2. The adjoint orbits of compact semisimple Lie groups

In this section, we review the notion of the adjoint orbits, Chapter 8 of [B], for the
preparation of the following sections.

Let G be a compact semisimple Lie group, g its Lie algebra, 〈 , 〉 an AdG- invariant inner
product on g, and M an adjoit orbit in g. Suppose that the Lie group G acts on M effectively.
In this paper, when we say “adjoint orbit”, we suppose that it satisfy this condition. For U ∈ g,
the fundamental vector field XU , attached to U , is defined by

XU(w) = [U,w] (w ∈ M) (2.1)

under the identification g � Twg ⊃ TwM (w ∈ M). Since G acts on M transitively, any
tangent vector in TwM is written as the value of a fundamental vector field, and we can
identify

TwM � Image(adw : g → g) =: Mw (w ∈ M) .

Similarly, we have an identification

NwM � Ker(adw : g → g) =: Lw (w ∈ M) ,

where NwM is the normal space of M at w ∈ M .
Next, we will define the canonical complex structure J on M . For w ∈ M , let Gw =

{g ∈ G| Ad(g )w = w}, Sw the connected center of Gw , and sw the Lie algebra of Sw . Note
that w ∈ sw . Then Mw is preserved by AdGw and adLw . Since the restriction of the adjoint
action of Gw on Mw to Sw is completely reducible, we have an AdSw - invariant orthogonal
direct sum decomposition

Mw =
m∑

j=1

Ew,j (dim M = 2m) , (2.2)
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where each Ew,j is a real two dimensional vector space isomorphic, as an Sw representation
space, to the irreducible representation Γaj : Sw → GL(2; R) defined by

Γaj (exp(s)) =
(

cos aj (s) − sin aj (s)

sin aj (s) cos aj (s)

)
(s ∈ sw) . (2.3)

Here aj ∈ s∗
w is the weight of Γaj (via 〈 , 〉|�w , aj may be viewed as an element of sw) and

we choose aj so that aj (w) > 0. Then Ew,j is oriented by the basis for which the action of
Sw is represented by Γaj . The almost complex structure J on T M is defined as

JwX = 1

aj (w)
[w,X] (w ∈ M, X ∈ Ew,j ) . (2.4)

This almost complex structure is integrable and G- invariant, see [B]. We call J the canonical
complex structure of M .

Each G- invariant Kähler form on M , compatible with J , is constructed as follows; let s

be the vector bundle
s =

⋃
w∈M

sw −→ M .

For a G- invariant section σ of s, we define the 2-form

Bσ
w(X, Y ) = 〈σ(w), [U,V ]〉 (w ∈ M, X, Y ∈ TwM) , (2.5)

where U,V ∈ g are satisfied with X = [U,w], Y = [V,w]. This is the G- invariant, closed
2-form of type (1, 1). Moreover, if σ satisfies 〈aj , σ (w)〉 > 0 for any w ∈ M and j , Bσ is
positive definite. Conversely, for any G- invariant Kähler form ω on M , compatible with J ,
there is a G- invariant section σ of s, which satisfies 〈aj , σ (w)〉 > 0 for any w ∈ M and j ,
such that ω = Bσ , see [B]. Note here that the restriction of the AdG- invariant inner product
〈 , 〉 on g to M is not, in general, Kähler compatible with the canonical complex structure J ,
but Hermitian.

We supply two examples of G- invariant Kähler forms on M . The first example is given
as follows,

Fw(X, Y ) = 〈w, [U,V ]〉 (w ∈ M, X, Y ∈ TwM) ,

where U,V ∈ g are satisfied with X = [U,w], Y = [V,w] and w is viewed as the tautologi-
cal section of s. We shall refer to this as the canonical symplectic form of M .

The other one is defined by the G- invariant section γ of s; for an orthonormal basis
{ej , Jwej } of (Ew,j , 〈 , 〉), γ is given by

γ (w) =
m∑

j=1

[ej , Jwej ] .

In fact, for any G- invariant Kähler metric, we see that its Ricci form is equal to

ρw(X, Y ) = 〈γ (w), [U,V ]〉 , (2.6)

and ρ itself is the Kähler-Einstein form, see [B].
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3. The proofs of Theorems 1.3 and 1.4

First we will prove Theorem 1.3.
In this section, we use the notations prepared in the previous section.
We proved the following lemma in [O].

LEMMA 3.1. Let M2m ⊂ g be an adjoint orbit with ω = αF . II and H denote the
second fundamental form and the mean curvature vector of x : M → g respectively. Then we
have

II (X, Y ) = II (JX, JY ) (X and Y are vector fields on M) , (3.1)

and

Hw = −γ (w)

mα
(w ∈ M) . (3.2)

On the other hand, we have the following fundamental fact.

LEMMA 3.2. Let x : (M2m, J, g ) → (N, ḡ ) be an immersion from an almost Her-
mitian manifold (M, J, g ) to an Riemannian manifold (N, ḡ ). Suppose that the second
fundamental form II of the immersion x satisfies II (X, Y ) = II (JX, JY ). Then an m-
dimensional totally real submanifold L ⊂ M is minimal if and only if

τ̃ = 1

2
τ (on L) , (3.3)

where τ̃ and τ are the tension fields of x|L and x respectively.

