
TOKYO J. MATH.
VOL. 26, NO. 2, 2003

Geometry of Reduced Sextics of Torus Type

Mutsuo OKA

Tokyo Metropolitan University

Abstract. In [7], we gave a classification of the configurations of singularities of irreducible sextic of torus
type. In this paper, we give a classification of the configurations of singularities on reducible sextics of torus type.
We determine the component types and the geometry of the components for each configuration.

1. Introduction and statement of the result

In our previous paper [7], we have classified the configurations of the singularities on
irreducible sextics of torus type. In this note, we classify the configuration of singularities of
reducible sextics of torus type. We use the same notations as in [7].

We denote by Σin and Σout the configurations of the inner singularities and of the outer
singularities respectively. For the classification of the configurations of the reduced sextics
of torus type, it is less important to distinguish inner or outer singularities but what is more
important is to know the singularities of the irreducible components and their intersections.
We put Σred = Σin ∪ Σout , and we call it the reduced configuration. Let Bi1 , · · · , Bik be the
irreducible components of C. We call {deg Bi1 , · · · deg Bik } the component type of a reducible
sextic C. In this note, we always assume that the curves Bi, B

′
i , · · · are irreducible and their

degrees are the same with the indices. Thus, for example, C = B1 + B ′
1 + B4 implies that

C has three components of degree 1, 1, 4. The configurations of the singularities of Bi is
denoted by Σ(Bi). We say that C has the maximal rank if C has only simple singularities
and the total Milnor number is 19. We denote configurations with maximal rank by upper
suffix mr , like [A11, 2A2,D4]mr . The classification of reduced sextics of torus type with only
simple singularities is given in Theorem 1 and the classification for the other case is given in
Theorem 2.

1.1. Reduced sextics with simple singularities. We first classify the reduced sextics
with simple singularities.

THEOREM 1. The classifications of the configurations of singularities on reducible sex-
tics of torus type with only simple singularities are given as follows.
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(1) Σin = [A5, 4A2] : C = B5 + B1 and [A5, 4A2, 2A1]2, [A5, 4A2, 3A1]2,

[A5, 5A2, 2A1]2, [A5, 4A2, A3, 2A1]2, [A5, 4A2, 4A1], [A5, 4A2, A3]2,

[A5, 4A2, A3, A1]2, [A5, 4A2, A3, 2A1]3, [A5, 4A2,D4]2, [A5, 4A2,D5]2.

(2) Σin = [2A5, 2A2]:
(a) C = B1 + B5: [2A5, 2A2, 2A1]2, [2A5, 2A2, 3A1]1, [2A5, 3A2, 2A1]1,

[2A5, 2A2, A3]2, [2A5, 2A2, A3, A1]1, [2A5, 2A2,D4]1, [2A5, 2A2,D5]mr
1 .

(b) C = B1 + B ′
1 + B4: [2A5, 2A2, 3A1]2, [2A5, 2A2, 4A1], [2A5, 2A2,D4]2.

(c) C = B2 + B4: [2A5, 2A2, 2A1]3, [2A5, 2A2, 3A1]3, [2A5, 3A2, 2A1]2,

[2A5, 2A2, A3]3, [2A5, 2A2, A3, A1]2, [2A5, 2A2,D4]3, [2A5, 2A2,D5]mr
2 .

(d) C = B3 + B ′
3: [2A5, 2A2, 3A1]4, [2A5, 2A2, A3, A1]3, [3A5, 2A2]mr .

(3) Σin = [E6, A5, 2A2]: C = B1 + B5 and [E6, A5, 2A2, 2A1]2, [E6, A5, 2A2, 3A1],
[E6, A5, 2A2, A3]2, [E6, A5, 2A2, A3, A1]mr .

(4) Σin = [3A5]:
(a) C = B1 + B5: [3A5, 2A1]1, [3A5, A3]1.
(b) C = B2 + B4: [3A5, 2A1]2, [3A5, A3]2.
(c) C = B1 + B ′

1 + B4: [3A5, 3A1]1, [3A5,D4]mr
1 .

(d) C = B3 + B ′
3: [3A5]2, [3A5, A1]2, [3A5, A2]2, [3A5, 2A1]3, [3A5, A1, A2],

[3A5, 2A2]mr .
(e) C = B1 + B2 + B3: [3A5, 2A1], [3A5, 3A1]1, [3A5, A2, 2A1]mr, [3A5, A3]3,

[3A5, A3, A1]mr .
(f) C = B1 + B ′

1 + B ′′
1 + B3: [3A5, 3A1]2, [3A5, 4A1]mr, [3A5,D4]mr

2 .

(g) C = B2 + B ′
2 + B ′′

2 : [3A5, 3A1]3, [3A5,D4]mr
3 .

(5) Σin = [2A5, E6]:
(a) C = B1 + B5: [E6, 2A5, 2A1]1, [E6, 2A5, A3]mr

1 .
(b) C = B2 + B4: [E6, 2A5, 2A1]2, [E6, 2A5, A3]mr

2 .

(c) C = B1 + B ′
1 + B4: [E6, 2A5, 3A1]mr .

(6) Σin = [A8, A5, A2]: C = B1 + B5 and [A8, A5, A2, 2A1]2, [A8, A5, A2, 3A1],
[A8, A5, A2, A3]2, [A8, A5, A2, A3, A1]mr, [A8, A5, A2,D4]mr .

(7) Σin = [A11, 2A2]:
(a) C = B2 + B4: [A11, 2A2, 2A1]2, [A11, 2A2, 3A1]1, [A11, 3A2, 2A1]mr,

[A11, 2A2, A3]2, [A11, 2A2,D4]mr .
(b) C = B3 + B ′

3: [A11, 2A2, 3A1]2, [A11, 2A2, A3, A1].
(8) Σin = [A11, A5]:

(a) C = B1 + B5: [A11, A5, 2A1]1, [A11, A5, A3]mr
1 .

(b) C = B2 + B4: [A11, A5, 2A1]2, [A11, A5, A3]mr
2 .

(c) C = B3 + B ′
3: [A11, A5]2, [A11, A5, A1]2, [A11, A5, A2]2, [A11, A5, 2A1]3,

[A11, A5, A2, A1]mr .
(d) C = B1 + B2 + B3: [A11, A5, 2A1], [A11, A5, 3A1]mr, [A11, A5, A3]mr

3 .

(9) Σin = [A17]: C = B3 + B ′
3, [A17]2, [A17, A1]2, [A17, 2A1]mr, [A17, A2]mr

2 .
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Further geometrical informations are explained in the proof in Section 3. In the above
theorem, the lower index, like [A5, 4A2, A3, 2A1]2, is to distinguish other component with
the same weak Zariski configuration. The index 1 is reserved for the irreducible case if
there exists an irreducible sextics. Thus the configuration which start from index 2, like
[A5, 4A2, A3, 2A1]2, implies that there is an irreducible sextics with the same configuration.

THEOREM 2. The reduced configurations with at least one non-simple singularities
are given by the following.

(1) B3,6 ∈ Σin :
(a) C = B1 + B5 : [B3,6, 3A2, A1]2, [B3,6, 3A2, 2A1], [B3,6, 4A2, A1],

[B3,6, A5, A2, A1]1, [B3,6, E6, A2, A1], [B3,6, A8, A1].
(b) C = B1 + B ′

1 + B4 : [B3,6, A5, A2, 2A1]1.
(c) C = B1 + B2 + B3 : [B3,6, A5, A2, 2A1]2.
(d) C = B2 + B4 : [B3,6, A5, A2, A1]2.
(e) C = B2 + B ′

2 + B ′′
2 : [2B3,6].

(2) C3,7 ∈ Σin :
(a) C = B1 + B5 : [C3,7, 3A2, A1]2, [C3,7, 3A2, 2A1], [C3,7, A5, A2, A1]1,

[C3,7, E6, A2, A1], [C3,7, A8, A1].
(b) C = B2 + B4 : [A2, A5, C3,7, A1]2.
(c) C = B1 + B ′

1 + B4 : [C3,7, A5, A2, 2A1].
(3) C3,8 ∈ Σin :

(a) (a-1) C = B1 + B5 and (B5,O) = A3 : [C3,8, 3A2]2, [C3,8, 3A2, A1]1,

[C3,8, A5, A2], [C3,8, E6, A2], [C3,8, A8].
(a-2) C = B1 + B5 and (B5,O) = A5 : [C3,8, 3A2, A1]2.

(b) C = B2 + B4 : [C3,8, A5, A2].
(c) C = B1 + B2 + B3 : [C3,8, A5, A2, A1]1, [C3,8, A5, A2, A1]2.

(4) C3,9 ∈ Σin : C = B1 + B5 and [C3,9, 2A2, A1]2, [C3,9, 2A2, 2A1], [C3,9, 3A2, A1],
[C3,9, A5, A1], [C3,9, E6, A1].

(5) C3,12 ∈ Σin :
(a) C = B1 + B5 : [C3,12, A2, A1]1.
(b) C = B2 + B4 : [C3,12, A2, A1]2.
(c) C = B1 + B2 + B3 : [C3,12, A2, 2A1].

(6) C6,6 ∈ Σin :
(a) C = B1 + B5 : [C6,6, 2A2, A1].
(b) C = B1 + B ′

1 + B4 : [C6,6, 2A2, 2A1]1.

(c) C = B3 + B ′
3 : [C6,6, A5].

(d) C = B3 + B2 + B1: [C6,6, A5, A1].
(e) C = B1 + B ′

1 + B2 + B ′
2 : [C6,6, A5, 2A1]2.

(7) C6,9 ∈ Σin : C = B1 + B5, [C6,9, A2, A1].
(8) C3,15 ∈ Σin : C = B1 + B5, [C3,15, A1].
(9) B3,12 ∈ Σin: C = B2 + B ′

2 + B ′′
2 , [B3,12].
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(10) C6,12 ∈ Σin :
(a) C = B3 + B ′

3 : [C6,12].
(b) C = B1 + B2 + B3 : [C6,12, A1].

(11) B4,6 ∈ Σin : C = B3 + B ′
3 and [B4,6, A5].

(12) D4,7 ∈ Σin :
(a) C = B1 + B5 : [D4,7, 2A2].
(b) C = B1 + B2 + B3 : [D4,7, A5].

(13) Sp2 ∈ Σin : C = B3 + B ′
3 and [Sp2].

(14) B6,6 ∈ Σin : [B6,6].

