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E. Heintze and C. Olmos [HeiOlm] have investigated the local orbit types of s-represen-
tation of semisimple symmetric spaces in terms of restricted root systems. Their results have
been generalized by H. Tamaru [Tama2]. But, as far as the author knows, there are no com-
plete lists of all orbit types of s-representations of Riemannian symmetric spaces. The main
purpose of this paper is to obtain a complete list of all local orbit types of s-representations of
the following “symmetric R-spaces”; (i) the classical types of the rank 2: T - AL, T - All,,
Alll,, BDI,, Cl,, Cll,, Cll, = Gr2(H4), DIII, (ii) the classical types of the rank 3:
T -AL, T - All;, Alllz, BDI3, Cl3, Cllz, DIlI3, (iii) the exceptional types: EIl, EIV,
EVI, FII = P%2(0); G = G2/S0O(4) (as a normal space), (iv) the classical groups of the
rank 2: SO4), SO(5), U(3), Sp(2), (v) the classical groups of the rank 3: SO(6), SO(7),
U@4), Sp(3), (vi) the real quadrics: S? - S? (p < g), which is our main results (see Section 3).
For a compact semisimple symmetric space, we get the result stated in Section 2 as follows;

THEOREM 0.1 (Criterion theorem 2.6 in Section 2). Any two orbits of a compact
semisimple symmetric space are locally diffeomorphic if and only if their closed subsystems
in the restricted root system are conjugate.

COROLLARY 0.2 (Corollary 2.8 in Section 2). The number of the local orbit types of
s-representations of a compact semisimple symmetric space is less than or equal to 2", where
r is the rank of the symmetric space.

Let M = G/K be a compact semisimple symmetric space, where G is the identity
component of the isometry group. Let H, H' be two points in the tangent space T,M to M
at the origin 0 € M, and let K and K g be the isotropy subgroups of K (identified with the
linear isotropy group) at H and H’, respectively. We denote by £y and €y the Lie algebras
of Ky and K g, respectively. We say that two orbits K(H) = K/Ky and K(H') = K/Kg
are of the same orbit type if Ky is conjugate to K in K under the automorphism group
of K. Thus, we say that two orbits K(H) = K/Kp and K(H') = K/Kp are of the same
local orbit type if g is conjugate to €y in € under the automorphism group of €. We say that
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the conjugate class [€x] is a local orbit type of the K-orbit K (H) in T,M. For a compact
semisimple symmetric space M = G/K, Tamaru [Tama2] found a method to determine the
Lie algebras of the isotropy subgroups of K for each K-orbit in 7,M. We apply Tamaru’s
method to each symmetric R-space in Section 3 to get the main results.

The organization of this paper is as follows. In Section 1, we give preliminaries for the
restricted root systems A of a compact semisimple symmetric space M = G/K (cf. [Hel]).
And we describe the Tamaru’s method. In Section 2, we give the proof of Theorem 0.1
(Theorem 2.6), and mention that representatives of any K-orbit can be choosen to be a sum
of elements of the positive Weyl chamber (Theorem 2.7 due to Tamaru [Tamal]). Finally, we
give the proof of Corollary 0.2 (Corollary 2.8). In Subsection 2.3, we give an “algorithm” to
get the isotropy subalgebras of any K -orbit in 7, M, which is used throughout Section 3. This
paper is a part of the author’s master thesis, Sophia University.
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1. Preliminaries