PROOF. Let H̄ be the mean curvature vector of L ⊂ M and {Xi}mi=1 an orthonormal
basis of (TpL, g |L). Then we have

τ̃p = mH̄p +
m∑

i=1

IIp(Xi,Xi)

= mH̄p + 1

2

m∑
i=1

(IIp(Xi,Xi) + IIp(JXi, JXi))

= mH̄p + 1

2
τp .

�

PROOF OF THEOREM 1.3. Let H̃ denote the mean curvature vector of the embedding
L ⊂ g. By Lemmas 3.1 and 3.2, a Lagrangian submanifold L is minimal if and only if

�Lx|L(w) = −mH̃w

= −1

2
(2mHw)
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= γ (w)

α
(w ∈ L) .

The assumption that ω = αF is Kähler-Einstein with ρ = cω induces γ (w) = cαw. Note
here that x : M → g is the natural embedding. So we can identify x(w) and w as the element
of g. Then the minimality of L is equivalent to �Lx|L = cx on L. The proof of Theorem 1.3
has finished. �

Next we will prove Theorem 1.4. Without the assumption ω = αF , the second funda-
mental form of the embedding x : M → g does not satisfy (3.1). So in this case, we cannot
say about the minimality of Lagrangian submanifolds as Theorem 1.3. But, by using the fun-
damental inequality which is proved in [CMN], we can generalize Theorem 1.2 to the case
ω �= αF . So we review the inequality in [CMN].

Let (Mm, g ) be a closed Riemannian manifold and �M,g the Laplacian of M acting on
C∞(M). We write its eigenvalues 0 = λ0(M) < λ1(M) < λ2(M) < · · · < λk < · · · ↑ ∞.

For any smooth map x : M → (Rn, 〈 , 〉) from M to an Euclidean space, we have the
spectral decomposition of x

x = x0 +
∑
k≥1

xk ,

where x0 = ∫
M

xdvg / Vol(M) and each coordinate component of xk is in the λk(M)-
eigenspace. If x is non-constant map, then there are p, q ≥ 1 such that xp, xq �= 0 and

x = x0 + ∑q
k=p xk (if there are infinitely many nonzero xk’s in the spectral decomposition,

we put q = ∞). The pair [p, q] is called the order of the map x. The inequality which we
want to use is the following.

LEMMA 3.3. Let x : M → (Rn, 〈 , 〉) be a non-constant map of the order [p, q] from
a compact Riemannian manifold to an Euclidean space. Then we have

λp(M)(x − x0, x − x0)L2 ≤ 2E(x) , (3.4)

where E(x) is the energy of the map x. The equality holds if and only if the order of the map
x is [p,p].

The proof is simple. So we omit it. (See [CMN].) By using Lemma 3.3, we can prove
the following.

PROPOSITION 3.4. Let (M2m, J, g ) be a compact almost Hermitian manifold of

dimR M = 2m. If there is a smooth immersion x : M → (Rk+1, 〈 , 〉) which satisfies
the following conditions

(1) Image x ⊂ Sk(r),

(2) the energy density function e(x) of x is constant,
(3) for any vector fields X and Y on M, 〈x∗X, x∗Y 〉 = 〈x∗JX, x∗JY 〉.

Define

Lp
a (x) =

{
Lm ⊂ M; totally real, the order of x|L is [p, q],

〈(x|L)0, (x|L)0〉 = a2

}
.
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Then we have

λp(L) ≤ e(x)

r2 − a2
(3.5)

for any L ∈ Lp
a (x). The equality holds if and only if the order of x|L is [p,p].

PROOF. Let L ∈ Lp
a (x) and {Xi}mi=1 be an orthonormal basis of (TpL, g |L). Then,

since x satisfies the condition (2) and (3), we have

2E(x|L) =
∫

L

m∑
i=1

〈x∗Xi, x∗Xi〉dvg

=
∫

L

1

2

m∑
i=1

(〈x∗Xi, x∗Xi〉 + 〈x∗JXi, x∗JXi〉)dvg

= e(x) Vol(L) .

On the other hand, since x satisfies the condition (1), we have

(x|L − (x|L)0, x|L − (x|L)0)L2 = (x|L, x|L)L2 − ((x|L)0, (x|L)0)L2

= (r2 − a2) Vol(L) .

So this proposition is in consequence of Lemma 3.3. �

As the corollary of Proposition 3.4, when (M,ω) is a Kähler-Einstein manifold, we give
a condition for the Hamiltonian stability (this concept was induced in [Oh]) of a compact min-
imal Lagrangian submanifold; let (M,ω) be a Kähler manifold, L ⊂ M a compact minimal
Lagrangian submanifold and V a normal variation vector along L. Since L is Lagrangian,
we can regard (V �ω)|L as an 1-form on L. If (V �ω)|L is exact, V is called a Hamiltonian
variation vector. A smooth family {ιt } of embeddings of L into M is called a Hamiltonian
deformation, if its derivative is Hamiltonian. Note that Hamiltonian deformations leave La-
grangian submanifolds Lagrangian. We say that a compact minimal Lagrangian submanifold
is Hamiltonian stable, if the second variation of volume is nonnegative for all Hamiltonian
deformations of L. One of the main theorem proved in [Oh] is Theorem 1.1.

COROLLARY 3.5. Let (X,ω) be a compact Kähler-Einstein manifold with ρ = cω

and λ1(M) = 2c, where ρ is the Ricci form of (X,ω). If there is a smooth immersion

x : M → (Rk+1, 〈 , 〉) which satisfies the conditions (1), (2) and (3) in Proposition 3.4.