2. Preliminaries

2.1. Genus formula and the class formula. Let C be an irreducible plane curve of a
given degree d . Then the genus formula is given as

g (C) = (d − 1)(d − 2)

2
−

∑
P∈Σ(C)

δ(P ) ≥ 0 , δ(P ) = µ(C,P ) + r(C, P ) − 1

2

where µ(C,P ) and r(C, P ) is the Milnor number and the number of local irreducible com-
ponents ([3]). Let δ∗(C) = ∑

P∈Σ(C) δ(P ). Using the above inequality, we have δ∗(C) ≤
6, 3, 1, 0 respectively for d = 5, 4, 3, 2 for an irreducible curve C. Now assume that C

is not irreducible. Let C = Bi1 + · · · + Bik be the irreducible decomposition of C with

degree(Bik ) = ik . We define δ∗(C) = ∑k
j=1 δ∗(Bij ).

PROPOSITION 3. Assume that C is a reducible sextic and let C = Bi1 + · · · + Bik be
the irreducible decomposition. Then

δ∗(C) ≤




6 , if C = B5 + B1 ,

3 , if C = B4 + B2 , or B4 + B1 + B ′
1 ,

2 , if C = B3 + B ′
3 ,

1 , if C = B3 + B2 + B1, or B3 + B1 + B ′
1 + B ′′

1 ,

0 , otherwise .

The class formula describes the degree n∗(C) of the dual curve and it is given by the
following formula ([4]).

n∗(C) = d(d − 1) −
∑

P∈Σ(C)

(µ(C, P ) + m(C,P ) − 1) .

The number of flex points i(C) counted with multiplicity is given by

i(C) = 3d(d − 2) −
∑

P∈Σ(C)

flex defect(C, P) .
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For the definition of flex defect, we refer Oka [6]

2.2. Intersection singularities. Let C be a plane curve and let C1, · · · , Ck be the
irreducible components. Let P be a singular point of C. We say that P is a proper singularity

if P ∈ Ci − ⋃
j �=i Cj for some component Ci . Otherwise we say that (C, P ) an intersection

singularity. Assume that C = C1 ∪ C2, for example, and P ∈ C1 ∩ C2 and C1, C2 are
non-singular at P and let ι be the local intersection number. Then (C, P ) ∼= A2ι−1. Assume

further that C1 is a line and ι ≥ 3. Then we say that C1 is a flex tangent line of C2.

PROPOSITION 4. Assume that C passes through O = (0, 0) and C is defined by
f (x, y) = 0 and assume that the Newton boundary Γ (f ) is non-degenerate. Let ∆1, · · · ,∆k

be the faces of Γ (f ) and assume that f∆i (x, y) = ∏νi

j=1(y
ai − αj x

bi ) with gcd(ai, bi) = 1

and α1, · · · , ανi are mutually distinct. Then C has
∑k

i=1 νi local irreducible components at
O which are different from the coordinate axis x = 0 or y = 0 and the defining equations can
be written as (yai − αjx

bi ) + (higher terms) = 0.

See for example [5].

EXAMPLE 5. 1. Consider D4 : y2x − x3 = 0. Then D4 can be an intersection
singularity of three smooth components, x = 0, y ± x = 0 where each two of them intersect
transversely. Similarly D5 : y2x + x4 = 0 can be interpreted as an intersection singularity of

a line x = 0 and a cusp y2 + x3 = 0.

2. Consider the singularity C3,p : y3 + y2x2 − xp = 0.
Case 1. Assume that p is odd. Then C3,p has two local irreducible components. One

component is smooth and is defined by L : y + x2 + (higher terms) = 0 and another com-

ponent M is defined by y2 − xp−2 + (higher terms) = 0 and it is an Ap−3-singularity and
I (L,M; O) = 4.

Case 2. Assume that p is even and put p = 2m,m ≥ 4. Then C3,2m has three smooth

components L1, L2, L3 where L1 : y + x2 + (higher terms) = 0 and L2, L3 are defined by

y ± xm−1 + (higher terms) = 0. Note that (L2 ∪ L3,O) ∼= A2m−3 and (L1 ∪ L2,O) ∼= A3.

We use the following notations for non-simple singularities as in [8].




Bp,q : yp + xq = 0 (Brieskorn-Pham type)

Cp,q : yp + xq + x2y2 = 0, 2
p

+ 2
q

< 1

D4,7 : y4 + x3y2 + ax5y + bx7 = 0, a2 − 4b �= 0

Sp1 : (y2 − x3)2 + (xy)3 = 0

Sp2 : (y2 − x3)2 − y6 = 0 .

Hereafter we only consider sextics of torus type C : f2(x, y)3 + f3(x, y)2 = 0. The notation
C2 : f2(x, y) = 0 and C3 : f3(x, y) = 0 is used throughout the paper.
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2.3. Weak Zariski k-ple. A k-ple of reduced plane curves {C1, · · · , Ck} is called a

weak Zariski k-ple if degree(C1) = · · · = degree(Ck) and they have same reduced configu-

ration of singularities and the topology of the pair (P2, Cj ) are all different. We call Σ(Cj )

a weak Zariski configuration. Note that C1, · · · , Ck may have different component types.
Artal has first observed such a pair for [A17] or some others in sextics [1]. It is obvious that a
Zariski pair is a weak Zariski pair.

2.4. Sextics of linear torus. A sextics C of torus type is called of linear torus type

if C can be defined by f (x, y) = f2(x, y)3 + f3(x, y)2 where f2(x, y) = (ax + by + c)2.
We may assume that f2 = −y2 by a linear change of coordinates so that f is a product of

cubic forms f (x, y) = (f3(x, y) + y3)(f3(x, y) − y3). It is easy to observe that the inner
singularities are on y = f3(x, 0) = 0. In particular, there are at most three inner singularities
and they are colinear.

PROPOSITION 6. The possibility of inner configuration of sextics of linear torus type is
either [3A5], or [A11, A5] or [A17] for simple singularities and for non-simple singularities,
we have [C6,6, A5], [B4,6, A5], [D4,7, A5], [C6,12], [Sp2] and [B6,6].

PROOF. Assume that f3(α, 0) = 0. Assume that α is a simple solution of f3(x, 0) = 0

(respectively a solution of multiplicity 2 or 3). Put P = (α, 0). Then I (y2, C3; P) = 2 (resp.
4 or 6). Let C1, C2 be the cubic defined by f3(x, y) ± y3 = 0. If C1, C2 are non-singular
at P , then P ∈ C is an intersection singularity, and (C, P ) is isomorphic to A5, A11 or A17

depending to the multiplicity.

Assume that P is an singular point of C1 and C2. Then (C, P ) can not be E6 as (C, P )

is not irreducible and the assertion follows from the classification of [8] and Theorem 2. �

Assume that C is a sextics with 3A5 or A11 + A5 or A17. We denote the location of
these singularities by {P1, P2, P3} (respectively, {P1, P2} or {P1}) which are assumed to be

mutually distinct. We say that C is of linear type if there is a line L ⊂ P2 such that

L ∩ C =




{P1, P2, P3}, I (C,L; Pi) = 2 , (C, Pi) ∼= A5

{P1, P2}, I (C,L; P1) = 2, I (C,L; P2) = 4 , (C, P1) ∼= A5, (C.P2) ∼= A11

{P1}, I (C,L; P1) = 6 , (C, P1) ∼= A17 .

The following is the converse of Proposition 6.

PROPOSITION 7. Assume that C is a reduced sextics with 3A5 or A11 + A5 or A17.
Assume that

1. C is a sextics of linear type or
2. C is a sextics of torus type which is a union of two cubics.
Then C is of linear torus type.

We give a computational proof in Appendix in §6.
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REMARK 8. There exists sextics of non-torus type which has the decomposition type
C = B3 + B ′

3 with 3A5 or A11 + A5 or A17 which are not colinear. In fact, in the space
of sextics, the moduli of sextics with configuration [3A5], [A11, A5] or [A17] consists of 4
components: irreducible non-torus sextics, irreducible sextics of torus type, non-torus sextics
with two cubics components, sextics of linear torus type. The assertion is shown by Artal [1]
for the configuration [A17].

3. Proof of Theorem 1

3.1. Elimination of other configurations. We assume that sextics have only simple
singularities. A main step to the proof is to list the possible configurations, eliminating other
configurations. This process can be done by fixing each inner configuration. The proof of the
existence for the survived maximal configurations is given by constructing explicit examples
(in next subsection), and for other configurations, we leave it to the reader. In the following,
Bi, B

′
i , · · · are assumed to be an irreducible component of degree i. By [8], the possible inner

configurations are the combinations of A2, A5, A8, A11, A14, A17, E6.
First consider the case Σin(C) = [6A2]. This implies δ∗(C) ≥ 6. Assume that C is

not irreducible. As A2 is an irreducible singularity, it is not possible unless C = B5 + B1.
However there is no quintic B5 with 6A2, as n∗(B5) = 2. (The conics are self-dual.)

The configurations Σin = [4A2, E6], [2A2, 2E6], [3A2, A8], [A2, A14] are impossible
to be on a reducible sextic curve as δ∗ ≥ 7. Now we consider the other cases.

1. Assume that Σin(C) = [4A2, A5]. Then δ∗(C) ≥ 5 and the only possibility is the
case: C = B1+B5. If this is the case, B1 must be a flex tangent line of B5 and Σ(B5) = [4A2]
generically. Note also B1 ∩B5 = A5 +2A1 or A5 +A3 if the intersections are on their smooth
points.

Notation. Here the equality B1 ∩ B5 = A5 + 2A1 implies that the intersection of B1

and B5 are three distinct points, and the equivalence classes of the intersection singularities
of B1 ∪ B5 are A5 and two A1 respectively. We use this abuse of notation throughout the
paper.

Under the assumption Σin(C) = [4A2, A5], B5 can take further A1, A2, A3, A4, 2A1 by
the genus formula. There are no quintic with 4A2 + A4 or 5A2 + A1. In fact, if there is such
a quintic, n∗(B5) = 3 in both cases. However this is impossible by the following well-known
fact.

Fact 1. The dual of an irreducible smooth (resp. nodal, or cuspidal) cubic B3 is a 9
cuspidal sextic (respectively 3 cuspidal quartic or cuspidal cubic).

Note that A5 must be on B1 ∩ B5. Assume first B1 ∩ B5 is A5 + 2A1. The configu-
rations corresponding to the degeneration of the quintic is: [A5, 4A2, 2A1], [A5, 4A2, 3A1],
[A5, 5A2, 2A1]2, [A5, 4A2, A3, 2A1]1 and [A5, 4A2, 4A1].