Let (G, K) be a compact semisimple symmetric pair. Let g and £ denote the Lie algebras
of G and K respectively. There exists the involutive automorphism o of g such that ¢ is the
(+1)-eigenspace of o. Let m be the (—1)-eigenspace of o. Then we have the decomposition
g = €@ m. Let a be a maximal abelian subspace in m, which is uniquely determined up to
conjugacy. We call dim a the rank of the symmetric space M := G/K. Let « be a linear form
ona,and g(o) := {X € g | [H,[H, X]] = —a(H)*X forany H € a}. A non-zero linear
form « is said to be a root, if g(o) # 0. Remark that g(o) = g(—a). Let &(«) := €N g(x)
and m(«) := m N g(a). Observe that m(0) = a. The subalgebra €(0) is called the pricipal
isotropy subalgebra of €. In fact, £(0) coincides with the Lie algebra of the principal isotropy
subgroup of s-representation. We call dim ¥(«) the multiplicity of a root «. The set of all
roots with the multiplicities is called the restricted root system of the symmetric space. The
restricted Dynkin diagram is given by the inner product of elements of the restricted root
system. Let A denote the restricted root system of the compact irreducible symmetric pair
(g, £) with respect to a. Then we have the following decompositions, which are called the
root space decompositions: € = €(0) ® Y, 5 &), and m = m(0) & ), ., m(«). For each
pair (g, ), Tamaru gave the table of corresponding Dinkin diagram (with multiplicities) and
the principal isotropy subalgebra £(0) of £. See Table 1 of [Tama2]. A subset A’ in a root
system A is called a closed subsystem, if the following two properties hold: (i) if o, 8 € A’
anda + B € A, thena + 8 € A, (ii) A" = —A’. We can easily see that every closed
subsystem is a root system. Furthermore, it is the restricted root system of certain symmetric
space. We denote £(0) the principal isotropy subalgebra.
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THEOREM 1.1 (Tamaru [Tama2]). Let A’ be a closed subsystem. Then, (i) there
exists a compact semisimple symmetric pair (g, ¥') whose restricted root system is A’, and
(ii) the principal isotropy subalgebra of the pair (¢', ¥') is an ideal of the principal isotropy
subalgebra ¥(0) of the pair (g, £).

Tamaru [Tama2] considered the following subalgebra of the closed subsystem in the re-
stricred root system of the pair (g, £); For a closed subsystem A’ in A, we call £(A") =
£0) ® >, E(@) the A’-subalgebra. By the above theorem, there exists the compact
semisimple symmetric pair (g’, &) whose restricted root system is A’. Let £ (0) denote the
principal isotropy subalgebra of that pair (g’, ¢).

THEOREM 1.2 (Tamaru [Tama2]). £(A”") = (£(0)/¢(0))®¥, where (£(0) /¥ (0)) means
the orthogonal complement of € (0) in £(0).

2. Representatives of K -orbit

2.1. The isotropy subalgebra of S-representation. Let (g, £) be a compact semisim-
ple symmetric pair, and let A be the restricted root system of the pair (g, £) with respect to
a.

PROPOSITION 2.1. For given H € a, let Ay := {a € A | a(H) = 0}, and ty =
{X € t|[X,H] = 0}. Then, (i) Ay is the closed subsystem, and (ii) ty = €(Ap) is the
isotropy subalgebra of the s-representation at H € a, i.e., the Ay-subalgebra.

PROOF. By the definition, Ay := {¢ € A | a(H) = 0} is the closed subsystem of
A. On the other hand, by the definition of the root, we have the following relation such that

EH = E(O) ® ZDI(H)EAH E(Ol) O

We define g” and £¥ corresponding to the compact semisimple symmetric pair (g’, £)
in Theorem 1.1 as follows. Let £7(0) := ZaeAH[E(a), €(a)]¢(0), where the subscript £(0)

denote the £(0)-component, and let a’’ be the subspace in a spaned by Ay, ¥ = ¢7(0) @
ZaeAH t(a), m? = a @ ZaeAH m(a), and g/’ := ¢# @ m. Then, we have the corollary
to Theorem 1.1 and Theorem 1.2;

COROLARY 2.2. Let Ay = {o¢ € A|a(H) = 0}, i.e., the closed subsystem. Then,
G) (g, ) is a compact semisimple symmetric pair whose restricted root system is Ay,
(ii) the principal isotropy subalgebra £1(0) of the pair (gH, ¢ is an ideal of £(0), and (iii)
by = (E(O)/{?H(O)) @t where ({’,(O)/PH (0)) means the orthogonal complement of{?H(O) in
£(0).

