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Geometry of Reduced Sextics of Torus Type

Mutsuo OKA
Tokyo Metropolitan University

Abstract. In [7], we gave a classification of the configurations of singularities of irreducible sextic of torus
type. In this paper, we give a classification of the configurations of singularities on reducible sextics of torus type.
‘We determine the component types and the geometry of the components for each configuration.

1. Introduction and statement of the result

In our previous paper [7], we have classified the configurations of the singularities on
irreducible sextics of torus type. In this note, we classify the configuration of singularities of
reducible sextics of torus type. We use the same notations as in [7].

We denote by X, and X,,; the configurations of the inner singularities and of the outer
singularities respectively. For the classification of the configurations of the reduced sextics
of torus type, it is less important to distinguish inner or outer singularities but what is more
important is to know the singularities of the irreducible components and their intersections.
We put X,oq = Xy U Xy, and we call it the reduced configuration. Let B;,, - - - , B;, be the
irreducible components of C. We call {deg B;,, - - - deg B;, } the component type of a reducible
sextic C. In this note, we always assume that the curves B;, Blf , - - - are irreducible and their
degrees are the same with the indices. Thus, for example, C = By + B{ + By implies that
C has three components of degree 1, 1, 4. The configurations of the singularities of B; is
denoted by ¥ (B;). We say that C has the maximal rank if C has only simple singularities
and the total Milnor number is 19. We denote configurations with maximal rank by upper
suffix mr, like [A11, 2A2, D4]™". The classification of reduced sextics of torus type with only
simple singularities is given in Theorem 1 and the classification for the other case is given in
Theorem 2.

1.1. Reduced sextics with simple singularities. We first classify the reduced sextics
with simple singularities.

THEOREM 1. The classifications of the configurations of singularities on reducible sex-
tics of torus type with only simple singularities are given as follows.
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(1) Xy =[A5,4A2]: C = Bs+ By and [As,4A7,2A1]2, [As,4A2,3A1]2,
[As5,5A2,2A1]2, [As5,4A2, A3,2A1]2, [As5,4A2,4A1], [As, 44, A3y,
[As,4A2, A3, A1]2, [As, 4A2, A3,2A1]3, [As,4A2, D42, [As, 4A2, Ds]a.

(2) Zin =[245,2A2]:

(a) C = By + Bs: [2A5,2A3,2A1]2, [245,2A2,3A1]1,[245,3A2,2A1]4,
[2A5,2A7, A3]n, [245,2A2, A3, A1y, [245,2A2, D4y, [2A5,2A5, D51
(b) C =B + Bi + B4: [2A5,2A2,3A1]2, [2A5,2A7,4A1], [2A5,2A2, D4]>.
(¢) C = By + By4: [2A5,2A2,2A113, [2A5,2A2,3A113, [2A5,3A2,2A1]2,
(245,243, A3]3, [2A5,2A2, A3, A1]2, [2A5,2A2, D43, [2A5,2A2, D515,
d C=B3+ Bé: [2A5,2A7,3A1]4, [2A5, 245, A3, A1]3, [3A45, 2A]™.

(3) Xin =1[E¢, As,2A2]: C = By + Bs and [Eg, As,2A2,2A1]2, [Ee, A5, 2A2,3A1],
[Ees, As,2A2, A3la, [Eg, As, 2A2, A3, A(]™.

4) Xy =[3As]:

(a) C = By + Bs: [3A5,2A1]1, [3As, A3]y.

(b) C = By + By: [3A5,2A1]2, [3As, A3zla.

(¢) C = By + B] + B4: [3A5,3A1]1, [3As, D4]]".

(d) C = B3+ Bj: [3As]2, [3As, A1ln, [3As, Az]n, [3A5,2A115, [34s, Ay, A2,
[3A5,2A,]™".

(e) C = By + By + B3: [3A5,2A1], [3As,3A1]1, [3As, A2, 2A1]™, [3A5, A3]3,
[3As, Az, A]™.