Assume that B1 ∩ B5 = A5 + A3. Then we can insert to B5 either A1 or 2A1 but we
can not insert any other singularity. Thus we have [A5, 4A2, A3]2, [A5, 4A2, A3, A1]2 and
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[A5, 4A2, A3, 2A1]2. In fact, assume that Σ(B5) = [5A2]. Then n∗(B5) = 5 and i(B5) = 5.
Thus 5 cuspidal quintics are self dual. However if B1 ∩ B5 = A5 + A3, B1 is a flex tangent
which is also tangent at another point. This implies one A2 of B∗

5 has to be replaced by D5

(= the dual singularity of (B5, B1 ∩ B5)
∗) which is impossible.

The exceptional cases [4A2, A5,D4] and [4A2, A5,D5] are given when Σ(B5) = 4A2+
A1 or 5A2 respectively and the line component B1 passes through the last outer A1 or A2.
Note that the sextics with one of the above configurations can be degenerated into one of
[A5, 4A2, A3, 2A1]1 or [A5, 4A2, A3, 2A1]2 or [A5, 4A2,D5].

There are further degenerations [A5, 4A2, A3, 2A1]1 → [A5, C3,7, A2, A1] ( 5.3-1),
[A5, 4A2, A3, 2A1]3 → [A5, E6, A3, 2A2, A1]mr

2 (5.3-2) and [4A2, A5,D5]2 → [2A5, 2A2,

D5]mr
1 ( 5.3-3) . We will give later explicit examples of these degenerations in 5.3. So the

existence of the above configurations follows from the existence of these three configurations
[A5, 4A2, A3, 2A1]1, [A5, 4A2, A3, 2A1]3 and [A5, 4A2,D5]2.

Note that [A5, 4A2, A3, 2A1]i , i = 1, 2 is an interesting weak Zariski configuration:
Both has the same decomposition type B1 + B5 but Σ(B5) = [4A2, A3] and B1 ∩ B5 =
A5+2A1 (respectively Σ(B5) = [4A2, 2A1] and B1∩B5 = A5+A3) for [A5, 4A2, A3, 2A1]1

(resp. for [A5, 4A2, A3, 2A1]2). To distinguish them, we put the index 1 or 2. The config-
urations [A5, 4A2, 2A1], [A5, 4A2, 3A1] are also weak Zariski configurations as there exist
irreducible sextics with these configurations ([7]). Hereafter we do not list up the weak Zariski
configurations. They can be read from the indices.

2. Now we consider the case Σin(C) = [2A2, 2A5].
(a) Consider the component type C = B1 + B5. Then Σ(B5) = [2A2, A5] and B1 ∩

B5 = A5 + 2A1 or A5 + A3. We can put at most one A1 or A2 in B5. In the case B1 ∩ B5 =
A5 + A3, we assert that A2 can not be inserted in B5. In fact, assume that B5 is a quintic with
3A2 + A5. Then n∗(B5) = 5 and the dual curve B∗

5 has the same singularities, as i(C) = 3
and A5 is self-dual ([6]). If B1 ∩ B5 = A5 + A3, B1 is a flex tangent and the dual singularity
is D5, but this is impossible as the dual curve B∗

5 can not have A5 + 2A2 + D5. However
the configurations [A5, 2A2,D4] and [A5, 2A2,D5]mr

1 (see 5.1-3) are possible by putting the
above extra A1 or A2 on B1 ∩ B5. Note that we have a degeneration [2A5, 3A2, 2A1] →
[2A5, 2A2,D5]mr

1

(b) Assume that C = B4 +B1 +B ′
1. Then to have 2A5 + 2A2, B4 must have two cusps

and B1, B
′
1 must be flex tangents. Thus the configuration is generically [2A5, 2A2, 3A1]. The

configuration [2A5, 2A2,D4] is given when two lines B1, B
′
1 intersect on B4. Furthermore

B4 can have one more node ( so [2A5, 2A2, 4A1], see 5.3-4) but it can not have three cusp.
In fact, if B4 has three cusps, B∗

4 is a nodal cubic. This is impossible as B∗
4 have at least two

cusps.
(c) Assume that C = B2 +B4, Σ(B4) = [2A2] and B2 ∩B4 = 2A5 +2A1 generically.

We can put either A1 or A2 on B4. See 5.3-5. Consider the case B2 ∩ B4 = 2A5 + A3.
Then we can only insert A1 into B4. We can put A2 into B4 only on B2 ∩ B4 so that we get
[2A5, 2A2,D5]mr

2 (see 5.1-3). The case Σ(B4) = [3A2] and B2 ∩ B4 = 2A5 + A3 does not
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occur. In fact, assume that B2 ∩B4 = 2A5 +A3 and Σ(B4) = [3A2]. Note that the dual curve
B∗

2 is a conic and the dual B∗
4 is cubic. Now the assumption implies that B∗

2 ∩B∗
4 = 2A5 +A3

which is impossible by Bezout theorem.
(d) Assume that C = B3 +B ′

3. Then the cubics are cuspidal and B3 ∩B ′
3 = 2A5 +3A1

(generic) or 2A5+A3+A1 or 3A5. This is the most difficult case to find explicit examples. See
the next section for explicit examples (see 5.1-1). The case [[2A5, 2A2], [A5]] coincides with
[[3A5], [2A2]]. This corresponds to the fact that this configuration has two torus expressions
(see 5.1-6). Note that every configurations with Σin = [2A5, 2A2] except [2A5, 2A2, 4A1] is
a weak Zariski configuration. For example, [2A5, 2A2, 3A1] has 4 different cases.

3. Assume that Σin = [E6, A5, 2A2]. Then δ∗ ≥ 5 and the possibility is C = B1 +B5,

Σ(B5) = [E6, 2A2] and B1∩B5 = A5+2A1 or A5+A3. As there is no quintic with [E6, 3A2]
by the dual curve discussion, we can put at most one A1. This gives the configurations in the
list. The added A1 can not be on B1. This has to be checked by a direct computation or it also
follows from Yang, [11], as [E6, A5, 2A2,D4] does not exist. Note that [E6, A5, 2A2, 2A1]
and [E6, A5, 2A2, A3] are weak Zariski configurations.

4. Assume that Σin = [3A5]. In the case of (a)–(c) of No. 4 in Theorem 1, B5 in (a),
B4 in (b) or (c) are rational. Thus the assertion is obvious except the existence. The case (a)
is given by Σ(B5) = [2A5] and B1 ∩ B5 = A5 + 2A1 or [A5 + A3]. See 5.3-6. The case
(b) is given by C = B2 + B4, Σ(B4) = [A5] and B2 ∩ B4 = 2A5 + 2A1 or 2A5 + A3. See
5.3-7. The case (d), three A5 are colinear by Proposition 7 and assuming they are on y = 0,

the generic form is given by f3(x, y)2 − y6, where f2 = −y2. Thus every configurations in
(d) can be obtained by putting either A1 or A2 in the cubics. The cases (e), (f) are special
cases of (d). In case (e), we can put only A1 or A2 in B3. However we need to show that
if B1 ∩ B2 = A3, B3 can not be cuspidal. In fact, if such a sextics exists, it gives rank 20
configuration [3A5, A3, A2] which is known to be impossible ([9, 2]). The assertion of (f) is
also easy to see as three line components are flex tangents and a nodal (respectively cuspidal)
cubic has three flex points (resp. one flex point). The last configuration [3A5,D4] is realized,
when three line components intersect at a point.

The case (g ) is the only non-trivial case. By Proposition 7, three A5 can not be colinear.
The normal form is given in 5.1. In this family the intersection of any two conic components
gives A5 + A1. The maximal configuration [3A5,D5] is given by u = −1/4 where three
conics intersect at a point.

5. Assume that Σin = [2A5, E6]. Assume that C = B1 + B5 and Σ(B5) = [A5, E6]
and therefore B5 is rational. In the case C = B2 + B4 or C = B1 + B ′

1 + B4, Σ(B4) = [E6].
In any case, B4 is rational and the configurations have maximal ranks. Thus there are no
further possibility. See 5.1-4,5.

6. Assume that Σin(C) = [A8, A5, A2]. Then C = B1 + B5. The non-existence of
Σ(B5) = A8 + 2A2 with Σred = [A8, A5, 2A2, 2A1] is checked by a direct computation.
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This is also a result of Yang [11], as this is not in his table of maximal rank configuration. The
[A8, A5, 2A2, A3] does not exists as the rank is 20.

7. Assume that Σin(C) = [A11, 2A2]. It is easy to see that A11 must be an intersection
singularity.

(a) Assume first C = B2 + B4. As B4 has 2A2, it can take only A1 or A2. In the case
B2∩B4 = A11+A3, it can be checked by computation that B4 can not have further singularity.
Namely [A11, A3, 2A2, A1] does not appear from this series. This also follows from the
connectedness of the moduli space of the sextics with the configuration [2A2, A11, A3, A1]mr

(see [11]), as it exists for the component type C = B3 + B ′
3. See 5.3-8.

(b) Assume that C = B3 +B ′
3. Then two cubics are cuspidal and B3 ∩B ′

3 = A11 +3A1

or A11 + A3 + A1. As the rank is bounded by 19, there are no possibility of [A11, A5, 2A2].
8. Assume that Σin = [A11, A5].
(a) Assume that C = B1 +B5 and Σ(B5) = [A11]. Then B4 is rational and we can not

put any further singularity in B5. As B1 ∩ B5 = A5 + 2A1 or A5 + A3, the assertion is clear.
Assume that A11 is an intersection singularity. Then it implies either C = B2 + B4,

C = B3 + B ′
3 or C = B1 + B2 + B3.

(b) Assume that C = B2 + B4. Then Σ(B4) = [A5] and B2 ∩ B4 = A11 + 2A1 or
A11 + A3 and the assertion is clear.

(c) Assume that C = B3 + B ′
3. We can make two cubics are tangent at two points with

multiplicity 6 and 3 so that B3 ∩ B ′
3 = A11 + A5. Now the assertion follows by putting A1 or

A2 in the cubics. As the rank is 19 for [A11, A5, A2, A1], we can not put A2 in both cubics
simultaneously.

(d) Assume that C = B3 + B2 + B1. We can make them in the mutual position so that
B3 ∩ B2 = A11, B1 ∩ B3 = A5 and B1 ∩ B2 is either 2A1 or A3 and B3 is either smooth or
nodal.

9. Assume that Σin = [A17]. Then the only possibility is C = B3 +B ′
3 with B3 ∩B ′

3 =
A17. The assertion is clear. See 5.1-17,18.

4. Proof of Theorem 2

In this section, we prove Theorem 2. As in the proof of Theorem 1, after eliminating
non-existing configurations, we give a computational proof of existence and we give some
non-trivial examples later. We first fix a non-simple inner singularity at the origin O and then
we consider the possibility of inner configurations and component types.

