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1. Introduction

For positive integers k and h with gcd(k, h) = 1, the classical Dedekind sum s(k, h) is
defined by

s(k, h) =
h−1∑
a=1

B̄1

(a

h

)
B̄1

(
ka

h

)
,

where B̄1(x) is the first Bernoulli function. For x real, the n-th Bernoulli function B̄n(x) is
defined by

B̄n(x) = Bn({x}) if n > 1 and B̄1(x) =
{

B1({x}) if x �∈ Z

0 if x ∈ Z
,

where {x} denotes the fractional part of x. The most famous property of Dedekind sum is the
reciprocity law

s(k, h) + s(h, k) = 1

12

(
k

h
+ h

k
+ 1

kh

)
− 1

4

(see [6]). Various people generalized this sum and obtained their reciprocity laws.
In [5] we focused on Apostol’s generalized sum

sn(k, h) =
h−1∑
a=1

a

h
B̄n

(
ka

h

)
,
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and gave another proof of the reciprocity law by using values at non-positive integers of

Barnes’ double zeta function ζ̃2(s ; (k, h)) defined by

ζ̃2(s ; (k, h)) =
∞∑

m,n=0
(m,n) �=(0,0)

1

(km + hn)s
.

By the same idea, we obtained the reciprocity laws for shifted Dedekind sums, Dedekind
sums with Dirichlet characters, and multiple Dedekind sums by using modified Barnes’ zeta
functions for each case.

In this paper, as another generalization, we obtain the reciprocity law for Dedekind sums
with roots of unity (Theorem 3.3 in Section 3). For positive integers k, h with gcd(k, h) = 1

and a real number γ with γ ∈ 1
kh

Z, Barnes’ zeta function ζ̃2(s ; (k, h), γ ) with parameters γ

and (k, h) is defined by

ζ̃2(s ; (k, h), γ ) =
∞∑

m,n=0
(m,n) �=(0,0)

e2πiγ (km+hn)

(km + hn)s
.

From the value ζ̃2(1 − n ; (k, h), γ ), the reciprocity law for

sn(γ ; (k, h)) = kn−1
k−1∑
a=0

h−1∑
b=0

b

h
e2πiγ (ha+kb)B̄n

(
a

k
+ b

h

)

is obtained. This sum coincides with Apostol’s when γ is an integer.
The Dedekind sum which involves roots of unity has been considered by Berndt in [2, 3],

where he proved his reciprocity law by two methods, one using the transformation formulas
of the generalized Eisenstein series

G(z, s; r, h) =
∞∑

m,n=−∞

e2πi(mh1+nh2)

((m + r1)z + n + r2)
s ,

and the other considering the contour integral of

F(z) = cot

(
π

(
z + j

kh

))
cot(πhz) cot(πkz) .

His sum and ours are related by

sα,β (k, h) = s1

(
j

kh
; (k, h)

)
− 1

2
B1,

j
kh

+ 1

2
B1,

j
k
,

so we can say that our sum is the extension of his to any positive integer n (see Section 4 for
details).
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In Section 2 we review Barnes’ multiple zeta functions, and in Section 3 we prove our
reciprocity law for Dedekind sums with roots of unity. In Section 4, we relate our sums to
Berndt’s.

2. Preliminary results

In this section, we review some results which will be used in subsequent sections.

DEFINITION 2.1. The Bernoulli numbers Bn and the Bernoulli polynomials Bn(u) are
defined by

t

et − 1
=

∞∑
n=0

Bn

n! tn and
t ext

et − 1
=

∞∑
n=0

Bn(x)

n! tn . (2.1)

The difference equation

Bn(x + 1) = Bn(x) + nxn−1 if n ≥ 1 (2.2)

holds. Also it is well-known that for a positive integer N , the Bernoulli function B̄n satisfies

N−1∑
i=0

B̄n

(
x + i

N

)
= B̄n(Nx)

Nn−1 . (2.3)

Especially,

N−1∑
i=0

B̄n

(
i

N

)
= Bn

Nn−1 + η , (2.4)

where η = 1/2 when n = 1 and η = 0 otherwise.