2.2. Representatives of K-orbit. We give a criterion for the same local orbit types
(Theorem 2.6). We will find good representatives of the linear isotropy orbit (Theorem 2.7).
Finally, we give an evaluation of the number of the local orbit types (Corollary 2.8).
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LEMMA 2.3. Let{ay, - - ,ar} be a set of all simple roots of A, where r is the rank.
Let H := Zle wi, where 2 := {w, - - - , w,} is the set of all fundamental weights. Then,
{atk+1, -+, a} is a set of all simple roots of Ap.

PROOF. Leta = 23:1 cjaj € Ay, where all ¢; are non-positive or non-negative
integers. Since 0 = a(H) = %Zle ci(a;, o), we have ¢ = --- = ¢ = 0. Then, « can
be expressed as the linear combination of {oj+1, - - - , &} with non-positive or non-negative
coefficients. [

COROLLARY 2.4. Let IT be a simple root system of A, and let IT' be a subset of I1.
Let 2 = {wy,--- , @} be the set of all fundamental weights, where r is the rank. Then,
there exists a unique element H = Zle w;, such that IT" = Iy satisfying the following
conditions: (1) if o; € IT', 0;(H) = 0 (i) if; & IT', oj(H) = %(a,-,oz,-), so that, H =
ZO(,‘ ﬁn/ w;j.

LEMMA 2.5. Let Nx(a) := {g € K | Ad(g)a = a} be a normalizer of a in K,
and 2 = {wy, -+ , @y} be the set of all fundamental weights, where r is the rank, and I1y
and Iy be simple root systems of Ay and Ag respectively. Let H = Zl;zl wj, H =
! _, @5 Forgiven g € Nk(a), gAny = Ay if and only if g'Ily = Hy for a certain

/7
g’' € Nk (a).

PROOF. If gAy = Ay is satisfied, we have g1y C Aps. Then, there exists an
element w of Weyl groups W(Apg') of Ay such that w(gIly) = IIy. Conversely, if
g/l = My for a certain ¢’ € Nk (a), one can easily see the assertion, by identifying
a; € Iy with @ and doing a5 € [Ty with w. [

THEOREM 2.6. Let(C = {Z?zl ciwj | ¢; = 0fori =1,.--,r}, where each w; is
an element of the set of all fundamental weights 2 = {wy,--- ,w,}. Forany H, H' € C,
Apg is equivalent to Ay if and only if €5 is conjugate to ¥y, i.e., for given g € Ng(a),
gAg = Ay ifand only if Ad(g)ty = tgy.

PROOF. For given g € Ng(a), put g : a* — a*suchthata — ¢ -« := a 0 Ad(g ™)),
where a* is a dual space of a. Then, we claim first that Ad(¢)¢(«) = &(¢ - «). Indeed, since
Ad(g)t(a) = tN Ad(g)g(@), it suffices to observe that Ad(g)g(e) = g(g - @). For any X, €
g(o) and any H € a, we have [H, [H, Ad(¢) X1l = —9g - a(H)?Ad(g) X4, which implies
that Ad(g) X, € g(g - «). This proves the first assertion. Let ¢ := £(0) & ZaeAH £(x), and
by = E(O)@ZﬁeA% t(B). If gAy = Ap is satisfied, we have Ad(g)€y = ty/. Conversely,
if Ad(g)ty = ty is satisfied, we have gAy = Aps. Indeed, we have Ad(g)ty = €(0) &
Zg,aeAH t(g - o) and £y = £(0) @ ZﬂeAH/ £(B8). By hypothesis, we have Zg,aeAH E(g -
a) = ZﬂeAH/ £(B). Suppose that g - o« & Ap forall « € Ag. Then, we have £(g - ) ¢
ZﬁeAH, £(B8). This contradicts with Zg,aeAH g -a) = ZﬁeAH, £(B8). This proves that
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gAn C Ap. One can easily see that gAy D Apr in a similar way. It follows that Ay =
Ag. O

In [Tamal], Tamaru showed the following;

THEOREM 2.7 (Tamaru [Tamal]). Let 2 = {w1, -, w,} be the set of all funda-
mental weights, where r is the rank. For any vector H € m, ¥y is conjugate to the isotropy

subalgebra at 21;21 @i, where 0 < k <r.