(f) C = B + B + B{ + B3: [3A5,3A1]2, [3As5,4A11™, [3As, D413

(g) C = By + B, + B): [3A5,3A113, [3As, D415

(5) Zin =[24s, El:

(a) C = By + Bs: [Es,2A5,2A1]1, [Ee, 2As, A3]]".

(b) C = By + By: [Es, 2As,2A1]2, [Eg, 245, A3])".

(c) C =B+ Bi + By4: [Eg, 2As5,3A1]™.

(6) Xip =[As, As, A2]: C = By + Bs and [Ag, As, Az, 2A1]2, [As, As, Az, 3A1],
[Ag, As, Az, Aslp, [Asg, As, Az, A3, A", [Ag, As, Az, D4]™.

(7) Zin =[A11,2A2]:

(a) C =By + Bs: [A11,24A2,2A1]2, [A11,24A2,3A1]1, [A11, 342, 2A(]™,
[A11,2A2, A3l2, [A11, 2A2, Dg]™".

(b) C = B3+ Bj: [A11,2A2,3A1]2, [A11, 242, A3, Aq].

(8) Xin =[A11, As]:

(a) C = By + Bs: [A11, A5, 2A1]1, [An, As, As]]".

(b) C = By + By: [A11, As, 2A1 ]2, [A11, As, A3]).

(¢) C = B3+ Bj: [A11, Asy, [A11, As, A1z, [A11, As, Az]p, [A11, As, 2A1]3,
[A11, As, Ay, A(]™.

(d) C = By + B2+ B3: [A11, As, 2A1], [A11, As, 3A1]™, [An1, As, A3]5".

9) Zin =[A17]: C = B3 + By, [A17]2, [A17, A1, [A17, 2A11™, [Ar7, A2l
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Further geometrical informations are explained in the proof in Section 3. In the above
theorem, the lower index, like [As, 4A>, A3, 2A ]2, is to distinguish other component with
the same weak Zariski configuration. The index 1 is reserved for the irreducible case if
there exists an irreducible sextics. Thus the configuration which start from index 2, like
[As,4A>, A3, 2A ], implies that there is an irreducible sextics with the same configuration.

THEOREM 2. The reduced configurations with at least one non-simple singularities
are given by the following.

(1) B36 € Zin :
(a) C = By + Bs : [B3,6,3A2, A1l2, [B3,6, 3A2, 2A1], [B3,6, 4A2, A1],
[B3,6, As, A2, A1]1, [B36, E6, A2, A1], [B3,6, A, A1l
(b) C =B; + Bi + B4 : [B3, As, A, 2A1]1.
(¢c) C=B1+ By+ B3 :[B3¢, As, A, 2A1]>.
(d) C =By + By:[Bsg, As, Az, A1,
(e) C =B+ Bé + Bé’ 1 [2B36].
(2) C37€ Xy
(@) C =By + Bs:[C37,3A2, A1]2, [C3,7,3A2, 2A1], [C3,7, As, Az, A1,
[C3.7, E6, A2, A1), [C3,7, Ag, A1l
(b) C = By + By :[A2, As, C3.7, A1
(¢c) C =B+ Bi + B4 : [C3,7, As, A2, 2A1].
(3) C38€ iy :
(a) (a-1) C = By + Bs and (Bs, O) = A3 : [C38,3A212, [C3.8,3A2, A1l
[C38, As, Az], [C38, Eg, A2], [C38, Agl.
(a-2) C = By + Bs and (Bs, O) = As : [C3.8,3A2, A1]2.
(b) C =By + B4 : [C3g, As, A2].
(¢) C=B1+ By+ B3 :[C33, As, Az, A1]1, [C38, As, Ao, Apla.
4) C39 € iy : C = By + Bs and [C39,2A2, A2, [C3,9,2A2,2A1], [C3,9,3A2, A1],
[C3,9, As, A1], [C3,9, E6, A1].
(5) Ca12€ Xy
() C = By + Bs :[C3,12, Az, A1]1.
(b) C =By + By :[C3,12, Az, A1]2.
(c) C =By + By + B3 :[C3,12, A2, 2A1].
(6) Co,6 € Zin :
(@) C =B1+ Bs : [Ce,6,2A2, A1].
(b) C =B; + Bi + B4 : [Ce.6, 2A2,2A1]1.
(c) C=B3+ Bé 1 [Ce.6, As].
(d) C = B3+ B2+ B;: [Ce6, As, A1l
(e) C =B+ Bi + By + Bé :[Ce,6, As, 2A1]0.
(7) Ce,9 € Xip : C = By + Bs, [Ce9, A2, A1l
(8) C3,15 € Xjy : C = By + Bs, [C3,15, A1l
9) B3z € Zip: C=By+ By + By, [B312].
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(10) Ce,12 € Zip -

(a) C = B3z + B} : [Ce,12].