DEFINITION 2.2. Let r be a positive integer and α,ω1, · · · , ωr be complex numbers
with positive real parts, and set ω̃ = (ω1, · · · , ωr ). Barnes’ r-ple zeta function ζr (s; α, ω̃)

with parameters α and ω̃ is defined by

ζr(s ; α, ω̃) =
∞∑

m1,··· ,mr=0

1

(α + ω1m1 + · · · + ωrmr)s
for Re(s) > r , (2.5)

and Barnes’ r-ple zeta function ζ̃r (s ; ω̃) with parameters ω̃ by

ζ̃r (s ; ω̃) =
∞∑

m1,··· ,mr =0
(m1,...,mr ) �=(0,...,0)

1

(ω1m1 + · · · + ωrmr)
s . (2.6)
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Here us = exp(s log u) and log u = log |u| + i arg u with −π < arg u < π for any complex
number u not on the non-positive real axis. Especially when r = 1,

ζ1(s ; α, (ω1)) = 1

ωs
1

ζ

(
s ,

α

ω1

)
and ζ̃1(s ; (ω1)) =

∞∑
m=1

1

(ω1 m)s
= 1

ωs
1

ζ(s) ,

where ζ
(
s , α

ω1

)
and ζ(s) are the Hurwitz zeta function and the Riemann zeta function, re-

spectively.

ζr(s ; α, ω̃) and ζ̃r (s ; ω̃) are analytically continued to the whole complex plane, and for
a positive integer n we have

ζr(1 − n ; α, ω̃) = (−1)r (Bω1 + · · · + Bωr + α)n+r−1

n(n + 1) · · · (n + r − 1) · Πr
i=1ωi

, (2.7)

and

ζ̃r (1 − n ; ω̃) = (−1)r (Bω1 + · · · + Bωr)
n+r−1

n(n + 1) · · · (n + r − 1) · Πr
i=1ωi

− δ , (2.8)

where δ = 1 for n = 1, δ = 0 otherwise, and

(Bω1 +· · ·+Bωr +α)n+r−1 =
∑

i1+···+ir +ir+1=n+r−1
i1,··· ,ır+1≥0

(n + r − 1)!
i1! · · · ir !ir+1!Bi1 ω

i1
1 · · · Bir ω

ir
r αir+1 (2.9)

(see [4]).
Especially when r = 1, these values are well-known:

ζ(1 − n, α) = −Bn(α)

n
and ζ(1 − n) = −Bn

n
− δ . (2.10)

In the next section we treat ζ(s) and ζ(s, α) simultaneously, so we use the following
notation :

ζ ∗(s , α) =
{

ζ(s , α) if Re(α) > 0

ζ(s) if α = 0
. (2.11)

3. Reciprocity law for Dedekind sums with roots of unity

Throughout this section and the next section, k and h are relatively prime positive inte-
gers.
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DEFINITION 3.1. Let l be a positive integer and l′ be an integer with gcd(l, l′) = 1,

and γ = l′
l
. Then Bn,γ is defined by

l∑
a=1

e2πiγ a t eat

elt − 1
=

∞∑
n=0

Bn,γ

n! tn . (3.1)

Then for any multiple L of l,

Bn,γ = Ln−1
L∑

a=1

e2πiγ aBn

( a

L

)
. (3.2)

We note that Bn,γ is connected with the periodic Bernoulli functions Bn(x,A) in [3], p. 288.
For a real number x and a sequence of complex numbers A = {an}−∞<n<∞ with period k,
Bn(x,A) is given by

Bn(x,A) = kn−1
k−1∑
j=0

a−j B̄n

(
x + j

k

)
.