Moreover suppose that x satisfies �Mx = 2c(x − x0). Then we have
1. If L is a Hamiltonian stable minimal Lagrangian submanifold, then L ∈ Lp

b (x) for

some b ≥ 〈x0, x0〉1/2 = a.
2. A compact minimal Lagrangian submanifold L in Lp

a (x) is Hamiltonian stable if
and only if λ1(L) = c.
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PROOF. By the condition (1), (2), �Mx = 2c(x − x0) and Lemma 3.3, we have

c = e(x)

r2 − a2 .

If L ∈ Lp
b (x) for some b < a, then, by Proposition 3.4

λ1(L) ≤ λp(L) ≤ e(x)

r2 − b2
< c .

So L is not Hamiltonian stable. The assertion 2 can be proved similarly. �

COROLLARY 3.6. Let (M2m, J, 〈 , 〉|M) be an adjoint orbit in g. Suppose that ω = αF

and that 〈 , 〉|M is Kähler-Einstein with its Ricci form ρ = cω for a positive constant c. Denote
its embedding by x : M → g. Then the following conditions are equivalent for a Lagrangian
submanifold L;

(1) L is minimal and Hamiltonian stable.
(2)

∫
L x|Ldv = 0 and λ1(L) = c.

PROOF. By Theorem 1.3, if L is minimal and Hamiltonian stable, then (2) holds. On
the other hand, since �Mx = 2cx by the assumption, if

∫
L x|Ldv = 0 and λ1(L) = c, then the

order of x|L is [1, 1] by Proposition 3.4. So L is minimal and Hamiltonian stable by Theorems
1.2 and 1.3. �

Let (M2m, J,B
γ
c ) be an adjoint orbit in g and x : M → g denote the embedding. Note

here that the Kähler form B
γ
c is Kähler-Einstein with ρ = cB

γ
c . Suppose that �M,g x = 2cx.

In this case, the conditions (1) and (3) in Proposition 3.4 are correct. The condition (2) is
confirmed by the following lemma.

LEMMA 3.7. The energy density function e(x) of the embedding x : (M, J,Bσ ) →
(g, 〈 , 〉) is equal to

∑m
i=1

(ai(w))2

〈ai ,σ (w)〉 . This does not depend on w ∈ M .

PROOF. By the definition of the energy density function, we have

e(x)(w) = 1

2

2m∑
i=1

〈Yi, Yi〉

for any orthonormal basis {Y1, · · · , Y2m} of (TwM, g σ ), where g σ (X, Y ) = Bσ (X, JY ).

LEMMA 3.8. Let {e1, Jwe1, · · · , em, Jwem} be an orthonormal basis of (TwM, 〈 , 〉|M)

with spanR{ei, Jwei} = Ew,i . Then {X1, JwX1, · · · ,Xm, JwXm} is an orthonormal basis of

(TwM, g σ ), where Xi = ai(w)√〈ai ,σ (w)〉ei .

PROOF. For X ∈ Ew,i , by the difinition of J , we have

X =
[

JwX

ai(w)
,w

]
, JwX =

[ −X

ai(w)
,w

]
(3.6)



LAGRANGIAN SUBMANIFOLDS 91

So, for any Zi ∈ Ew,i and Zj ∈ Ew,j (i �= j), by (2.5)

g σ
w(Zi, Zj ) = Bσ

w(Zi, JwZj )

= 1

ai(w)aj (w)
〈σ(w), [JwZi,−Zj ]〉

= 1

ai(w)aj (w)
〈[JwZi, σ (w)], Zj 〉

= 0 ,

where the third equality is derived from the AdG-invariance of the inner product 〈 , 〉 on g,
and the fourth one is derived from [JwZi, σ (w)] ∈ Ew,i and Zj ∈ Ew,j . Similarly, since
[σ(w),Xi ] = 〈ai, σ (w)〉JwXi , we have

g σ
w(ei, ei) = Bσ

w(ei, Jwei)

= 1

(ai(w))2 〈σ(w), [Jwei,−ei]〉

= 1

(ai(w))2
〈[σ(w), ei ], Jwei〉

= 〈ai, σ (w)〉
(ai(w))2 〈ei , ei〉

= 〈ai, σ (w)〉
(ai(w))2 .

�

By Lemma 3.8, we have

e(x)(w) = 1

2

m∑
i=1

(〈Xi,Xi〉 + 〈JwXi, JwXi〉)

=
m∑

i=1

(ai(w))2

〈ai, σ (w)〉 .

If ai is the weight at w ∈ M , then Ad(g )ai is the weight at Ad(g )w ∈ M . So, by the G-
invariance of σ and AdG-invariance of 〈 , 〉, the right hand side is independent of w ∈ M . �

PROOF OF THEOREM 1.4. We have seen that the adjoint orbit (M2m, J,B
γ
c ) with

�M,g x = 2cx satisfies the conditions (1), (2) and (3) in Proposition 3.4. So, by Corollary
3.5, we have proved Theorem 1.4. �

4. The examples of adjoint orbits

In this section, we will see some examples of adjoint orbits which satisfy the assumption
of Theorem 1.4. (But the concrete calculations are given in Appendix.)
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PROPOSITION 4.1. Let (M2m, J, g σ ) be an adjoint orbit and x : M → g denote the
embedding. Then the tension field τ of the embedding x is

τw = 2
m∑

i=1

ai(w)

〈ai, σ (w)〉 [Jwei, ei ] , (4.1)

where {e1, Jwe1, · · · , em, Jwem} is an orthonormal basis of (TwM, 〈 , 〉|M) with ei ∈ Ew,i .