(b) C =By + Ba+ B3 : [Ce.12, A1l
(11) Byo € Xip : C = B3 + Bé and [By.6, As].
(12) D47 € Xin :

(@) C =By + Bs:[D47,2A].

(b) C =By + Bx+ B3 : [D4,7, As].
(13) Spp e Xy : C = B3 + Bé and [Sp2].
(14) Be,6 € Xin : [Be,6].

2. Preliminaries

2.1. Genus formula and the class formula. Let C be an irreducible plane curve of a
given degree d. Then the genus formula is given as

(d—-1d=-2)
5 —

uw(C,P)+r(C,P)—1
2

9(C) = > 8P =0, &(P)=

PeX(C)
where w(C, P) and r(C, P) is the Milnor number and the number of local irreducible com-
ponents ([3]). Let §*(C) = ZPEE(C) 8(P). Using the above inequality, we have §*(C) <
6,3, 1, 0 respectively for d = 5,4, 3,2 for an irreducible curve C. Now assume that C
is not irreducible. Let C = B;, + --- 4+ Bj, be the irreducible decomposition of C with

degree(B;,) = ix. We define §*(C) = Zﬁ:] 8*(Bi;).

PROPOSITION 3. Assume that C is a reducible sextic and let C = B;; + --- + B;, be
the irreducible decomposition. Then

6, if C=Bs+B,

3, if C=B4+By, or B4+B+ B,
8*(C)< 132, if C=B3+B,,

1, if C=B3+Bz+Bl,0rB3+Bl—i—Bi—i—B”,

0

, otherwise .

The class formula describes the degree n*(C) of the dual curve and it is given by the
following formula ([4]).

n*(C)=dd—1)— Y  (u(C,P)+m(C,P)—1).
PeX(C)

The number of flex points i (C) counted with multiplicity is given by

i(C)=3d(d—2)— Z flex defect(C, P).
PeX(C)
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For the definition of flex defect, we refer Oka [6]

2.2. Intersection singularities. Let C be a plane curve and let C', .-, C* be the
irreducible components. Let P be a singular point of C. We say that P is a proper singularity
ifPeC —J i#i € J for some component C’. Otherwise we say that (C, P) an intersection
singularity. Assume that C = cluc?, for example, and P € Ccl'nC? and C!, C? are
non-singular at P and let ¢ be the local intersection number. Then (C, P) = Aj,_1. Assume
further that C! is a line and « > 3. Then we say that C! is a flex tangent line of C2.

PROPOSITION 4. Assume that C passes through O = (0,0) and C is defined by
f(x,y) = 0and assume that the Newton boundary I' () is non-degenerate. Let Ay, --- , Ay
be the faces of I' (f) and assume that fa,(x,y) = ]_[;i:l(y“f — otiji) with ged(a;, b;) = 1
and ay, - - - , oy, are mutually distinct. Then C has Zle v; local irreducible components at
O which are different from the coordinate axis x = 0 or y = 0 and the defining equations can

be written as (y* — otij") + (higher terms) = 0.
See for example [5].

EXAMPLE 5. 1. Consider Dy : yzx — x3 = 0. Then Dy can be an intersection
singularity of three smooth components, x = 0, y £ x = 0 where each two of them intersect
transversely. Similarly Ds : y2x + x* = 0 can be interpreted as an intersection singularity of
aline x = 0 and a cusp y? + x> = 0.