COROLLARY 2.8. The number of the local orbit types of s-representations of a com-
pact semisimple symmetric space is less than or equal to 2", where r is the rank of the sym-
metric space.

PROOF OF COROLLARY 2.8. By Theorem 2.7, how to choose {wl'j}]fjfk out of
2 ={w, - ,or}is ;,Co+,C1 +---+,C- = (1 +1)" =2". But, by Theorem 2.6, the
number of the local orbit types is less than 2". [

2.3. The algorithm to get the isotropy subalgebras. The method to get the isotropy
subalgebras g of € at H is as follows : Let (g, £) be a compact semisimple symmetric pair.
Then,

(Algorithm 1) By inspecting Tamaru’s Table 1, we find the pair (g, ¥) to get the cor-
responding type, rank, and multiplicities. Then, we know the restricted Dynkin diagram, and
the principal isotropy subalgebra £(0) also. For example, in the case of (g,8) = Alz =
(su(4), so(4)), the Dynkin diagram of the pair (su(4), so(4)) is ol —ol — !, where the num-
ber on each vertex is the multiplicity, and the principal isotropy subalgebra £(0) of the pair
(su(4), so(4)) is 0, by A(1)3-type of Tamaru’s Table 1.

(Algorithm 2) By Corollary 2.4, we can list all subset [T’ = ITy C IT corresponding
to all possible subdiagrams of the Dynkin diagram obtained in Algorithm 1. And, by Corollary
2.4, we can easily determine each H from the Dynkin diagrams of each [Ty . In the case of
the above example, the Dynkin diagrams of each [Ty are (1) ol —ol —ol, (2) ol —0ol, 3)
ol ol, (4) o, and (5) {#}, by the Dynkin diagram o! — o' — o! of the pair (su(4), so(4)).
Thus, each H are H = {0} for (1), H = @, or w3 for 2), H = w, for (3), H = w| + @y,
w> + w3 or wy + w3 for (4),and H = Zi3=1 w; for (5).

(Algorithm 3) From the Dynkin subdiagram corresponding to each subset IT" = Ty
of I1, we find the corresponding symmetric pair (g, £/), and the principal isotropy subal-
gebra £77(0), by using Tamaru’s Table 1. For the case of (2) of the above example, (g, /1)
and €7 (0) are (su(3), so(3)) and 0, respectively, by A(1)2-type of Tamaru’s Table 1. For the
other cases, one can get explicitly each (g, £//) in the same way.

(Algorithm 4) By Corollary 2.2, we can determine explicitly isotropy subalgebras of
each Ty, i.e., &y = (£(0)/€(0)) ® €”. For the case of (2) of the above example, b, =
tn, = (0/0) @ so(3) = so(3). Here, 5, = &, is true by Theorem 2.6. In addition, the
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number of the isotropy subalgebras of s-representations of Al3 is 5, i.e., less than 23. This
fact is suitable to Corollary 2.8.

3. The classification of local orbit types of S-representations

Let M be a compact symmetric space, and let G be the identity component of the isome-
try group of M. We say that M is a symmetric R-space iff there exists a subgroup L C Diff(M)
such that L is the maximal compact semisimple subgroup of G. Now, let K be the isotropy
subgroup of G at the origin 0 € M. Thus, we have the symmetric R-space M = G/K.
Let Ky be the isotropy subgroup of K (identified with the linear isotropy group) at H in the
tangent space T,M. We denote by £y the Lie algebra of Kp. Let A be the restricted root
system of symmetric R-space M = G /K, and IT be the simple root system of A. We denote
by Ay C A the closed subsystem. Thus, we have the simple root system [Ty := IT N Ay
of Ap. Throughout this section, we obeyed the Algorithm in Subsection 2.3. One can easily
give the proofs of the following results in a similar way, so we omitted the proof.