When we take an = e−2πiγ n = e−2πi l′
l
n, A has a period l and

Bn,γ = Bn(0, A) + η ,

where η is the same as in (2.4).

DEFINITION 3.2. Let γ be a real number with γ ∈ 1
kh

Z. Barnes’ double zeta function

ζ̃2(s ; (k, h), γ ) with parameters (k, h) and γ is defined by

ζ̃2(s ; (k, h), γ ) =
∞∑

m,n=0
(m,n) �=(0,0)

e2πiγ (km+hn)

(km + hn)s
for Re (s) > 2 .

This function is analytically continued to the whole complex plane.
Also Dedekind sum sn(γ ; (k, h)) with γ is defined by

sn(γ ; (k, h)) = kn−1
k−1∑
a=0

h−1∑
b=0

b

h
e2πiγ (ha+kb)B̄n

(
a

k
+ b

h

)
.

We note that if γ is an integer, by using (2.3) for the sum over a,

sn(γ ; (k, h)) = kn−1
k−1∑
a=0

h−1∑
b=0

b

h
B̄n

(
a

k
+ b

h

)
=

h−1∑
b=0

b

h
B̄n

(
kb

h

)
= sn(k, h) ,

where sn(k, h) is Apostol’s sum.
Then the following reciprocity law holds:
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THEOREM 3.3. For a positive integer n and γ ∈ 1
kh

Z not in Z,

1

n
{hn−1sn(γ ; (k, h)) + kn−1sn(γ ; (h, k))} = Bn+1,γ

hk(n + 1)
+ Bn,γ

n

+
k−1∑
a=0

h−1∑
b=0

e2πiγ (ha+kb) (B kh + B kh + ha + kb)n+1

n(n + 1)(kh)2
− δ ,(3.3)

where δ = 1 for n = 1 and δ = 0 otherwise, and we expand (B kh + B kh + ha + kb)n+1 as
in (2.9). Especially when n = 1,

s1(γ ; (k, h)) + s1(γ ; (h, k)) = B2,γ

2hk
+ B1,γ

+




k

2h
B2,γ k − 1

2
B1,γ k − 1

2
if γ ∈ 1

h
Z

h

2k
B2,γ h − 1

2
B1,γ h − 1

2
if γ ∈ 1

k
Z

B1,γ kB1,γ h − B1,γ k − B1,γ h otherwise .

(3.4)

PROOF. By setting m = b + hm′ and n = a + kn′, and varying a from 0 to k − 1 and
b from 0 to h − 1, respectively, we have

ζ̃2(s ; (k, h), γ ) =
∞∑′

m,n=0
(m,n) �=(0,0)

e2πiγ (km+hn)

(km + hn)s
=

k−1∑
a=0

h−1∑
b=0

∞∑′

m′,n′=0

e2πiγ (ha+kb)

(ha + kb + hk(m′ + n′))s
,

where
∑′ means that we sum over all pairs of non-negative integers (m′, n′) except for

(m′, n′) = (0, 0) when a = b = 0. Set m′ + n′ = N , and we have

ζ̃2(s ; (k, h), γ ) =
k−1∑
a=0

h−1∑
b=0

∞∑′′

N=0

e2πiγ (ha+kb)(N + 1)

(kh)s
(

ha+kb
kh

+ N
)s

=
k−1∑
a=0

h−1∑
b=0

e2πiγ (ha+kb)

(kh)s
ζ ∗

(
s − 1,

ha + kb

kh

)
(3.5)

+
k−1∑
a=0

h−1∑
b=0

(
1 − a

k
− b

h

)
e2πiγ (ha+kb)

(kh)s
ζ ∗

(
s,

ha + kb

kh

)
,

where
∑′′ means that we sum over all non-negative integers N except for N = 0 when

a = b = 0, and ζ ∗ is the function defined in (2.11).
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We put s = 1 − n into (3.5) and use (2.10). Then

ζ̃2(1 − n ; (k, h), γ ) = −
k−1∑
a=0

h−1∑
b=0

e2πiγ (ha+kb)

(kh)1−n(n + 1)
Bn+1

(
ha + kb

kh

)

−
k−1∑
a=0

h−1∑
b=0

(
1 − a

k
− b

h

)
e2πiγ (ha+kb)

(kh)1−nn
Bn

(
ha + kb

kh

)
− δ .