1. Assume that B3,6 ∈ Σin. Recall that (C2,O) is smooth, (C3,O) ∼= A1 and
ι := I (C2, C3; O) = 3. Possible inner configurations are [3A2, B3,6], [A2, A5, B3,6],
[A2, E6, B3,6], [A8, B3,6], [2B3,6]. We assume that (C,O) ∼= B3,6. First observe that

has locally three smooth components C1, C2, C3 with I (Ci , Cj ; O) = 2 for i �= j .
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Thus if B3,6 is an intersection singularity of two global components, say C1, C2 ∪ C2,

(C2 ∪ C3; O) ∼= A3 and I (C1, C2 ∪ C3; O) = 4.
(a) Assume that Σin = [3A2, B3,6]. If C has two components, the singularities 3A2, A3

must be in a component. Then the unique possibility is the case C = B1 + B5 and B3,6

is an intersection singularity of B1 and B5 and B5 has A3 + 3A2 as singularities. Thus
I (B1, B5; O) = 4, B1 ∩ B5 = B3,6 + A1 and B5 can take further at most either one A1

or A2. It is easy to observe that C can not have three irreducible components (see 5.2-1).
(b) Assume that Σin = [B3,6, E6, A2] or [B3,6, A8]. Then by an easy consideration

about δ∗-genus, C = B1 + B5 and Σ(B5) is [A2, E6, A3] or [A8, A3] and B5 is already
rational. We get Σred = [B3,6, E6, A2, A1], [B3,6, A8, A1]. See 5.2-4.

(c) Assume that Σin = [A2, A5, B3,6]. In this case, we have more possibilities of
component types.

(1) Assume that C = B1 + B5. Then Σ(B5) = [A2, A5, A3] and B5 is rational.
(2) Assume that C = B2 + B4. Then Σ(B4) = A3 + A2 and B4 is thus rational and

B2 ∩ B4 = B3,6 + A5 + A1.
(3) Assume that C = B1 +B ′

1 +B4. B4 is as above and B1 ∩B4 = B3,6 and B ′
1 ∩B4 =

A5 + A1. See 5.2-2.
(4) Assume that C has a cubic component B3. Then B3 has an A2-singularity and

smooth at O . To make B3,6, the other components can not be three lines. As an irreducible
cubic can not have an A3 singularity, the only possibility is C = B1 + B2 + B3, B2 ∩ B3 =
A3 + A5 + A1 and B1 is tangent to B2 and B3 at O so that (B1 ∪ B2 ∪ B3,O) ∼= B3,6 and
B1 ∩B3 has one transverse intersection outside of O which gives an A1 singularity. See 5.2-3.

(5) Finally for Σin = [2B3,6], it is already observed in [8] that C = B2 + B ′
2 + B ′′

2 .

2. Assume that C3,7 ∈ Σin. By the classification [8], C2 is smooth, C3 is nodal at
O and ι = 3. Recall that C3,7 is an intersection singularity of a smooth component and
a component with A4. This implies that C must have a component of degree ≥ 4. The
possibilities of Σin are [3A2, C3,7], [A2, A5, C3,7], [A2, E6, C3,7], [A8, C3,7] ([8]). In any
case, as δ(C3,7) = 6, C3,7 must be an intersection singularity. We assume that O is C3,7-
singularity.

(a) Assume that Σin = [3A2, C3,7]. Then C = B1 + B5. Note that I (B1, B5; O) = 4
by Example 5 in the section 2 and B1 ∩ B5 = C3,7 + A1. Then Σ(B5) ⊃ 3A2 + A4, we can
put A1 in B5. Note that a quintic B5 can not have 4A2 + A4 as, if so, we get n∗(B5) = 3
which is a contradiction.

(b) Assume that Σin = [A2, E6, C3,7] or [A8, C3,7]. Then the possibility is C=
B1 + B5 and Σ(B5) = A2 + E6 + A4 or A2 + E6 + A4. In any case B5 is rational and
B1 ∩ B5 = C3,7 + A1 and we get [C3,7, E6, A2, A1] and [C3,7, A8, A1]. See 5.2-5.

(c) Assume that Σin = [A2, A5, C3,7].
(1) If C = B1 + B5, Σ(B5) = A2 + A5 + A4 and thus B5 is rational. Thus Σred =

[C3,7, A5, A2, A1].



312 MUTSUO OKA

(2) Assume that C = B2 + B4. Then Σ(B4) = A4 + A2 and thus B4 is rational and
B2 ∩ B4 = A5 + C3,7 + A1 as I (B2, B4; O) = 4. Assume that C = B1 + B ′

1 + B4. Then B4

is as above and B1 ∩ B4 = C3,7 and B ′
1 ∩ B4 = A5 + A1 and the corresponding configuration

is [C3,7, A5, A2, 2A1]. See 5.2-6.

3. Assume that C3,8 ∈ Σin. Then C2 is smooth, C3 is nodal at O and ι = 3. Assume

that O is C3,8 singularity defined by y3+y2x2−x8+(higher terms) = 0 for simplicity. Recall

that it has three smooth components L1, L2, L3 where L1 : y + x2 + (higher terms) = 0 and

L2, L3 : y ± x3 + (higher terms) = 0. To make C3,8 as an intersection singularity of two
components, there are two ways.

(a-1) Assume that L2 is a smooth component of C and L1 ∪ L3 is another component.
Then I (L2, L1 ∪ L3; O) = 5 and (L1 ∪ L3; O) = A3.

(a-2) Assume that L1 is a smooth component of C and L2 ∪ L3 is another component.
Then I (L1, L2 ∪ L3; O) = 4 and (L2 ∪ L3; O) = A5.

Possible inner configurations are [3A2, C3,8], [A2, A5, C3,8], [A2, E6, C3,8], [A8, C3,8].
(1) Assume that Σin = [3A2, C3,8] or [A2, E6, C3,8] or [A8, C3,8]. Then C = B1+B5.
(1-1) Assume first that B1 corresponds to L2 and B5 corresponds to L1 ∪ L3. Then

(B5,O) ∼= A3, B1 ∩ B5 = C3,8 and generically we have Σ(B5) = [3A2, A3], [A2, E6, A3],
[A8, A3] respectively. In the last two cases, B5 is rational and it is easy to see that (a-2) does
not occur. We get Σred = [C3,8, E6, A2] and [C3,8, A8].

Assume that Σin = [3A2, C3,8]. Then Σ(B5) = [3A2, A3] and we can put further one
A1. Thus we get Σred = [C3,8, 3A2], [C3,8, 3A2, A1]. See 5.2-7. We assert that we can not
put A2 in B5:

ASSERTION 9. Such a quintic B5 with Σ(B5) = [4A2, A3] does not exist.

PROOF. Suppose that such a quintic exists. Then n∗(B5) = 4. By the assumption,
(C,O) has locally three components L1, L2, L3 and B5 has locally two components L1, L3.
Recall that I (L2, L3; O) = 3. As we have assumed that B1 = L2, this implies that L3

has a flex point at O . Other component L1 has I (L2, L1; O) = 2. Assuming (x, y) is an
affine coordinate system so that y = 0 be the equation of L2, L1 and L2 are defined by
h1(x, y) = (y + ax2 + (higher terms)) = 0 and h3(x, y) = (y + bx3 + (higher terms)) = 0
for some a, b �= 0. Here h1, h2 are analytic functions defined in a neighborhood of O, though
(x, y) are affine coordinates. By the following lemma, this implies that the dual singularity
of (B5,O) is a union of a cusp L∗

3 and a smooth curve L∗
1 which has the same tangent with

the cusp. Thus the Milnor number of (B∗
5 ,O∗) is 7. (This implies A3 is not generic in the

sense of Puiseux order [6]). However a quartic can have at most 6 as the total Milnor number,
which is a contradiction. �

LEMMA 10. Let B5 be a projective curve with a singularity at the origin whose defining
function takes the form h1(x, y)h3(x, y). Then the dual singularity (B∗,O∗) is locally defined
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by g(u, v) = 0 where

g (u, v) = (v + a′u2 + (higher terms))(v2 + b′u3 + (higher terms)) , a′, b′ �= 0

= v3 + b′vu3 + a′b′u5 + (higher term) = 0 .

Thus the dual singularity is E7 and the Milnor number is 7.

PROOF. We use the parametrization L1 : x(t) = t, y(t) = −at2 + (higher terms) and

L3 : x(t) = t, y(t) = −bt3 + (higher terms). Then the equations of the images by the Gauss
map can be obtained by an easy computation (see [6]) and the assertion follows. �

(1-2) Now we consider the case C = B1 + B5 which corresponds to (a-2): (B5,O) ∼=
A5 and B1 ∩ B5 = C3,8 + A1. Then the unique possible inner configuration is Σin =
[C3,8, 3A2] and Σ(B5) = [3A2, A5] and B5 is rational. This gives the configuration
[C3,8, 3A2, A1]2. See 5.2-8.

(2) Now assume that Σin = [C3,8, A5, A2].
(2-1) Assume that C = B1 + B5. As Σ(B5) ⊃ {A5, A2}, B5 can not take another A5.

Thus the case (a-1) is the unique possibility and B5 is rational with [A5, A3, A2]. This gives
the configuration Σred = [C3,8, A5, A2].

(2-2) Assume C = B2 + B4. As we have seen in (a-1) and (a-2), we need either A3

or A5 on B4 to make C3,8. Thus the only possibility is the case Σ(B4) = [A3, A2] ((a-
1)) and Σin = [A2, A5, C3,8]. In fact, this case is possible and B2 ∩ B4 = C3,8 + A5 as
I (B2, B4; O) = 5 and Σred = [A2, A5, C3,8].

(2-3) Now we consider the case: C does not have any component of degree greater
than 3. Only possible inner configuration is [A2, A5, C3,8] and the component type must be
{1, 2, 3} and the cubic component must be cuspidal. To make C3,8, we need either A3 or A5

in the other union of components. We can make the components B1, B2, B3 in two ways.
(a-1) I (B1, B2; O) = 2, I (B1, B3; O) = 3 and I (B2, B3; O) = 2 and (B2 ∪B3,O) ∼=

A3: The corresponding configuration is denoted by [C3,8, A5, A2, A1]1. This is a degenera-
tion of [C3,8, A5, A2]1. See 5.2-9.

(a-2) I (B1, B2; O) = 2, I (B1, B3; O) = 2 and I (B2, B3; O) = 3 and (B2 ∪B3,O) ∼=
A5: The corresponding configuration is denoted by [C3,8, A5, A2, A1]2. This is a degenera-
tion of [C3,8, A5, A2]2. See 5.2-10.