PROOF. We compute the second fundamental form II of (M, g σ ) → (g, 〈 , 〉). In
particular, we only want to know II (X,X). Let D and ∇ denote the Levi-Civita connections
of (g, 〈 , 〉) and (M, g σ ) respectively. Then, by the definition of the second fundamental form,
IIw(X,X) = (DXX)(w) − (∇XX)(w). Since II is the tensor, IIw(X,X) = IIw(XU ,XU),
where the fundamental vector field XU (U ∈ g) satisfies X(w) = XU(w) = [U,w].

(DXU XU)(w) = [U, [U,w]] . (4.2)

On the other hand, for ∇XU XU , we have the following lemma.

LEMMA 4.2.

g σ (∇XU XU,XV ) = g σ (X[V,U ],XU ) . (4.3)

PROOF. In general, if X is a Killing vector field, then we have g σ (∇Y X,Z) +
g σ (∇ZX, Y ) = 0. Since XU and XV are Killing vector fields,

g σ (X[V,U ],XU) = g σ ([XU,XV ],XU)

= g σ (∇XU XV ,XU) − g σ (∇XV XU,XU)

= g σ (∇XU XU,XV ) .

Note here that [XU,XV ] is the bracket of the vector fields. �

LEMMA 4.3. Let Xj ∈ Ew,j . Then we have

IIw(Xj ,Xj ) = 1

aj (w)
[JwXj ,Xj ] . (4.4)

PROOF. By using (3.6) and (4.2), IIw(Xj ,Xj ) is computed as

IIw(Xj ,Xj ) = (DX JwXj
aj (w)

XJwXj
aj (w)

)(w) − (∇X JwXj
aj (w)

XJwXj
aj (w)

)(w)

= 1

aj (w)
[JwXj ,Xj ] − (∇X JwXj

aj (w)

XJwXj
aj (w)

)(w) .

Since the second term of the right hand side of the above equation is tangent to M at w, it is
sufficient to prove that

g σ
w(∇X JwXj

aj (w)

XJwXj
aj (w)

, Xk) = g σ
w(∇X JwXj

aj (w)

XJwXj
aj (w)

, JwXk) = 0 , (4.5)
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for any k.

g σ
w(∇X JwXj

aj (w)

XJwXj
aj (w)

, Xk) = g σ
w(∇X JwXj

aj (w)

XJwXj
aj (w)

, XJwXk
ak(w)

) (by (3.6))

= g σ
w(X[

JwXk
ak(w)

,
JwXj
aj (w)

],XJwXj
aj (w)

) (by Lemma 4.2)

= 1

(aj (w))2ak(w)
〈σ(w), [[JwXj , JwXk],Xj ]〉

= 1

(aj (w))2ak(w)
〈[JwXj , [σ(w),Xj ]], JwXk〉 ,

where the third equality is derived from the definition of g σ , and the fourth one is
derived from the AdG-invariance of 〈 , 〉. Since σ(w) ∈ sw and Xj ∈ Ew,j , we have
[σ(w),Xj ] = 〈aj , σ (w)〉JwXj . So g σ

w(∇X JwXj
aj (w)

XJwXj
aj (w)

, Xk) equals to zero. Similarly

g σ
w(∇X JwXj

aj (w)

XJwXj
aj (w)

, JwXk) equals to zero. �

By Lemma 3.8 and Lemma 4.3, we have

τw =
m∑

i=1

(IIw(Xi,Xi) + IIw(JwXi, JwXi))

= 2
m∑

i=1

1

ai(w)
[JwXi,Xi ]

= 2
m∑

i=1

ai(w)

〈ai, σ (w)〉 [Jwei, ei ],

where {e1, Jwe1, · · · , em, Jwem} is an orthonormal basis of (TwM, 〈 , 〉|M) and Xi =
ai(w)√〈ai ,σ (w)〉ei . Thus the proof of Proposition 4.1 has finished. �

For example, if the canonical symplectic form F is Kähler-Einstein with ρ = cF , then
(M,F) satisfies the assumption in Theorem 1.4.

PROPOSITION 4.4. Let (M2m, J, F ) be an adjoint orbit in g and x : M → g denote
the embedding. Suppose that the canonical symplectic form F is Kähler-Einstein with ρ =
cF . Then we have �Mx = 2cx. Thus, by Theorem 1.4, the following three conditions are
equivalent, for a compact minimal Lagrangian submanifold L ⊂ (M,F) with

∫
L x|Ldv = 0.

1. L is Hamiltonian stable.
2. λ1(L) = c.
3. All of the coordinate functions of x|L, xi

|L, are c = λ1(L)-eigenfunctions.
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PROOF. The assumption ρ = cF is equivalent to γ (w) = cw for any w ∈ M . On the
other hand, the tension field τ of the embedding x : (M, J, F ) → (g, 〈 , 〉) is

τw = −2γ (w)

by Proposition 4.1. So �Mx = −τx = 2cx. �

The examples of adjoint orbits which satisfy γ (w) = cw are as follows (see Appendix);

• Let G = SU(n). The adjoint orbit of

√−1

c

⎛
⎜⎜⎜⎜⎜⎜⎝

β1Ip1

. . .