3.1. The classification of local orbit types [£z] of S-representations of symmetric
R-spaces of classical types of the rank 2

(T-AL=U@3)/003))

Iy H ty K/Ky | dmK/Kpy
(1) | ol =0l {0} so(3) | {0} 0
2) ol w1 (@) | so(2) 52 2 Symmetric space
3) [ o) + @ 0 SO@3) 3 Symmetric R-space

(T-Al =U(6)/Sp(3))

Iy H ty K/Ky | dimK/Kyg
(1) | o* =0t {0} sp3) {0} 0
2) ot @y (@) | sp() ®sp2) | P2H) 8 Symmetric R-space
®3) 7 @+ sp(1)3 Sif’(f){ 12 Pl (H)-bundle over P2(H)

(Al = Gry(C*) = SUQ2+ ¢)/SWU(2) x U(9)), q = 2)

Iy H ty K/Kyg dim K /Ky
(1) | o & 0221 {0} su2) ® su(q) ®R {0} 0
2) o2 wy u(g —2) ®so3) U((jq(z)Z) 4q — 4 Stiefel manifold
3) @221 [ RPug—-1) 5% x §24-1 2g +1 Symmetric space
“ 7 mi+m | Reu@-2) | S2xguly | 4g-2 | s2-bundle over (2




S-REPRESENTATIONS OF SYMMETRIC R-SPACES 73

(BDI, =S0(q+2)/S0O(gq) x SO2), q = 2)

Iy H ty K/Kyg dim K /Ky
() [o' =012 o) 50(2) ® s0(q) {0} 0
?2) 042 | so(g —1) st x 591 q Symmetric space
3) ol Wy s0(2) @ so(q —2) %;@2) 2g —3 Stiefel manifold
4) (7] w| + o so(qg —2) st x %ﬁé) 2g —2 S1-bundle over 3)

(ChL=S5p(2)/U(2))

Oy H ty | K/Ky | dmK/Kgy
1) | ol ol {0} u(2) {0} 0
2) ol o (wr) | u(l) s3 3 Symmetric R-space
3) [4] w| + @y 0 UQ) 4 Symmetric R-space

(Clly = Gry(H* ) = Sp(2 + q)/Sp(2) % Sp(q), q = 2)

Iy H ty K/Ky dimK /Ky

(1) | ot = @*172)3 {0} sp(2) ® sp(q) {0} 0

@ ot o sp(q —2) @ s0(5) S]ff’;Z 5 8¢ —6 Stiefel manifold
@A) 423 @ sp(D2@splg—1) | §*x s%-1 4q +3 Symmetric space
) 7 o+ | sp(D2Dsplg—2) | $4 x S[ff'(;ig) 8g—2 | S*-bundle over (2)

(Clly = Gry(H") = Sp(4)/Sp(2) x Sp(2))

Iy H ty K/Ky | dimK/Kgy
M) | ot =03 {0} sp(2) ® sp(2) {0} 0
2) ot wy so(5) SO(5) 10 Symmetric R-space
3) o3 o] sp(l) @ so(4) ST x s4 11 Symmetric space
4) [4) w| + @y sp(l)2 ST x 87 14 Symmetric space
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(DI = SO8)/U#))

Iy H ty K/Ky dimK/Kpy
(D) |t =o' | (o) u(4) o) 0
2) ot [ap) so(5) sl x 85 6 Symmetric space
©) ol @ | @2 @50Q) | oo 9 Symmetric R-space
4) 1% @) + @ sp(l)2 SI;((?))Z 10 S!-bundle over (3)

(DI = SO(10)/U(5))

Iy H ty K/Kyg dim K /Ky
() | o* = o*! {0} u(s) {0} 0
@ o*! @1 sp(l) @ u(3) #% 13 Symmetric R-space
3) ot (o)) R®so(5) —ggg; 14 Symmetric R-space
2 SU(5) Flag manifold
@ ’ Tite | @ eR SU@xSUR) 8 (S*-bundle over (2))

3.2. The classification of local orbit types [£x] of S-representations of symmetric
R-spaces of classical types of the rank 3

(T-AB=U#)/0#)