4. C3,9 ∈ Σin. Then C2 is smooth and C3 is nodal at O and ι = 3 or 4. We
assume that O is C3,9-singularity as before. First we observe that µ(C3,9) = 13 and it
must be an intersection singularity of a smooth component L and a component M with A6.
Note that I (L,M; O) = 4. There are two C3,9 with different ι (=the intersection number
I (C2, C3; O)).

(4-1) The case ι = 3, the only possibility of the inner configuration is Σin=
[3A2, C3,9] by [8] which is given by C = B1 + B5 and Σ(B5) = 3A2 + A6 and B1 ∩ B5 =
C3,9 + A1, and Σred = [3A2, C3,9, A1].
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(4-2) The other case is ι = 4 and the possible inner configurations are [2A2, C3,9],
[A5, C3,9], [E6, C3,9].

a. Assume Σin = [C3,9, 2A2]. Then Σ(B5) = 2A2 + A6 and we can put A1 or A2.
This gives Σred = [C3,9, 2A2, A1], [C3,9, 2A2, 2A1], [C3,9, 3A2, A1].

b. In the cases Σin = [A5, C3,9] or [E6, C3,9], we have Σ(B5) = A5 +A6 or E6 + A6

and therefore B5 is already rational. Note that I (B1, B5; O) = 4 and thus B1 ∩ B5 = C3,9 +
A1. Thus the possibilities for Σred are [2A2, C3,9, A1], [2A2, C3,9, 2A1], [3A2, C3,9, A1],
[A5, C3,9, A1], [E6, C3,9, A1]. See 5.2-12.

REMARK 11. We get the reduced configuration [C39, 3A2, A1] from two inner config-
urations [C3,9, 3A2] and [C3,9, 2A2]. In fact, the moduli is the same and it has two different
torus decompositions. An example is the following.

f(x, y) := (y2 + (x + 1)y − x2)3 +
(

y3 +
(

16

3
x + 1

)
y2 + (6x2 + 3x)y + x3

)2

= 343

27

(
y2 + 15

7
yx + 3

7
y + 9

7
x2

)3

− 1

27
(27x3 + 9yx + 60yx2 + 9y2 + 54y2x + 17y3)2 .

5. C3,12 ∈ Σin. In this case, C2 is smooth, C3 is nodal at O and ι = 5. Possible
inner configuration is [A2, C3,12]. First note that C3,12 has locally three smooth components
L1, L2, L3 which satisfies

I (L1, L2; O) = I (L1, L3; O) = 2 , I (L2, L3; O) = 5 ,

(L1 ∪ L2; O), (L1 ∪ L3; O) ∼= A3, (L2 ∪ L3; O) ∼= A9 .

If C has two components, it can be either L1 + (L2 ∪ L3) or L2 + (L1 ∪ L3).
Assume that C = B1 + B5. As I (B1, B5; O) ≤ 5, we must have B5 = L2 ∪ L3. Then

B1 ∩B5 = C3,12 +A1 and Σ(B5) = [A2, A9] and B5 is rational. This gives the configuration
[C3,12, A2, A1]1. See 5.2-13.

Assume that C = B2 + B4. Then as B4 can not have A9, we must have B4 = L1 ∪ L3

and Σ(B4) = [A3, A2] and B2 ∩ B4 = C3,12 + A1 as I (L2, L1 ∪ L3; O) = 7. Thus B4 is
rational and Σred = [A2, C3,12, A1]2. See 5.2-13.

Assume that C3,12 is an intersection singularity of three global components. The inter-
section singularity of two of them have to make A9. To make A9, we need the intersection
multiplicity 5. Thus the unique possibility is the case: C = B1 +B2+B3 with (B2∪B3,O) ∼=
A9. Thus we may assume that B1 = L1, B2 = L2, B3 = L3, B2 ∩ B3 = A9 + A1 and B1 is
tangent to B2 at O so that (B1 ∪ B2 ∪ B3,O) ∼= C3,12. The corresponding configuration is
[C3,12, A2, 2A1]. This is a degeneration of [C3,12, A2, A1]i , i = 1, 2.

6. C6,6 ∈ Σin. In this case, both of C2 and C3 are nodal at O and ι = 4. Possible
inner configurations are [2A2, C6,6] and [A5, C6,6]. We assume C6,6 singularity is at O and is

locally defined by y6 −x2y2 +x6 + (higher terms) = 0 for simplicity. First note that C6,6 has

locally 4 smooth components L1, L2,K1,K2 such that L1, L2 : x ± y2 + (higher terms) = 0
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and K1,K2 : y ± x2 + (higher terms) = 0 and I (K1,K2; O) = I (L1, L2; O) = 2 and
I (Li,Kj ; O) = 1. Note also that (L1 ∪ L2 ∪ K1,O) ∼= D6 (same for any three components)
and (L1 ∪ L2,O), (K1 ∪ K2,O) ∼= A3.

(6-1) Assume that C = B1+B5. Then Σ(B5) = 2A2+D6 and Σred = [2A2, C6,6, A1].
As B5 is already rational, the case Σin = [C6,6, A5] does not occur.

The case C = B2 + B4 does not exist because B4 can not have a D6-singularity.
(6-2) Assume that C = B3 + B ′

3. Then this case is possible only if Σin = [A5, C6,6]
and two cubics are nodal at O with the same tangent cone so that B3 ∩ B ′

3 = A5 + C6,6

and Σred = [A5, C6,6]. Note that I (L1 ∪ K1, L2 ∪ K2; O) = 6. Another decomposition
possibilities:

(6-3) Assume C = B4 + B1 + B ′
1: Σ(B4) = [2A2, A1] and B1 and B ′

1 are tangent

to branches of A1 of B4 so that (B1 ∪ B ′
1 ∪ B4,O) = C6,6 and Σred = [2A2, C6,6, 2A1].

Two A1’s are the transverse intersection of B1 or B ′
1 and B4 outside of O . See 5.2-14. As

I (B1, B4; O) = 3, the case Σin = [C6,6, A5] does not exist.
(6-4) Assume C = B3 + B2 + B1: B3 is nodal and Σin = [A5, C6,6]. B1 ∩ B2 ∩ B3 =

C6,6 and B2 ∩ B3 = A5 + D6 and Σred = [C6,6, A5].
(6-5) C = B2 + B ′

2 + B1 + B ′
1: This can be understood as a degeneration of B3 + B ′

3

and Σred = [A5, C6,6, 2A1]. See 5.2-15. The case C = B3 + B1 + B ′
1 + B ′′

1 can not make
C6,6.

7. C6,9 ∈ Σin. Possible inner configuration is [A2, C6,9]. Note that C6,9 has two

smooth components L1, L2 defined by Li : y + aix
2 + (higher terms) = 0, ai �= 0, a1 �= a2,

and one component K defined by y2 + bx7 + (higher terms) = 0, b �= 0 with A6 singularity
and I (L1, L2; O) = 2 and I (Li,K; O) = 2. Note that (L2 ∪ K; O) ∼= D9. Thus the unique
possibility is the case C = B1 + B5 with Σ(B5) = [A2,D9], B1 ∩ B5 = C6,9 + A1 and
Σred = [A2, C6,9, A1].

8. C3,15 ∈ Σin. Then C2 is smooth and C3 is nodal at O . Note that C3,15 has two
components: a smooth component L and another component K with A12 singularity and
I (L,K; O) = 4. Thus the unique possibility is the case C = B1 + B5, Σ(B5) = [A12] and
B1 ∩ B5 = C3,15 + A1. This case gives Σred = [C3,15, A1]. See 5.2-17.

9. B3,12 ∈ Σin: This case is unique and C = B2 + B ′
2 + B ′′

2 and Σred = [B3,12]. See
5.2-18 and [8].

10. C6,12 ∈ Σin. In this case, C2 is a multiple line and C3 is nodal at O . Note that
C6,12 has 4 smooth components L1, L2,K1,K2 with I (L1, L2; O) = 2, I (K1,K2; O) = 5
and I (Li ,Kj ; O) = 1. Note also that

(L1 ∪ K1; O) ∼= A1 , (L1 ∪ L2; O) ∼= A3 , (K1 ∪ K2; O) ∼= A9 ,

(L1 ∪ L2 ∪ K1; O) ∼= D6 , (L2 ∪ K1 ∪ K2,O) = D12 .

Thus C = B2 + B4 is not possible. If C = B1 + B5 is the case, (B5,O) ∼= D6 and
B5 = L1 ∪ L2 ∪ K1. But this is impossible as 5 ≤ I (B1, B5; O) = 7.
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Assume that C = B3+B ′
3. Then the cubics are nodal and they correspond to Li ∪Ki, i =

1, 2 respectively and I (B3, B3; O) = 9. This case exists and Σred = [C6,12].
Suppose that B ′

3 degenerate into B1 + B2. Then B1 ∩ B3 = D6 and B2 ∩ B3 = D12 and
B1 ∩ B2 = 2A1. This also exists and Σred = [C6,12, A1]. See 5.2-16.

There are no other possibility of three components case. Note also that C can not have
two line components. In fact, if it has two line components, we may assume that L1,K1 are
the lines components. Put C = L1 + K1 + J, where J is the union of other components,
degree(J ) = 4 and J = L2 ∪ K2. Then we have a contradiction 8 ≥ I (L1 ∪ K1, J ; O) =
I (L1 ∪ K1, L2 ∪ K2; O) = 9.

11. B4,6 ∈ Σin. In this case, C2 is a multiple line and C3 has a cusp ( or A3). The
possible inner configurations are [2A2, B4,6] and [A5, B4,6]. Note that B4,6 can be intersection
singularity of two cuspidal components with intersection number 6. Thus the only possibility
is that C = B3 + B ′

3 and it is easy to see that [2A2, B4,6] does not exist as a reducible sextics.

For [A5, B4,6], we can take two cuspidal cubic B3, B
′
3 such that B3 ∩ B ′

3 = B4,6 + A5. There
are no other possibility.

12. D4,7 ∈ Σin. Then the possible inner configurations are [2A2,D4,7] and [A5,D4,7].
Recall that D4,7 is defined by y4 + x3y2 + ayx5 + bx7 = 0 with a2 − 4b �= 0 and µ(D4,7) =
16. It has three components L1, L2,K where K is cuspidal component of type x3 + y2 +
(higher terms) = 0 and L1, L2 are smooth components of type y + αx2 + (higher terms) = 0
and thus I (L1, L2; O) = 2 and I (Li,K; O) = 3. Thus (L1 ∪ L2; O) ∼= A3 and (L1 ∪
K,O) ∼= E7. For [2A2,D4,7], as an component have to support 2A2 and E7, the only
possibility is the case C = B1 + B5 and Σ(B5) = 2A2 + E7 and so B5 is rational and
B1 ∩ B5 = D4,7.