βlIpl

. . .

βqIpq

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ su(n)

satisfies γ (w) = cw, where
∑

pi = n and βl = ∑q

i=l+1 pi − ∑l−q

i=1 pi .
• Let G = SO(2n). The adjoint orbits of

1

c

⎛
⎜⎜⎜⎝

γ1Jp1

. . .

γqJpq

0I2r

⎞
⎟⎟⎟⎠ ∈ so(2n)

(∑
pi + r = n

)

and

1

c

⎛
⎜⎜⎜⎜⎜⎜⎝

γ ′
1Jp1

. . .

γ ′
q−1Jpq−1

pq

2 Jpq

−pq

2 J

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ so(2n)
(∑

pi + 1 = n
)

satisfy γ (w) = cw, where

J =
(

0 −1
1 0

)
∈ gl(2) , Jp =

⎛
⎜⎝

J

. . .

J

⎞
⎟⎠ ∈ gl(2p) ,

γi =
{

1
2 (pi − 1) + pi+1 + · · · + pq + r (i = 1, · · · , q − 1) ,

1
2 (pq − 1) + r (i = q) ,

and

γ ′
i = 1

2
(pi + 1) + pi+1 + · · · + pq .
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On the other hand, we have an example which does not ρ = dF for any constant d > 0, but
�Mx = 2cx;

Let G = SO(4). The adjoint orbit of(
µ1J 0

0 µ2J

)
∈ so(4) (µ1 > µ2 > 0)

does not ρ = dF for any constant d > 0, but �Mx = 2cx. (See Appendix.)

A. Appendix

In this Appendix, we compute γ and the tension field τ of the embedding x : (M, J,Bγ =
ρ) → (g, 〈 , 〉), when G is SU(n) or SO(n).

A.1. The case G = SU(n)

We use 〈X,Y 〉 = − trace XY , X,Y ∈ su(n), as the AdSU(n) invariant inner product on
su(n). Let M be the adjoint orbit of

w0 = √−1

⎛
⎜⎝

µ1Ip1 0
. . .

0 µqIpq

⎞
⎟⎠ ∈ su(n) ,

where µi and pj satisfy the following conditions;

µ1 > · · · > µq ,

q∑
j=1

pj = n ,

q∑
j=1

pjµj = 0 ,

and Ip ∈ gl(p) is the identity matrix. If q = 2, then we can see that 〈 , 〉|M satisfies the
assumption of Theorem 1.2. So we suppose that q > 2.

By simple calculation, we see that

Mw0 =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

0 X12 · · · X1q

−t X̄12 0
...

...
. . .

−t X̄1q · · · 0

⎞
⎟⎟⎟⎟⎠ ; Xij ∈ M(pi, pj ; C)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

Sw0 =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

exp(
√−1θ1)Ip1 0

. . .

0 exp(
√−1θq)Ipq

⎞
⎟⎠ ;

q∑
j=1

pj θj = 0

⎫⎪⎬
⎪⎭ ,

and

sw0 =

⎧⎪⎨
⎪⎩

√−1

⎛
⎜⎝

θ1Ip1 0
. . .

0 θqIpq

⎞
⎟⎠ ;

q∑
j=1

pjθj = 0

⎫⎪⎬
⎪⎭ .
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Next, we give an AdSw0
-decomposition of Mw0 .

For 1 ≤ i < j ≤ q , 1 ≤ k ≤ pi , and 1 ≤ l ≤ pj , we prepare the following matrices;

X{ij,kl} =
⎛
⎜⎝

x11 · · · x1pj

...
...

xpi1 · · · xpipj

⎞
⎟⎠ ∈ M(pi, pj ; C) ,

where

xab =
{

1 (a = k and b = l) ,

0 (otherwise) ,

e{ij,kl} = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

i j

...
...

i · · · · · · · · · X{ij,kl}
...

j · · · −tX{ij,kl}

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ Mw0 ,

and

f{ij,kl} =
√−1√

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

i j

...
...

i · · · · · · · · · X{ij,kl}
...

j · · · tX{ij,kl}

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

∈ Mw0 ,

where the blank parts of the matrices above are zero matrices. Then we have an AdSw0
de-

composition of Mw0 as follows;

Mw0 =
∑

1≤i<j≤q

∑
1≤k≤pi
1≤l≤pj

Ew0,{ij,kl} ,

where
Ew0,{ij,kl} = spanR{e{ij,kl}, f{ij,kl}} .

Moreover we see, by simple matrix calculation, the following.

• {e{ij,kl}, f{ij,kl}} is an orthonormal basis of (Ew0,{ij,kl}, 〈 , 〉).
• On Ew0,{ij ;kl}, the weight a{ij ;kl} of Sw0 is

a{ij,kl}

⎛
⎜⎝√−1

⎛
⎜⎝

θ1Ip1

. . .

θqIpq

⎞
⎟⎠

⎞
⎟⎠ = θi − θj .
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• The canonical complex structure J is given by

Jw0e{ij,kl} = 1

a{ij,kl}(w0)
[w0, e{ij,kl}] = f{ij,kl}

at w0.
•

γ (w0) = √−1

⎛
⎜⎜⎜⎜⎜⎜⎝

β1Ip1

. . .

βlIpl

. . .

βqIpq

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ sw0 ,

for βl = ∑q

j=l+1 pj − ∑l−1
j=1 pj .