Iy H ty K/Kpy dimK /Ky
1) | ol —ol =6l {0} s0(4) {0} 0
2) ol — ol ) (3) so(3) s3 3 Symmetric R-space
3) ol ol (o)) s50(2)2 % 4 Symmetric R-space
(4) ol @i+ @ #)) | so@) 5 5 Stiefel manifold
(5) % o + oy + @3 0 SO4) 6 Symmetric R-space
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Iy H ty K/Kyg dim K /Ky
1) | o*—ot =0t {0} sp(4) {0} 0
2) ot — ot ) (3) sp(l) ®sp(3) P3(H4) 12 Symmetric R-space
3) ot ot wy s0(5) @ so(5) GrQ(H4) 16 Symmetric R-space
4 PR 2 Sp4) ,
4) o @i +@j (i #j) | sp(1)” ®so(S) S IxSp) 20 2nd kind GLA
) o + ) Sp) 24 15t kind GLA
o) + oy + @3 sp(1) Sp(D)? st kin
(Alll; = Gr3(C317), ¢ = 3)
My H ey K/Kpy dimK /Ky
(1) | o2 —o? e ©2¢-3).1 {0} su(3) @ su(q) ®R {o} 0
© 2 _ o2 @3 u(g —3) ® su(3) %ﬁ% 649 Stiefel manifold
3) 02— ©2(¢-3)1 o R&su® P2(C) x §24—1 2¢+3 Symmetric space
1 su(g—1)®R q Y P
2 52(g-3).1 u(g —3) ®so(3) (SUB)xU(q)) _2 _
@ et et 72 @sulg - ®R | TGH=SU@=UG=2) | 4 +104-8
2 @) + @3 R@Bu(g—3) 5 _ _
) o (@) +w3) ®s0(3) §2 x SU(q)/U(g —3) 6q —5
2(g-3),1 R®ulg—3) (SUB)xU(q9)) 2 _
©®© o= T1E?2 | sug-2eR | TOxUGH=UGg=2 | 4 +10a-6
3 2 (SUB)xSU(q))
@) 9 Yo @i R*®u(qg—3) UMxUTG=3)) 643
(BDI; = Gry(R*Y), g > 3)
My H ty K/Ky dim K /Ky
(1) | ol —ol = 0@ {0} 50(q) @ s0(3) {0} 0
@ ol —ol w3 so(q — 3) ® s0(3) 50(q) 3g—6 Stiefel manifold
S0(¢-3)
3) ol =5 0¢=3) [ag] s0(2) ®so(qg — 1) sa-1 x §2 qg+1 Symmetric space
@) ol @3 @y 50(2) ® so(q —2) Sé?q@z) x §2 2 — 1 (8973 x §2)-bundle over (2)
1 @ + @3 _ S0(q) 2 _ q—3
) o (@ + 3) so(q —3) ® so(2) S0q=3 X S 3g —4 N bundle over (4)
(©) o@=3) @) + @ s0(q —2) Sé?q@z) x §3 2 S1-bundle over (4)
0] @ Y @i s0(g —3) %{1@3) x §3 3g—3 §3-bundle over (2)
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(CIz =5p3)/U@3))
Iy H ty K/Kyg dim K /Ky
() | ol —ol &e=0! {0} u(3) {0} 0
2) ol —ol w3 s0(3) $5 x st 6 Symmetric space
3) ol «=o! (o] u(2) s3 5 Symmetric space
11 2 U@ 20 mani
4) o' o o) s0(2) ORRUO) 7 Flag manifold
w w
(5) ol L SU®) 8 S!-bundle over (4)
(@2 + @3)
(6) [ Z?:l w; {0} U(3) 9 Symmetric R-space
3
(CI = Grs(H*?), ¢ = 3)
My H by K/Ky dimK/K g
M) | ot ot = %3 o} sp(3) ® sp(q) o) 0
© of ot w3 sp(q —3) ®sp(3) Slf(”q(ﬁ )3) 12 — 15 Stiefel manifold
4 4(g—3).3 sp(1) @ sp(2) 2 4g—1 ;
3) ot &= © @] ®splg — 1) P=(H) x S 49 +7 Symmetric space
_ 2) @ sp(l s, _
o) ot @He—3).3 @y Sg;; « » ;)) P2(H) x Spé’q(i )2) 8q+2 5445 bundle over (3)
4 @ + o3 sp(1) @ splq —3) 2 Sp(q) _ 4g—9
5) o (@ +3) ®5p(2) P“(H) x Spg=3 12g =17 N bundle over (4)
) 9433 wi+my | sp(D3 @ splg —2) Sspp((]?% x S[f{q@z) 8¢ +6 PL(H)-bundle over (4)
(7 [4] Z?:l @; sp(l)3 @ sp(qg —3) Sﬁ;% X ﬁf{q—(z% 12¢ -3 544=9 bundle over 4
(DIII; = SO(12)/U(6))
HH H EH K/KH dimK/KH
(1) ot — ot = ol {o} u(6) {o} 0
(2) ot — ot @3 sp(3) % 15 Symmetric R-space
3) ot e—ol @ su2) ® u(® % 17
@) ot ol @ su(2) ®sp(2) ® s0(2) W;?p(z) 2 $3-bundle over (3)
4 @ + @3 U(6) 1
(5) o (@ + @3) su(2) @ sp(2) ST xSp@) 23 S*-bundle over (4)
1 2)3 2 SU(6) 2
6) ° @ + ) su(2)’ @ so(2) Q)3 6
3 . 3 U 1
™ 9 i @i su(2) 003 27 S!-bundle over (6)
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(D3 = SO(14)/U()