(3.6)

For the values of a and b in the sums of (3.6), we have 0 ≤ ha+kb
kh

= a
k

+ b
h

< 2 and
ha+kb

kh
�= 1. Also we note that{{
ha + kb

kh

}
|a, b ∈ Z, 0 ≤ a < k, 0 ≤ b < h

}
=

{
i

kh
| 0 ≤ i ≤ hk − 1

}
. (3.7)

Let S denote the set

S =
{
(a, b) ∈ Z2|0 ≤ a < k, 0 ≤ b < h ,

a

k
+ b

h
> 1

}
.

Then we can simplify the sums in (3.6) by separating the sum
∑k−1

a=0
∑h−1

b=0 into
∑

(a,b)/∈S and∑
(a,b)∈S, and using (2.2), (3.2), and

k−1∑
a=0

h−1∑
b=0

e2πiγ (ha+kb)Bn

({
ha + kb

kh

})
=

kh∑
j=1

e2πiγjBn

(
j

kh

)
− δ = Bn,γ

(kh)n−1 − δ .

Namely,

k−1∑
a=0

h−1∑
b=0

(
1 − a

k
− b

h

)
e2πiγ (ha+kb)

(kh)1−n
Bn

(
ha + kb

kh

)

=
k−1∑
a=0

h−1∑
b=0

(
1 − a

k
− b

h

)
e2πiγ (ha+kb)

(kh)1−n
Bn

({
ha + kb

kh

})

− n
∑

(a,b)∈S

e2πiγ (ha+kb)

(kh)1−n

(
a

k
+ b

h
− 1

)n

= Bn,γ − δ − hn−1sn(γ, (k, h)) − kn−1sn(γ, (h, k))

− n
∑

(a,b)∈S

e2πiγ (ha+kb)

(kh)1−n

(
a

k
+ b

h
− 1

)n

.

We can also calculate the first term in the right hand side of (3.6), and finally (3.6) becomes

ζ̃2(1 − n ; (k, h), γ ) = − Bn+1,γ

hk(n + 1)
− Bn,γ

n
+ 1

n

{
hn−1sn(γ, (k, h)) + kn−1sn(γ, (h, k))

}
.
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On the other hand, by (2.7) and (2.8)

ζ̃2(1 − n ; (k, h), γ ) =
k−1∑
a=0

h−1∑
b=0

e2πiγ (ha+kb) (B kh + B kh + ha + kb)n+1

n(n + 1)(kh)2 − δ ,

and therefore (3.3) is obtained.
When n = 1, the sums over a and b in the right hand side of (3.3) becomes

k−1∑
a=0

h−1∑
b=0

e2πiγ (ha+kb)

(
5

12
− a

k
− b

h
+ a2

2 k2
+ ab

kh
+ b2

2 h2

)
− 1 .

Now we use the following identities : For a primitive n-th root of unity ζ ,

n−1∑
l=0

ζ l = 0 ,

n−1∑
l=0

l ζ l = n

ζ − 1
, and

n−1∑
l=0

l2 ζ l = n2(ζ − 1) − 2 n ζ

(ζ − 1)2 . (3.8)

When γ ∈ 1
h

Z, from (3.2)

k−1∑
a=0

h−1∑
b=0

b e2πiγ (ha+kb) = kh

{
h∑

b=1

(
b

h
− 1

2

)
e2πiγ kb − 1

}
= kh(B1,γ k − 1) .