• For 1 ≤ i < j ≤ q ,

αij := (a{ij,kl}, γ (w0))

= βi − βj

=

⎧⎪⎪⎨
⎪⎪⎩

pi + pi+1 (j = i + 1) ,

pi + 2pi+1 + pi+2 (j = i + 2) ,

pi + 2(pi+1 + · · · + pj−1) + pj (j > i + 2) .

(A.1)

By Proposition 4.1 and some calculations,

τw0 = 2
√−1

∑
1≤i<j≤q

µi − µj

αij

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

i j

...
...

i · · · −pjIpi

...

...

j · · · · · · · · · piIpj

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

A.2. The case G = SO(2n)

We use 〈X,Y 〉 = − trace XY , X,Y ∈ so(2n) as an AdSO(2n) invariant inner product on
so(2n). Different from the G = SU(n) case, we investigate adjoint orbits of the following
types respectively; let

J :=
(

0 −1
1 0

)
∈ gl(2; R) , Jp =

⎛
⎜⎝

J 0
. . .

0 J

⎞
⎟⎠ ∈ gl(2p; R) .
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Case 1. The adjoint orbit M
SO(2n)
(p1,··· ,pq ;r) of the following element;

w1 =

⎛
⎜⎜⎜⎝

µ1Jp1

. . .

µqJpq

0I2r

⎞
⎟⎟⎟⎠ ∈ so(2n) ,

where µi , pi , and r satisfy the following conditions;

µ1 > · · · > µq > 0 , pi > 0 , r > 0 ,

q∑
i=1

pi + r = n .

Case 2. The adjoint orbit M
SO(2n)
(p1,··· ,pq) of the following element;

w2 =
⎛
⎜⎝

µ1Jp1

. . .

µqJpq

⎞
⎟⎠ ∈ so(2n) ,

where µi and pi satisfy the following conditions;

µ1 > · · · > µq > 0 , pi > 0 ,

q∑
i=1

pi = n .

Case 3. The adjoint orbit M̃
SO(2n)
(p1,··· ,pq) of the following element;

w3 =

⎛
⎜⎜⎜⎝

µ1Jp1

. . .

µqJpq

−µqJ

⎞
⎟⎟⎟⎠ ∈ so(2n) ,

where µi and pi satisfy the following conditions;

µ1 > · · · > µq > 0 , pi > 0 ,

q∑
i=1

pi + 1 = n .

By simple calculation,

Case 1.

Image adw1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

X11 · · · X1q X̃1
...

...
...

−tX1q · · · Xqq X̃q

−t X̃1 · · · −t X̃q 0

⎞
⎟⎟⎟⎠ ;

Xii ∈ Image adJpi
⊂ so(2pi),

Xij ∈ M(2pi, 2pj ; R) (i < j),

X̃i ∈ M(2pi, 2r; R)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,
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where

Image adJp =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎜⎝

0 A12 · · · A1q

−A12
. . .

...
...

. . .
...

−A1q · · · · · · 0

⎞
⎟⎟⎟⎟⎠ ; Aij ∈

{(
a b

b −a

)
; a, b ∈ R

}
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Sw1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

Rp1(θ1)

. . .

Rpq (θq)

I2r

⎞
⎟⎟⎟⎠ ; θ1, · · · , θq ∈ R

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

where

Rp(θ) =

⎛
⎜⎜⎜⎜⎜⎝

cos θ − sin θ 0
sin θ cos θ

. . .

cos θ − sin θ

0 sin θ cos θ

⎞
⎟⎟⎟⎟⎟⎠ ∈ SO(2p) .

sw1 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

t1Jp1

. . .

tqJpq

0

⎞
⎟⎟⎟⎠ ; t1, · · · , tq ∈ R

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Case 2.

Image adw2 =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

X11 · · · X1q

...
...

−tX1q · · · Xqq

⎞
⎟⎠ ; Xii ∈ Image adJpi

⊂ so(2pi),

Xij ∈ M(2pi, 2pj ; R) (i < j)

⎫⎪⎬
⎪⎭ .

Sw2 =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

Rp1(θ1)

. . .

Rpq (θq)

⎞
⎟⎠ ; θ1, · · · , θq ∈ R

⎫⎪⎬
⎪⎭ .

sw2 =

⎧⎪⎨
⎪⎩

⎛
⎜⎝

t1Jp1

. . .

tqJpq

⎞
⎟⎠ ; t1, · · · , tq ∈ R

⎫⎪⎬
⎪⎭ .
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Case 3.

Image adw3 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

X11 · · · X1q X̃1
...

...
...

−tX1q · · · Xqq X̃q

−t X̃1 · · · −t X̃q 0

⎞
⎟⎟⎟⎠ ;

Xii ∈ Image adJpi
⊂ so(2pi),

Xij ∈ M(2pi, 2pj ; R) (i < j),

X̃i ∈ M(2pi, 2; R) (1 ≤ i ≤ q − 1),

X̃q = t (A1, · · · , Aq),

where Aj ∈
{(

a −b

b a

)
; a, b ∈ R

}

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

.

sw3 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

t1Jp1

. . .

tqJpq

−tqJ

⎞
⎟⎟⎟⎠ ; t1, · · · , tq ∈ R

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Next we give an Adwi -decomposition of Image adwi , γ (wi) and τwi for each i = 1, 2, 3.
We prepare the following matrices in gl(2; R);

e1 = I2 , e2 = J , e3 =
(

0 1
1 0

)
, e4 =

(−1 0
0 1

)
.