Consider the case Σin = [A5,D4,7]. If D4,7 is an intersection singularity of two compo-
nents, this is only possible for C = B1 + B5, but then we can not make A5. Thus C has three
components and the unique possibility is C = B3 + B2 + B1. In fact, this is possible if B3 is
cuspidal and B2 ∪ B3 = E7 + A5 and Σred = [A5,D4,7]. See 5.2-19 and [8].

13. Sp2 ∈ Σin. This case is studied by [8] and given by C = B3 + B ′
3, where both

cubics are cuspidal with the same tangent cone and I (B3, B
′
3; O) = 9.

14. B6,6 is possible only when f2(x, y), f3(x, y) are homogeneous polynomials of de-
gree 2 and 3 in x, y.

5. Examples

5.1. Examples I. Simple singularities. We give explicit examples of the sextics,
mostly for the configurations with maximal rank, to confirm the existence of the configu-
rations listed in Theorem 1. The most of the configurations in the list are easily computed
starting from the normal form of the given inner configuration and component type. For ex-
ample, if the component type is {1, 5} or {2, 4}, take the intersection singularity at the origin
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and assuming the line component (respectively the conic component ) is defined by y = 0

(resp. by y − x2 = 0), we solve the equation f (x, 0) ≡ 0 (resp. f (x, x2) ≡ 0). We do not
give the whole moduli description but it can be computed as in [7].

1. C = B3+B ′
3 with Σ(C)=[2A5, 2A2, 3A1]4s �=1,

s=1−→ Σ(C)=[2A5, 2A2, A3, A1]3,

(2-(d)):

f : = 2187

1372
s2(y − x2)3 +

(
1

2
y3 − 9

49
y2

√
21s + 2y2 − 9

98
y2

√
21sx

− 9

49
ys

√
21 − 3yx2 + 2xy − 27

98
xy

√
21s + 9

49
yx2

√
21s + 1

2
x2

− 2x3 + 45

98
x3

√
21s − 9

98

√
21sx + 9

49
x2s

√
21

)2

.

2. C = B1 + B5 with Σred = [E6, A5, 2A2, A3, A1]mr :

f : =
(

− 3

2
y2 + 3

2
y − x2

)3

+
(

− 27

16
y3 +

(
− 9

8
x + 27

8

)
y2 +

(
− 27

16
x2 + 9

8
x − 27

16

)
y + x3

)2

.

3. [2A5, 2A2,D5]mr
1 , C = B1 + B5 and [2A5, 2A2,D5]mr

2 , C = B2 + B4:

f : =
(

− y2 + 25

16
xy − x2 + x

)3

+
(

− y3 + 107

32
xy2 +

(
− 7843

2048
x2 + 7

2
x

)
y + 155

128
x3 − 283

128
x2 + x

)2

,

f : =
(

1

2
y2 + xy − 1

4
x2 − 3

2
x

)3

+
(

23

16
y3 +

(
− 2233

1024
x − 1

)
y2 +

(
3

4
x2 − 7

16
x

)
y − 1

8
x3 + 697

1024
x2 + x

)2

.

4. [E6, 2A5, A3]mr
1 (C = B1 + B5) and [E6, 2A5, A3]mr

2 , C = B2 + B4:

f : =
(

− 1

4
y2 +

(
2x + 1

2

)
y + 1

4
x2 − 1

4

)3

+
(

1

8
y3 +

(
− 13

8
x − 3

8

)
y2 +

(
7

8
x2 + 5

4
x + 3

8

)
y + 1

8
x3 + 1

8
x2 − 1

8
x − 1

8

)2

,

f : =
(

− 7

16
y2 +

(
1

8
x + 1

2

)
y + 1

16
x2 − 1

16

)3

+
(

37

128
y3 +

(
− 13

128
x − 63

128

)
y2

+
(

− 17

128
x2 + 5

64
x + 27

128

)
y + 1

128
x3 + 1

128
x2 − 1

128
x − 1

128

)2

.
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5. [E6, 2A5, 3A1]mr, C = B4 + B1 + B ′
1:

f := ( − y2 + 1 − x2)3 + (y3 + (x − 1)y2 + (−x2 + 1)y + x3 + x2 − x − 1)2 .

6. C = B3 + B ′
3, Σ(C) = [3A5, 2A2]. This case has two torus decomposition:

[[3A5], [2A2]], [[2A5, 2A2], A5].

f : = −y6 +
(

1

12
x + 4x3 + 23

24
y3 − 7yx2 − 1

24
y + x2 + 1

12
y2 − 7

6
yx + 13

12
y2x

)2

= 343

1728

(
y2 − 60

7
yx − 8

7
y + 48

7
x2 + 12

7
x + 1

7

)3

− 1

1728
(−1 + 12y − 33y2 + 22y3

− 18x + 156yx − 282y2x − 120x2 + 552yx2 − 288x3)2 .

7. C = B2 + B ′
2 + B ′′

2 with Σ(C) = [3A5, 3A1]3, (u : generic) or [3A5,D4]mr
3 , u =

−1/4:

f := −(x2 + y2 − 1)3u + (2u − 2x2u − 2yu + 2yx2u − y + yx2 + 2y2 − y3)2(u + 1) .

8. [3A5,D4]mr
i , i = 1, 2, 3 with component types (1,1,4), (1,1,1,3) and (2,2,2):

(1, 1, 4) : f : = y(8x + 16 − 15y)(16x4 − 32yx3 + 32x3 + 24y2x2 − 24yx2

− 24y3x + 48y2x − 24yx + 16y − 39y2 + 30y3 − 7y4) ,

(1, 1, 1, 3) : f : = y(x − y)(x + 3y)(4x3 − 23x2y + 12x2 − 48xy + 50xy2

+ 12x + 4 + 48y2 − 35y3 − 24y) ,

(2, 2, 2) : f : = (4y2 + x2 − 1)(2y2 − 3xy − 3y + 2x2 + 3x + 1)

(2y2 + 3xy − 3y + 2x2 − 3x + 1) .

9. C = B2 + B4 with [A11, 3A2, 2A1]mr :

f := ( − y2 + y − 9x2)3 +
(

y3 + 11

8
y2 +

(
− 99

8
x2 + 9

4
x − 1

8

)
y − 81

4
x3 + 9

8
x2

)2

.

10. C = B3 + B ′
3 and Σred = [A11, 2A2, 3A1]:

f : = −(262087 + 18817x2 + 1351y2 − 155578x + 94085y + 151316
√

3 + 780y2
√

3

− 89823x
√

3 − 220762yx + 10864x2
√

3 − 127457yx
√

3 + 54320y
√

3)3/

((97 + 56
√

3)3(2 + √
3)6) + 1

4
( − 27246964 − 6500766x2 − 1053390y2

+ 24261189x − 14671830y − 10084y3 − 15731042
√

3 − 608175y2
√

3

+ 14007204x
√

3 + 2471685y2x − 9224454yx2 + 31450440yx + 524174x3
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− 5822y3
√

3 + 302632x3
√

3 − 3753219x2
√

3 + 18157920yx
√

3 − 5325741yx2
√

3

+ 1427028y2x
√

3 − 8470785y
√

3)2/((97 + 56
√

3)2(2 + √
3)6) .

11. C = B3 + B ′
3 and Σred = [A11, 2A2, A3, A1]mr

f : = ( − 27y2 − 2yx + 10x2 − 14x)3

+
(

14

3
yx − 32

3
yx2 − 14

3
xy2 − 63y2 − 98

3
x + 4

3
x3 + 18y3 + 70

3
x2

)2

.

REMARK 12. In fact, [A11, 2A2, 3A1], C = B3 + B ′
3 degenerates into [A11, 2A2, A3,

A1]mr but we could not find any good family with simple coefficients. The above examples

factor into cubics over Q(
√

3,
√

2) or Q(
√

3) respectively.

12. Σred = [A11, A5, A3]mr
1 and C = B1 + B5.

f := ( − y2 + y − x2)3 +
(

17

16
y3 +

(
− x − 33

16

)
y2 +

(
1

16
x2 + x + 1

)
y − x3

)2

.

13. Σred = [A5, A11, A3]mr
2 and C = B2 + B4.

f := ( − y2 + y − x2)3 +
(

y3 − 3

2
y2 +

(
3

2
x2 + 1

2

)
y − 1

2
x2

)2

,

14. Σred = [A11, A5, A3]mr
3 with C = B1 + B2 + B3. An example is given by

f := −y6 + ((−2 + 2x)y2 + (1 + 2x2 − 2x)y + x3 − x2)2 .

15. Σred = [A11, A5, A2, A1]mr with C = B3 + B ′
3 can be given by

f := −y6 +
(

− 23

24
y3 +

(
− x − 1

12

)
y2 +

(
7x2 + x + 1

24

)
y − 4x3 − x2

)2

.

16. [A11, A5, 2A1] with C = B3 + B2 + B1:

f := −y6 +
(((

− 5

4
+ 1

4
s

)
x − 2

)
y2 +

(
1

4
sx2 − x + 1

)
y + 1

4
x3 + x2 + x

)2

.

Two degenerations: [A11, A5, A3]mr at s = −11 and [A11, A5, 3A1] at s = 5.

17. Σred = [A17 + 2A1] with C = B3 + B ′
3:

f := −y6 + (2y3 − 2y2 + ( − 6x2 + 1)y + 4x3)2 .

18. Σred = [A17, A2] with C = B3 + B ′
3:

f := −y6 +
(

2y3 + (−x − 2)y2 +
(

1

4
x2 + x + 1

)
y + x3

)2

.
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5.2. Examples II. Non-simple singularities. We give explicit examples for some
configurations. The normal form of B3,6-singularity at O with y = 0 a linear component
is given as

f2 := a02y
2 + (a11x + a01)y − t2x2

f3 := b03y
3 + (b12x + b02)y

2 + (b21x
2 + b11x)y + t3x3 .

The normal form of torus decomposition with C = B2 +B4 and B3,6 at O where B2 is defined

by y − x2 = 0 is given

f : =
(

− t2y2 + (a11x + a01)y − 1

4

(4t2a01 + a11
2)x2

t2

)3

+ 1

64
( − 8t6y3 + 12y2t4a11x

− 8y2t3b02 − 6x2yt2a11
2 + 8x2yt3b02 − 8xyt3b11 + x3a11

3 + 8x3t3b11)
2/t6 .

In the following examples, those with a line or conic component can be easily derived from
the above normal forms.