Iy H ty K/Kyg dim K /Ky
(D) | o* — ot = 0! {0} u(7) {0} 0
) ot = o*! @ su2) ® u(5) #‘;}](5) 21
3) ot — ot w3 R sp(3) SSZ g)) 27
4) ot el w2 sp(2) ®u(3) % 30
5) @%! @+ su)? @ u@) % 34
@ + @3 SU(7)
6 ot su ®R®sp2) | o 35
) (@ + w3) ) P ST XSp
(7 Y Y3 o su)3 @R Ssg(gg 39
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3.3. The classification of local orbit types [£] of S-representations of symmetric
R-spaces of exceptional types

(EIII = Eﬁ/Spli’l(IO) . T)

Iy H ty K/Ky dim K /Ky
(M) | f = 0! {0} 50(2) @ s0(10) {0} 0
@) e8! @ s0(2) @ su(5) | Lpd 21 Homogeneous CR-manifold
3) o0 wy s0(2) @ so(7) ‘?;;;1((170)) 24 Stiefel manifold
() 7 @ + @ u(d) Sf,ffrf(léo)) 30 Stiefel manifold
(ElV =T - E¢/Fy)
Iy H ey K/Ky dimK /Ky
(1) | o8 —ob {o} 4 {0} 0
2) o8 w; (i =1,2) | so(9) P2(0) = %‘(‘% 16 Symmetric R-space
Fy 8 2
3) [4) w| + o s0(8) 500 24 S®-bundle over P~(0)
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(EVIIl = E7/Eq-T)
My H ty K/Ky | dmK/Kpy
(1) | o® — o8 =0l {0} 50(2) @ eg {0} 0
8 _ .8 T-Eg i
(2) o® —o w3 fa o 27 Symmetric R-space
3) o8 «=ol [25] s0(2) @ so(10) % 33 Homogeneous CR-manifold
) o8 ol o) 50(2) ® 50(9) % 42 $%-bundle over (3)
8 @y + w3 T-Eg P2(0)-bundle over (2)
© ° () + @3) $00) Spin(9) 43 (or S -bundle over (4))
(6) ol @) + @) s0(8) @ so(2) % 50 s8-bundle over “4)
3 T-Eg 1
(7 [4) ey @i so(8) Spn(® 51 S*-bundle over (6)
(FIl = P*(0) = F4/SO(9))
Oy | H | ty K/Kpy dimK/Ky
(1) | ©*7 | {0} | 5009 {0} 0
2) [ w1 | so(7) s15 = i;% 15 Symmetric space
(G = G2/S0 (4) as anormal space)
Iy H ty | K/Ky | dimK/Kpy
D) | ol <=o0! {0} so(4) {0} 0
2) ol w (mp) | so(2) % 5 Stiefel manifold
3) [ W) + 0 SO4) 6 Symmetric R-space