For 1 ≤ i ≤ q , and 1 ≤ j < k ≤ pi ,

ẽ3
(i;jk) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

j k

...
...

j · · · ... · · · e3
...

k · · · −e3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Image adJpi
⊂ so(2pi) ,

and

ẽ4
(i;jk) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

j k

...
...

j · · · ... · · · e4
...

k · · · −e4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Image adJpi
⊂ so(2pi) .
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For 1 ≤ i < j ≤ q , 1 ≤ k ≤ pi , 1 ≤ l ≤ pj , and m = 1, 2, 3, 4,

ẽm
(ij ;kl) =

⎛
⎜⎝

l

...

k · · · em

⎞
⎟⎠ ∈ M(2pi, 2pj ; R) .

For 1 ≤ i ≤ q , 1 ≤ j ≤ pi , 1 ≤ k ≤ r , and m = 1, 2, 3, 4,

f̃ m
r(i;jk) =

⎛
⎜⎝

k

...

j · · · em

⎞
⎟⎠ ∈ M(2pi, 2r; R) .

For 1 ≤ i ≤ q , 1 ≤ j ≤ pi , and m = 1, 2, 3, 4,

f̃ m
(i;j) =

⎛
⎜⎜⎝

...

j em

...

⎞
⎟⎟⎠ ∈ M(2pi, 2; R) .

Case 1. In this case, let

e3
(i;jk) = 1

2

⎛
⎜⎝

i

...

i · · · ẽ3
(i;jk)

⎞
⎟⎠ ∈ Image adw1 ,

e4
(i;jk) = 1

2

⎛
⎜⎝

i

...

i · · · ẽ4
(i;jk)

⎞
⎟⎠ ∈ Image adw1 ,

em
(ij ;kl) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

i j

...
...

i · · · ... · · · ẽm
(ij ;kl)

...

j · · · −t ẽm
(ij ;kl)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

∈ Image adw1 ,
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and

f m
r(i;jk) = 1

2

⎛
⎜⎜⎜⎜⎜⎜⎝

i

...

i · · · · · · · · · f̃ m
r(i;jk)

...

−t f̃ m
r(i;jk)

⎞
⎟⎟⎟⎟⎟⎟⎠

∈ Image adw1 .

Then we have an AdSw1
decomposition of Image adw1 as follows;

Image adw1 =
∑

1≤i≤q

∑
1≤j<k≤pi

Dw1,(i;jk)

+
∑

1≤i<j≤q

∑
1≤k≤pi
1≤l≤pj

(E1
w1,(ij ;kl) + E2

w1,(ij ;kl))

+
∑

1≤i≤q

∑
1≤j≤pi
1≤k≤r

(F 1
w1,(i;jk) + F 2

w1,(i;jk)) ,

where
Dw1,(i;jk) = spanR{e3

(i;jk), e
4
(i;jk)} ,

E1
w1,(ij ;kl) = spanR{e1

(ij ;kl), e
2
(ij ;kl)} , E2

w1,(ij ;kl) = spanR{e3
(ij ;kl), e

4
(ij ;kl)} ,

and

F 1
w1,(i;jk) = spanR{f 1

r(i;jk), f
2
r(i;jk)} , F 2

w1,(i;jk) = spanR{f 3
r(i;jk), f

4
r(i;jk)} .

Moreover we see, by simple matrix calculation, the following.

• {e3
(i;jk)

, e4
(i;jk)

}, {e1
(ij ;kl)

, e2
(ij ;kl)

}, {e3
(ij ;kl)

, e4
(ij ;kl)

}, {f 1
r(i;jk)

, f 2
r(i;jk)

}, and

{f 3
r(i;jk), f

4
r(i;jk)} are orthonormal basises of (Dw1,(i;jk), 〈 , 〉),

(E1
w1,(ij ;kl), 〈 , 〉), (E2

w1,(ij ;kl), 〈 , 〉), (F 1
w1,(i;jk), 〈 , 〉), and (F 2

w1,(i;jk), 〈 , 〉) respec-

tively.

• On Dw1,(i;jk), E1
w1,(ij ;kl), E2

w1,(ij ;kl), F 1
w1,(i;jk), and F 2

w1,(i;jk), their weights, a(i;jk),

a1
(ij ;kl), a2

(ij ;kl), a1
(i;jk), and a2

(i;jk) respectively, of the action of Sw1 are as follows; for

X =

⎛
⎜⎜⎜⎝

t1Jp1

. . .

tqJpq

0

⎞
⎟⎟⎟⎠ ∈ sw1 ,

we have
a(i;jk)(X) = 2ti , a1

(ij ;kl)(X) = ti − tj ,
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a2
(ij ;kl)(X) = ti + tj , a1

(i;jk)(X) = a2
(i;jk)(X) = ti .

•

γ (w1) =

⎛
⎜⎜⎜⎝

γ1Jp1

. . .

γqJpq

0I2r

⎞
⎟⎟⎟⎠ ,

where

γi =
⎧⎨
⎩

1
2 (pi − 1) + pi+1 + · · · + pq + r (i = 1, · · · , q − 1),

1
2 (pq − 1) + r (i = q).

By Proposition 4.1 and some calculations,

τw1 =

⎛
⎜⎜⎜⎝

τ1Jp1

. . .