Similarly we have

k−1∑
a=0

h−1∑
b=0

b2e2πiγ (ha+kb) = kh(B2,γ k + hB1,γ k − h) ,

k−1∑
a=0

h−1∑
b=0

ab e2πiγ (ha+kb) = hk(k − 1)

2
(B1,γ k − 1) ,

and

k−1∑
a=0

h−1∑
b=0

e2πiγ (ha+kb) =
k−1∑
a=0

h−1∑
b=0

a e2πiγ (ha+kb) =
k−1∑
a=0

h−1∑
b=0

a2e2πiγ (ha+kb) = 0 .

Therefore when γ ∈ 1
h

Z, (3.4) is obtained. We can prove other cases of (3.4) in the same way.
�

4. Relations to Berndt’s Reciprocity law for Dedekind sums with roots of unity

In [2, 3] Berndt defined modified Dedekind sums sα,β(c, d) and sβ,α(d, c) which involve
roots of unity, and proved their reciprocity law.

DEFINITION 4.1 ([2], p. 187 and [3], p. 303). Let α, β, c and d be integers with

c > 0, d �= 0, and (c, d) = 1. Define d−1 ∈ Z by d−1d ≡ 1 (mod c). Then sβ,α(d, c) is
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defined by

sβ,α(d, c) =
∑

ν mod cd

e
2πi

(
να
c

+ νβ
d

)((
ν

c|d|
))((

νd−1

c

))
, (4.1)

where ((x)) = B̄1(x) and s0,0(d, c) = s(d, c). Then Berndt obtained the following :

THEOREM 4.2 ([2], p. 190 and [3], p. 304). Let α and β be integers such that (α, k) =
(β, h) = 1. Then

sβ,α(h, k) + sα,β(k, h) = 1

4kh sin2
(

π

(
αh + βk

kh

)) − 1

4

(
1 + cot

(
παh

k

)
cot

(
πβk

h

))
.

(4.2)

In this section, we derive the above theorem by using Theorem 3.3.

PROOF. From (3.7),

sβ,α(h, k) =
k−1∑
a=0

h−1∑
b=0

e
2πi

(
haα
k + kbβ

h

)
B̄1

(
ha + kb

kh

)
B1

(
a

k

)
+ 1

2

h−1∑
b=0

e2πi· kbβ
h B̄1

(
b

h

)
. (4.3)

Then by setting j = hα + kβ, we have

sβ,α(h, k) =
k−1∑
a=0

h−1∑
b=0

e2πi
j
kh (ha+kb)B̄1

(
ha + kb

kh

) (
a

k
− 1

2

)
+ 1

2

h−1∑
b=0

e2πi
j
h bB̄1

(
b

h

)

= s1

(
j

kh
; (h, k)

)
− 1

2
B1,

j
kh

+ 1

2
B1,

j
h

,

where s1

(
j
kh

; (h, k)
)

is our Dedekind sum. Thus

sβ,α(h, k) + sα,β(k, h) = s1

(
j

kh
; (h, k)

)
+ s1

(
j

kh
; (k, h)

)

− B1,
j
kh

+ 1

2
B1,

j
h

+ 1

2
B1,

j
k

=
B2,

j
kh

2kh
+ B1,

j
h
B1,

j
k

− 1

2
B1,

j
h

− 1

2
B1,

j
k
,

(4.4)

where for the second equality, we used the third case of our reciprocity law (3.4). This is
because j and kh are relatively prime when (α, k) = (β, h) = 1. Now from (3.2) and (3.7),
we obtain

B1,
j
h

= 1

e2πi· j
h − 1

+ 1 = 1

2
− i

2
cot

j

h
π , (4.5)



494 CHIZURU SEKINE

and

B2,
j
kh

= − 2e2πi· j
kh

(e2πi· j
kh − 1)2

= 1

2 sin2 j
kh

π
. (4.6)

From (4.4)–(4.6), we complete the proof. �
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