2. Consider the singularity C3 j, : y3 4+ y2x? —xP = 0.

Case 1. Assume that p is odd. Then C3 , has two local irreducible components. One
component is smooth and is defined by L : y + x? + (higher terms) = 0 and another com-
ponent M is defined by y?> — x?~2 + (higher terms) = 0 and it is an A, _3-singularity and
I(L,M; 0) =4.

Case 2. Assume that p is even and put p = 2m, m > 4. Then C3 ,, has three smooth
components Ly, Ly, L3 where Ly : y + x2+ (higher terms) = 0 and L, L3 are defined by
y £ x™~! 4 (higher terms) = 0. Note that (L, U L3, O) = Ay, 3 and (L1 U Ly, O) = Aj.

‘We use the following notations for non-simple singularities as in [8].

By4 : yP 4+ x9 = 0 (Brieskorn-Pham type)

Cpq: Y +x9+x2y? =0, %+§ <1

Dy7: y*+x3y2 +ax’y +bx7 =0, a®>—4b#0
Spr: (37 =277+ ()’ =0

Spr: (0 —x¥Hr—y6=0.

Hereafter we only consider sextics of torus type C : f2(x, ¥)> + f3(x, y)? = 0. The notation
Cy: fo(x,y) =0and C3 : f3(x,y) = 0is used throughout the paper.
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2.3. Weak Zariski k-ple. A k-ple of reduced plane curves {C', --- , C¥} is called a
weak Zariski k-ple if degree(C') = - - = degree(C¥) and they have same reduced configu-
ration of singularities and the topology of the pair (P?, C/) are all different. We call X(C/)
a weak Zariski configuration. Note that C', ..., CK may have different component types.
Artal has first observed such a pair for [A17] or some others in sextics [1]. It is obvious that a
Zariski pair is a weak Zariski pair.

2.4. Sextics of linear torus. A sextics C of torus type is called of linear torus type
if C can be defined by f(x,y) = fo(x, y)> + f3(x, y)? where fo(x,y) = (ax + by + ¢)%.
We may assume that f, = —y? by a linear change of coordinates so that f is a product of
cubic forms f(x,y) = (f3(x,y) + y3)(f3(x, y) — y3). It is easy to observe that the inner
singularities are on y = f3(x, 0) = 0. In particular, there are at most three inner singularities
and they are colinear.

PROPOSITION 6. The possibility of inner configuration of sextics of linear torus type is
either [3As], or [A11, As] or [A17] for simple singularities and for non-simple singularities,
we have [Ce 6, Asl, [Ba,6, Asl, [D4,7, Asl, [Ce,12], [Sp2] and [ Bg ¢].

PROOF. Assume that f3(c, 0) = 0. Assume that « is a simple solution of f3(x,0) =0
(respectively a solution of multiplicity 2 or 3). Put P = («, 0). Then / (yz, C3; P) =2 (resp.
4 or 6). Let C', C? be the cubic defined by f3(x, y) £ y> = 0. If C', C? are non-singular
at P, then P € C is an intersection singularity, and (C, P) is isomorphic to As, Ajj or A7
depending to the multiplicity.

Assume that P is an singular point of C! and C2. Then (C, P) can not be Eg as (C, P)
is not irreducible and the assertion follows from the classification of [8] and Theorem 2. O

Assume that C is a sextics with 3As or Aj; + As or Aj7. We denote the location of
these singularities by { Py, P», P3} (respectively, {P;, P>} or {P}) which are assumed to be

mutually distinct. We say that C is of linear type if there is a line L C P? such that

{P1, Py, P3}, I(C,L; P;) =2, (C, P) = As
LNC={P, P}, I(C,L; P\) =2,1(C,L; ) =4, (C, P)) = A5, (C.Pp) = Ay
{P1},I(C,L; P1) =6, (C,P)=E A7

The following is the converse of Proposition 6.

PROPOSITION 7. Assume that C is a reduced sextics with 3As or A1 + As or Aj7.
Assume that

1. C is a sextics of linear type or

2. C is a sextics of torus type which is a union of two cubics.

Then C is of linear torus type.