(1) B3,6 ∈ Σin: Σred = [4A2, B36, A1], C = B1 + B5,Σ(B5) = [4A2, A3]:

f := (y2 + (−5x + 1)y − x2)3 +
(

− 3

4
y3 +

(
15

4
x + 3

4

)
y2 +

(
− 15x2 + 9

4
x

)
y + x3

)2

.

(2) Σred = [A2, A5, B3,6, 2A1], C = B1 + B ′
1 + B4:

f := (−y2 + y − 4x2)3 + (y3 + (−4x − 1)y2 + 4yx − 8x3)2 .

(3) Σred = [A2, A5, B3,6, 2A1], C = B3 + B2 + B1:

f := ( − y2 + (−3x + 1)y − x2)3 +
(

2

3
y3 +

(
13

3
x − 2

3

)
y2 +

(
5x2 − 7

3
x

)
y + x3

)2

.

(4) [A8, B3,6, A1], C = B1 + B5 and Σ(B5) = [A8, A3]:

f := ( − y2 + (−3x + 1)y − x2)3 +
(

− y3 +
(

2

3
x + 1

)
y2 +

(
10x2 − 11

3
x

)
y + x3

)2

.

(5) Σred = [C3,7, A8, A1] with C = B1 + B5:

f := ( − y2 + y − x2)3 + (−2y3 + (−3x + 2)y2 + (−2x2 + 3x)y + x3)2 .

(6) Σred = [C3,7, A5, A2, 2A1] with C = B1 + B ′
1 + B4:

f := ( − y2 + y − x2)3 +
(

− 9

2
y3 +

(
3x + 9

2

)
y2 − 3xy − x3

)2

.

(7) Σred = [3A2, C3,8, A1]1, C = B1 + B5, Σ(B5) = [3A2, A3, A1]:

f := (y2 + (−2x + 1)y − x2)3 +
(

y3 +
(

− 3

2
x + 3

)
y2 +

(
− 3x2 − 3

2
x

)
y + x3

)2

.
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(8) Σred = [3A2, C3,8, A1]2, C = B1 + B5, Σ(B5) = [3A2, A5]:
f := (y2 + (−x + 1)y − x2)3 + (y3 + (x + 1)y2 + 3xy + x3)2 .

(9) C = B1 + B2 + B3, B2 ∩ B3 = A3 + A5 + A1 and Σred = [C3,8, A5, A2, A1]1:

f :=
(

− y2 +
(

x + 3

4

)
y − x2

)3

+
(

y3 +
(

− 3

2
x + 3

4

)
y2 − 9

8
yx + x3

)2

.

(10) C = B1 + B2 + B3, B2 ∩ B3 = A5 + A5 and Σred = [C3,8, A5, A2, A1]2:

f :=
(

− 1

16
y2 + (x − 3)y − x2

)3

+
(

1

64
y3 − 3

8
xy2 + (3x2 − 9x)y + x3

)2

.

(11) C = B1 + B5, Σ(B5) = [A8, A3] and Σred = [A8, C3,8]:

f : = (−y2 + (−3x + 1)y − x2)3 +
(

− 27

8
y3 +

(
− 69

8
x + 27

8

)
y2

+
(

9

8
x2 − 3

2
x

)
y + x3

)2

.

(12) Σred = [C3,9, E6, A1] with C = B1 + B5:

f := (−y2 + y − x2)3 + (y2x + (−2x2 − x)y + x3)2 .

(13) [C3,12, A2, A1]1
u→1−→[C3,12, A2, A1]3:

f := (−uy2 + y − x2)3 + (y3 + y2 + (−x2 + x)y − x3)2

and [C3,12, A2, A1]2
u→1−→[C3,12, A2, A1]3:

f := (−y2 + uy − ux2)3 + (y3 + y2 + (−x2 + x)y − x3)2 .

(14) Σred = [C6,6, 2A2, A1]1 with C = B1 + B5
s=0−→ [C6,6, 2A2, 2A1]1 with C =

B1 + B ′
1 + B4:

f := (y2 + xy − x2)3 + (y3 + ((−7 + s)x + 2)y2 + (x2 − x)y + x3)2 .

(15) Σred = [C6,6, A5, 2A1] with C = B1 + B ′
1 + B2 + B ′

2:

f := −y6 + (y3 + xy2 + (x2 + x)y + 2x3 + x2)2 .

(16) C = B3 + B ′
3 with [C6,12] for s �= 1 and C = B3 + B2 + B1 with [C6,12, A1] for

s = 1 are given by:

f := −y6 + (y3 + (x + 1)y2 + (x2 + x)y + 2sx3)2 .

(17) Σred = [C3,15, A1] with C = B1 + B5:

f := ((x + 1)y − x2)3 + (y3 + (x + 1)y2 + xy − x3)2 .
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(18) Σred = [B3,12]:
f : = (−y2 + y − x2)3 + (y3 − 3y2 + 3yx2)2

= (−x2 + 3y2 + 2y2
√

3 + y)(x2 − y − 3y2 + 2y2
√

3)(x2 − y) .

(19) C = B1 + B5,Σred = [D4,7, 2A2] s=0−→C = B1 + B2 + B3, [D4,7, A5]:
f := (sxy − x2)3 + (−y3 + (x + 1)y2 + yx2 + x3)2 .

5.3. Non-trivial degenerations. We give some non-trivial degenerations. We do not
give the whole moduli description but it can be computed as in [7].

(1) Σred = [A5, 4A2, A3, 2A1]2, C = B1 + B5 and Σ(B5) = [4A2, A3] can not degener-
ate into any further simple configuration, but it degenerates into C0 = B1 + B ′

1 + B4

with Σred = [A5, C3,7, A2, 2A1] as t → 0. For t = 0, A5 and C3,7 are at O and (0, 1).

ft (x, y) = ((−1 − t2)y2 + (−4tx + 1)y − x2)3

+
((

− t3 − 3

2
t + 1

)
y3 +

(
(−3 − 6t2)x + 3

2
t − 2

)
y2

+
(

− 15

2
tx2 + 3x + 1

)
y + x3

)2

.

(2) Σred = [A5, 4A2, A3, 2A1]3, C = B1 + B5, Σ(B5) = [4A4, 2A1] degenerates into
C0 = B1 + B5, with Σred = [A5, E6, A3, 2A2, A1]mr when t → 0.

ft (x, y) = (−y2 − y2t2 − 3yx − 4yxt + y − x2)3 + 1

64
(8y3t4 + 48y2xt3 + 8y3t3

+ 60yx2t2 − 12y2t2 + 84y2xt2 + 12y3t2 − 12y2t + 12y3t + 132yx2t + 60y2xt

− 24yxt − 8x3t − 6y2 − 8x3 − 24yx + 72yx2 + 24y2x + 3y + 3y3)2/(1 + t)2 .

(3) Σred = [A5, 4A2,D5]2, C = B1 + B5 degenerates into Σred = [2A5, 2A2,D5]mr
1 :

For t = 0, two A5’s are at {(0, 0), (0, 1)}.

f : =
(

− y2 +
((

− 25

16
+ 1

16
t

)
x + 1

)
y − x2

)3

+ 1

4294967296
(6428160y3 + 65536x3t2

+ 65536yt2 − 1179648yt − 11736576y2 + 1552896y2t − 41472y2t2

+ 1536y2t3 − 36y3t4 − 2586y3t3 + y3t5 − 491103y3t + 66204y3t2 + 5308416y

+ 4128768yxt − 229376yxt2 − 6144yx2t3 + 329728yx2t2 − 4442112yx2t

+ 96y2xt4 − 4992y2xt3 + 186432y2xt2 − 3602304y2xt − 18579456yx

+ 5308416x3 + 20329056y2x − 1179648x3t + 17750016x2y)2/(−9 + t)4 .
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(4) [2A5, 2A2, 4A1], C = B4 + B1 + B ′
1 → [3A5, 4A1]mr, a = 0, B3 + B1 + B ′

1 + B ′′
1 :

f : = (yxa2 − x2a + ax − 4yxa − y2)3 +
(

1

2
y2xa3 − 1

2
a3x2y − 1

2
x2a2 + 3

2
yx2a2

− 7

2
y2xa2 + 1

2
x3a2 + yxa2 − 1

2
x2a + 2yx2a − 3yxa + 1

2
ax + 7y2xa − 4y2x

+ 1

2
x − 3yx2 − yx − y3 − 1

2
x3

)2

.

The curve f (x, y, 0) has three line components and a nodal cubic component.

f (x, y, 0) = 1

4
x(x + 1 + 2y)(x − 1 + 4y)(4y3 + 8y2x + 6yx2 + 2yx + x3 − x)

(5) Cu = B2 + B4, Σred = [2A5, 3A2, 2A1]2 → [3A5, A2, 2A1]mr with C0 = B1 + B2 +
B3.

f2 : = −y2 + y2t1u − 1

2
y2u2 − xyt1 + xyu − 1

4
x2t1

2 + 1

2
x2t1u − 1

4
x2u2 − xt1u + 1

2
xu2 ,

f3 : = y3 + 3

8
x3t1u

2 + 3

2
y3u2 + 9

4
x2t1

2u − 1

2
y2xu3 + 3

4
x2yu2 − 3

2
xyu2 − 9

2
y3t1u

− 3

2
x2yt1u + 9

2
xyt1u + 15

8
y2xt1u

2 − 9

4
y2xt1

2u − 9

4
u2y2t1 + 3uy2t1

2 − 3uxt1
2

− 1

2
xu3 − 1

8
x3u3 + 1

2
x2u3 + 1

2
y2u3 − 3

8
x3t1

2u + 9

4
u2xt1 − 15

8
x2t1u

2 − y2t1
3

+ y2xt1
3 + xt1

3 + 1

8
x3t1

3 + 3y3t1
2 − x2t1

3 + 3

2
y2xt1 − 3xyt1

2 + 3

4
x2yt1

2 − 3

2
y2xu ,

with t1 := u + 1

2

√
u2 − 6. For t1 = 0, this degenerates into:

f (x, y, 0) = 3

32
(9x3 − 36x2 + 36x − 18x2y

√−6 + 36xy
√−6

− 36y2x − 36y2 − 20y3
√−6)(x − 1 − √−6y)(x − y2) .

(6) [3A5, A3]1, C = B1 + B5
u→1−→[3A5,D4], C = B1 + B1 + B4:

f : = (−y2 − 3xy − x2 + x)3 + 1

16
(−4y3u − 14xy2u + xy2 + 4xy2u2 − 10x2yu

+ 3x2y + 4x2yu2 + 4xyu − 4xyu2 − 2ux3 + x3 + u2x3 + 2x2u − x2

− 2x2u2 + xu2)2/u2 .
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(7) [3A5, A3]2, C = B2 + B4−→[3A5,D4]mr
1 (a = 1/4), [3A5,D4]mr

2 (a = −1/12):

f(x, y) : =
(

− y2a − 1

2
y2 + 1

2
y − ax2 + a

)3

+
(

5

4
y3a + 3

8
y3 − 1

4
y2a − 1

2
y2 + 5

4
yax2 − 5

4
ya + 1

8
y − 1

4
ax2 + 1

4
a

)2

.