τqJpq

0I2r

⎞
⎟⎟⎟⎠ ,

where

τi = µi

γi
(−(pi − 1) − 2r) −

⎛
⎝ q∑

j=i+1

µi − µj

γi − γj

pj −
i−1∑
j=1

µj − µi

γj − γi

pj

⎞
⎠

−
⎛
⎝ q∑

j=i+1

µi + µj

γi + γj

pj +
i−1∑
j=1

µj + µi

γj + γi

pj

⎞
⎠ .

(A.2)

Case 2. This case is interpreted as Case 1 with r = 0. So we have

γ (w2) =
⎛
⎜⎝

γ1Jp1

. . .

γqJpq

⎞
⎟⎠ ,

where

γi =
⎧⎨
⎩

1
2 (pi − 1) + pi+1 + · · · + pq (i = 1, · · · , q − 1),

1
2 (pq − 1) (i = q) ,

and

τw2 =
⎛
⎜⎝

τ1Jp1

. . .

τqJpq

⎞
⎟⎠ ,
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where

τi = −µi

γi

(pi − 1) −
⎛
⎝ q∑

j=i+1

µi − µj

γi − γj

pj −
i−1∑
j=1

µj − µi

γj − γi

pj

⎞
⎠

−
⎛
⎝ q∑

j=i+1

µi + µj

γi + γj

pj +
i−1∑
j=1

µj + µi

γj + γi

pj

⎞
⎠ .

(A.3)

Case 3. In this case, let

f m
(i;j) = f m

1,(i;j1) ∈ Image adw3 .

Then we have an AdSw3
decomposition of Image adw3 as follows;

Image adw3 =
∑

1≤i≤q

∑
1≤j<k≤pi

Dw3,(i;jk)

+
∑

1≤i<j≤q

∑
1≤k≤pi
1≤l≤pj

(E1
w3,(ij ;kl) + E2

w3,(ij ;kl))

+
∑

1≤i≤q−1

∑
1≤j≤pi

(F 1
w3,(i;j) + F 2

w3,(i;j))

+
∑

1≤j≤pq

F 1
w3,(q;j) ,

where
Dw3,(i;jk) = spanR{e3

(i;jk), e
4
(i;jk)} ,

E1
w3,(ij ;kl) = spanR{e1

(ij ;kl), e
2
(ij ;kl)} , E2

w3,(ij ;kl) = spanR{e3
(ij ;kl), e

4
(ij ;kl)} ,

and
F 1

w3,(i;j) = spanR{f 1
(i;j), f

2
(i;j)} , F 2

w3,(i;j) = spanR{f 3
(i;j), f

4
(i;j)} .

By the similar calculation in Case 1, we see that

γ (w3) =

⎛
⎜⎜⎜⎜⎜⎝

γ1Jp1

. . .

γq−1Jpq−1
pq

2 Jpq

−pq

2 J

⎞
⎟⎟⎟⎟⎟⎠ ,

where γi = 1
2 (pi + 1) + pi+1 + · · · + pq (i = 1, · · · , q − 1).

τw3 =

⎛
⎜⎜⎜⎝

τ1Jp1

. . .

τqJpq

τ̃J

⎞
⎟⎟⎟⎠ ,
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where

−τi = µi

γi

(pi − 1) +
q∑

j=i+1

pj

(
µi − µj

γi − γj

+ µi + µj

γi + γj

)

+
i−1∑
j=1

pj

(
−µj − µi

γj − γi

+ µj + µi

γj + γi

)

+ µi + µq

γi + γq

+ (1 − δiq)
µi − µq

γi − γq

,

(A.4)

and

−τ̃ =
q−1∑
j=1

pj

µj − µq

γj − γq

−
q∑

j=1

pj

µj + µq

γj + γq

. (A.5)

PROPOSITION A.1. In Case 2, let q = 2, and p1 = p2 = 1. Then we have τw2 =
−2w2.

Note that, in this case, ρ is not equal to dF , for any constant d .

PROOF. First we prove that ρ is not equal to cF , for any constant c. By the hypothesis,
w2 is

w2 =
(

µ1J 0
0 µ2J

)
,

where µ1 > µ2 > 0. On the other hand,

γ (w2) =
(

J 0
0 0

)
.

So by the definitions of ρ and F , we have proved that ρ is not equal to dF , for any constant
d . On the other hand, by the equation (A.3), we have τw2 = −2w2. �

A.3. The case G = SO(2n + 1)

In this case, we only write down the results; let M be the adjoint orbit of w0 ∈ so(2n+1),
where

w0 =

⎛
⎜⎜⎜⎝

µ1Jp1

. . .

µqJpq

0

⎞
⎟⎟⎟⎠ (µ1 > · · · > µq,

q∑
i=1

pi = n) .
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Then we have

γ (w0) =

⎛
⎜⎜⎜⎝

γ1Jp1

. . .

γqJpq

0

⎞
⎟⎟⎟⎠ (γi = 1

2
pi + pi+1 + · · · + pq) ,

τw0 =

⎛
⎜⎜⎜⎝

τ1Jp1

. . .

τqJpq

0

⎞
⎟⎟⎟⎠ ,

where

−τi = µi

γi

pi +
q∑

j=i+1

pj

(
µi − µj

γi − γj

+ µi + µj

γi + γj

)

+
i−1∑
j=1

pj

(
−µj − µi

γj − γi

+ µj + µi

γj + γi

)
.

(A.6)
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