3.4. The classification of local orbit types [£] of S-representations of symmetric
R-spaces of classical groups of the rank 2

(S04, r=2)
Iy H ty K/Kyg dim K /Ky
(1) |0 o | o) s0(4) {0} 0
2) 02 ) (w2) | R®so(3) s2 2 Symmetric space
3) [4) oy + @ R? % 4 Symmetric R-space
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(SO(5), r=2)
Iy H ty K/Ky dim K /Ky
() | F=02| {0} 50(5) o} 0
2) o2 w1 (m3) | R®so(3) % 6 Symmetric R-space
3) @ @ + @ R2 % 8 Flag manifold
@), r=2)
Oy H ty K/Ky dimK/Kpy
(1) | 2=o2| o} su(3) o} 0
2) 02 w1 (m3) | R®su(2) PZ(C) 4 Symmetric R-space
3) (7] o + @ R? % Flag manifold
Sp(2), r =2)
Oy H ty K/Kpy dimK /Ky
(1) | = | o} sp(2) {0} 0
(2) o2 w (@mp) | R@sp(l) % 6 Symmetric R-space
3) @ @ + @ R2 % 8 Flag manifold

3.5. The classification of local orbit types [£x] of S-representations of symmetric
R-spaces of classical groups of the rank 3

(§50(6), r=3)
Iy H ty K/Kg dimK /Ky
M) | o2 —o% -0 {0} 50(6) {0} 0
2) 02 — o2 w1 (3) R® su(3) Sl?(g) 6 Symmetric R-space
3) 02 o2 (o) R @ s0(3)2 % 8 Symmetric R-space
) o2 @i+ @ (i #)) | RR®s0(3) % 10
®) 9 Y3 @ R3 ;g(gg 12 52-bundle over (4)
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SO, r=3)
Iy H ty K/Ky dimK/Kpy
1) | 02 — o2 = o2 {0} so(7) {0} 0
2) 02 = o2 o R @ so(5) % 10 Symmetric R-space
3) 0% — o2 w3 R®su(3) 51%7)) 12
2 2 2 S0
4) 0% o [ap) R&so(3) S0 xS0G)2 14
) o? @it (i #)) | RR@so3) % 16 52-bundle over (4)
6) 9 Y3 o R? Sou 18 $2-bundle over (5)
U@, r=3)
Iy H ty K/Kyg dim K /Ky
1) | 0?2 —o? =02 {0} su(4) {0} 0
2) 02 — o2 wy (w3) R @ su(3) P3(C) 6 Symmetric R-space
3) 02 o2 (o)) R & 5s0(3)? % 8 Symmetric R-space
@) o? @i+ @ (i #)) | R2®s0(3) % 10 52-bundle over (3)
5 9 Y3 R3 Ssg(g; 12 $2-bundle over (4)
(Sp(3), r =3)
My H ty K/Ky dim K /Ky
(1) | 02 —0? =02 {0} sp(3) {0} 0
2) 02 &= o2 w R®sp(2) P3(C) 10 Symmetric R-space
(3) 02— o2 3 R @ su(3) %P—%) 12 Symmetric R-space
2 2 2 Sp(3)
4) o” o [ap) R® so(3) STxsp()2 14
(5) o? @i+ o (i #)) | R2@so(3) % 16 S2-bundle over (4)
(6) 1% 213: | @i R3 S_Sa((% 18 $2-bundle over (5)
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3.6. The classification of local orbit types [ty] of S-representations of the real
quadrics SO(p+1) x SO(g+1)/S(O(p) x O(g)),p <¢q

My H by K/Ky dimK /Ky

(1) | 0Pl ot~ {0} so(p) ® so(q) {0} 0

2) 091 | so(p — 1) ®so(q) Nt p—1 Symmetric space
3) oP—1 wy so(qg — 1) @ so(p) sq-1 qg—1 Symmetric space
“) @ @ +wy | so(p—1)Dsolg—1) | P71 x 8971 | p+4—2 | Symmetric space
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