(8) A degeneration [A11, 2A2, A3]s �= 1 → [A11, 2A2,D4], s = 1 with C = B2 + B4.

f :=
(

− y2 + y − 8

3

x2

s

)3

+
(

y3 − 5

4
y2 +

(
10

3

x2

s
+ x + 3

8
s

)
y − 8

3

x3

s
− x2

)2

.

6. Appendix

PROOF OF PROPOSITION 7. The proof is computational.
1. Assume that C is a sextics of linear type with 3A5. This is a special case of the

result of Tokunaga, [10]. We assume that L is defined by y = 0. We start from the generic
polynomial of degree 6:

f(x, y) =
∑

i+j≤6

ai,j x
iyj .

By the action of PGL(3, C), we may assume that three A5’s are at {P1 = (−1, 0), P2 =
(0, 0), P3 = (1, 0)} and the tangent cones at P1, P3 are given by x = ±1. These condition
says

(1) f (x, 0) = x2(x2 − 1)2 and
(2) fx(Pi) = fy(Pi) = 0 for i = 1, 2, 3 and
(3) fx,y(Pi) = fy,y(Pi) = 0, i = 1, 3.
Eliminating coefficients from f (x, y) using these equations, then we eliminate further

coefficients using the assumptions (C, Pi ) ∼= A5. Then we get a normal form of sextics
with four parameters a04, a06, t, s. Then we apply the degeneration method to the family
f u := f − uy6 (see [7]). Finally we find that f (x, y) has a torus expression:

f(x, y) = τy6 +
(

− ty2 − sy2 − yx2 + xty2

+ y − xsy2 + x3 − x − y3st + 1

2
y3a04 − 1

2
y3s2 − 1

2
y3t2

)2

,

τ = a06 + 1

2
s2a04 − t3s − s3t − 3

2
s2t2 − 1

4
t4 + ta04s − 1

4
s4 − 1

4
a04

2

+ 1

2
a04t

2 .
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The proof for the cases Σ(C) ⊃ A11 + A5, A17 are similar. In the case of A11 + A5, we
assume that A11 is at O and A5 is at (1, 0). We assume that the tangent cone at (1, 0) is
x = 1. In the case A17, we assume that A17 is at O . For the condition of (C,O) ∼= A11

(respectively for ∼= A17) at the origin, we assume that the normal form is given by the change

of coordinates y1 := y +∑5
i=2 tix

i (resp. y1 := y +∑8
i=2 tix

i). Let f ′(x, y) = f (x, y1) and
let c0 = f ′(x, 0) and c1 be the coefficients of y in f ′(x, y). As we assume that f ′(x, y) =
ay2 +byx6 + cx12 + (higher terms)s (resp. f ′(x, y) = ay2 +byx9 + cx18 + (higher terms)s),
normal forms are obtained by solving the equalities: Coeff (c0, x, j) = 0 for j ≤ 11 and
Coeff (c1, x, k) = 0 for k ≤ 5 (resp. Coeff (c0, x, j) = 0 for j ≤ 17 and Coeff (c1, x, k) =
0 for k ≤ 8). Then we find the torus expressions by the degeneration method. For the case

A11 + A5, f (x, y) = u11y
6 + f3(x, y)2 where

u11 = −1

4
(4a04t2

9t4t3
2 + t2

4t4
4 − 2a04t2

10t4
2 − 2t2

8a04t3
4 + 6t2

2t4
2t3

4

− 4t2
3t4

3t3
2 − 4t3

6t4t2 + a04
2t2

16 + t3
8 − 4a06t2

14)/t2
14 ,

f3(x, y) = 1

2
(6t2

3y2t3xt4 − 2t2
7x2 − 2t2

4y2t4 − 2t2
6yx + 2t2

3y2t3
2

− 2t2
3y2t3

2x + 2t2
4y2xt4 − 4t2

2y2t3
3x + 2t2

6y − 2t2
4y2xt5 − y3t2

2t4
2

+ 2t2y
3t3

2t4 − y3t3
4 + 2t2

7x3 + t2
8y3a04 − 2t2

5yt3x + 2t2
5yt3x

2)/t2
7

and f (x, y) = u17y
6 + h3(x, y)2 for the case A17 where

u17 = −1

4
(24t6

2t3
6t5

2t4
2 − 24t4

4t6
2t3

5t5 + 8a04t3
13t4t6t5 − 8t4t6

3t3
7t5

− 8a04t3
12t5

2t4
2 + 8a04t4

4t3
11t5 + a04

2t3
20 − 2a04t4

6t3
10 − 2a04t3

14t6
2

+ 4t4
3t6

3t3
6 + 6t4

6t6
2t3

4 − 4a04t3
12t4

3t6 + t3
8t6

4 + 4t4
9t6t3

2 − 4a06t3
18

+ 24t4
8t5

2t3
2 − 8t4

10t5t3 + 48t4
5t6t3

4t5
2 − 24t4

7t6t3
3t5 + t4

12

− 32t6t3
5t5

3t4
3 + 16t4

4t5
4t3

4 − 32t4
6t5

3t3
3)/t3

18 ,

h3(x, y) : = 1

2
(−4t5

2t3
2y3t4

2 + 2t5
2t3

5y2x + 4t6t5t3
3y3t4 − 10t5t3

4y2xt4
2

+ 4t5t3
5y2t4 + 4t5t3y

3t4
4 − 2t5t3

7yx2 − 2t3
9x3 + 2t3

6x2t4
2y

− 2t3
6y2xt7 + 6t6t3

5y2xt4 + 4t3
3xy2t4

4 − 2t3
7xyt4 − y3t6

2t3
4

− 2t6t3
2y3t4

3 − y3t4
6 − 2t6t3

6y2 − 2t3
4y2t4

3 + 2t3
8y + y3t3

10a04)/t3
9 .

2. Next we consider the case C = B3 + B ′
3 and C is a sextics of torus type and assume

that Σin(C) = [3A5] or [A11, A5] or [A17] and let P1, P2, P3 be the corresponding singular
points. (In the case of [A11, A5] or [A17], P2 = P3 and P1 = P2 = P3 respectively.) We
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show that three P1, P2, P3 must be colinear. We start from the expression:

f(x,y) := f31(x, y)f32(x, y)

= (a03y
3 + (a12x + a02)y

2 + (a21x
2 + a11x + a01)y + a30x

3 + a20x
2 + a10x + a00)

(b03y
3 + (b12x + b02)y

2 + (b21x
2 + b11x + b01)y + b30x

3 + b20x
2 + b10x + b00) .

Assume that C is defined by f2(x, y)3 + f3(x, y)2 = 0 and let C2 and C3 be the conic and
the cubic defined by f2 = 0 and f3 = 0. Let Pi ∈ C be an inner singularity. Recall that by
[8] we have the equivalence

(	) (C, Pi) ∼= A6j−1 ⇔ I (C2, C3; Pi) = 2j and C3 is smooth at Pi for j = 1, 2, 3.
In particular, if C2 is smooth at Pi, (	) implies that C2 and C3 are tangent at Pi . Again

by an easy computation, we can see that there are no cases when P1, P2, P3 are not colinear.
We give a recipe of the computation. Assuming that P1, P2, P3 are not colinear. To each Pi,

we associate its tangent cone direction 
i and we identify 
i and a line in P2.
There are two cases.
(a) C2 is a smooth conic, or
(b) C2 is a union of two distinct lines L1, L2.
In the case of (a), we may assume that P1 = (−1, 1), P2 = O = (0, 0) and P3 = (1, 1)

and 
1 = {y + 2x + 1 = 0}, 
3 = {y − 2x + 1 = 0}. Then the conic must be defined by

y − x2 = 0. Thus 
2 = {y = 0}. Here we used the next easy lemma.

LEMMA 13. Let (C, {P1, P2, P3}) and (C′, {P ′
1, P

′
2, P

′
3}) two smooth conics with three

points on the respective conic. Then they are isomorphic by an action of a matrix A ∈
PGL(3, C).

Thus we need to have the equations

(	) :
{

f31(Pi) = f32(Pi) = 0 , i = 1, 2, 3 ,

(f3j,x − 2f3j,y)(P1) = 0 , (f3j,x + 2f3j,y)(P3) = 0 , f3j,y(O) = 0, j = 1, 2 .

The last condition says that two cubic are tangent to y = x2 at P1, P3. Let R(x) and S(y) be
the resultant of f31 and f32 with respect to y-variable and x-variable respectively. The above

equality implies that (x2 − 1)2x2|R(x) and y2(y2 − 1)2|S(y). Eliminating coefficients using
these equalities, we consider the further condition for P1, P2, P3 to be A5-singularities. This
is given by the condition x3(x2 − 1)3|R(x) and y3(y2 − 1)3|S(y). At the end of calculation,
we find that there are no such f31, f32 which corresponds to a reducible sextics.

We consider the case (b). Assume that C2 is a union of two lines L1, L2. Then we can
see that Li are tangent to the cubic C3 and the intersection L1 ∩ L2 is also on C3 so that this
makes the third A5. In this case, we may assume that P1, P2, P3 be as above but 
1 is y = −x

and 
3 is y = x. The 	 should be replaced by

(	) :
{

f31(Pi) = f32(Pi) = 0 , i = 1, 2, 3 ,

(f3j,x − f3j,y)(P1) = 0 , (f3j,x + f3j,y)(P3) = 0 , j = 1, 2 .
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Then we consider the A5-condition to see that there exists no such sextics.
The case Σin = [A11, A5], we take A5 at P1 and A11 at O and the (	)-condition is

replaced by

(	) :
{f31(Pi) = f32(Pi) = 0 , i = 1, 2 , (f3j,x − 2f3j,y)(P1) = 0 , j = 1, 2 ,

x4 | f3j (x, x2), j = 1, 2 .

The last condition says that the intersection multiplicity of each cubic and the conic y−x2 = 0

at O is 4. The reason that we have chosen the conic y − x2 = 0 is to make the last condition
to be easier to be used.

The case Σin = [A17], we take A17 at P2, and the the torus type condition is

(	) : f31(0, 0) = f32(0, 0) = 0 , x6 | f3j (x, x2), j = 1, 2 .

In any cases, one conclude that there does not exist any solution which corresponds to a
reduced sextics.
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