We give a computational proof in Appendix in §6.
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REMARK 8. There exists sextics of non-torus type which has the decomposition type
C = B3+ Bé with 3A5 or A1; + As or A7 which are not colinear. In fact, in the space
of sextics, the moduli of sextics with configuration [3As], [A11, As] or [A17] consists of 4
components: irreducible non-torus sextics, irreducible sextics of torus type, non-torus sextics
with two cubics components, sextics of linear torus type. The assertion is shown by Artal [1]
for the configuration [A7].

3. Proof of Theorem 1

3.1. Elimination of other configurations. We assume that sextics have only simple
singularities. A main step to the proof is to list the possible configurations, eliminating other
configurations. This process can be done by fixing each inner configuration. The proof of the
existence for the survived maximal configurations is given by constructing explicit examples
(in next subsection), and for other configurations, we leave it to the reader. In the following,
B;, B/, - - - are assumed to be an irreducible component of degree i. By [8], the possible inner
configurations are the combinations of A, As, Asg, A11, A4, A17, Es.

First consider the case X;,(C) = [6A]. This implies §*(C) > 6. Assume that C is
not irreducible. As A is an irreducible singularity, it is not possible unless C = Bs + Bj.
However there is no quintic Bs with 6A;, as n*(Bs) = 2. (The conics are self-dual.)

The configurations X, = [4A2, E¢l, [2A2,2E¢], [3A2, Ag], [A2, A14] are impossible
to be on a reducible sextic curve as §* > 7. Now we consider the other cases.

1.  Assume that X;,(C) = [4A,, As]. Then §*(C) > 5 and the only possibility is the
case: C = By + Bs. If this is the case, B; must be a flex tangent line of Bs and X' (Bs) = [4A»]
generically. Note also BjNB; = As5+2A; or A5+ As if the intersections are on their smooth
points.

Notation. Here the equality By N\ Bs = As + 2A| implies that the intersection of Bj
and Bs are three distinct points, and the equivalence classes of the intersection singularities
of B1 U Bs are As and two A1 respectively. We use this abuse of notation throughout the
paper.

Under the assumption X, (C) = [4A2, As], Bs can take further Ay, A>, Az, Asg, 2A1 by
the genus formula. There are no quintic with 4A> + A4 or 5A; + Aj. In fact, if there is such
a quintic, n*(Bs) = 3 in both cases. However this is impossible by the following well-known
fact.

Fact 1. The dual of an irreducible smooth (resp. nodal, or cuspidal) cubic Bz is a 9
cuspidal sextic (respectively 3 cuspidal quartic or cuspidal cubic).

Note that A5 must be on By N Bs. Assume first By N Bs is As + 2A;. The configu-
rations corresponding to the degeneration of the quintic is: [As5,4A2,2A1], [As,4A2,3A1],
[As5,5A2,2A1]0, [A5,4A2, A3,2A1]; and [As,4A,,4A1].

Assume that By N Bs = As + A3. Then we can insert to Bs either A; or 2A but we
can not insert any other singularity. Thus we have [As, 4A2, A3]», [As,4A2, Az, Aq]» and
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[As,4A>, A3, 2A1]. In fact, assume that X' (Bs) = [5A5]. Then n*(Bs) = 5 and i (Bs) = 5.
Thus 5 cuspidal quintics are self dual. However if By N B; = As + A3, Bj is a flex tangent
which is also tangent at another point. This implies one A of B has to be replaced by Ds
(= the dual singularity of (Bs, By N Bs)*) which is impossible.

The exceptional cases [4A>, A5, D4] and [4A3, A5, Ds] are given when X (Bs) = 4A>+
Aj or 5A; respectively and the line component B; passes through the last outer Aj or As.
Note that the sextics with one of the above configurations can be degenerated into one of
[As5,4A2, A3,2A1]1 or [A5,4A3, A3,2A ]2 or [As,4A3, Ds].

There are further degenerations [As, 4A2, A3, 2A1]1 — [As, C3.7, A2, A1]1(5.3-1),
[As,4A2, A3,2A1]3 — [As, E6, A3,2A2, A1]}"" (5.3-2) and [4A2, As, Ds]n — [2A5,2A2,
Ds]{" (15.3-3) . We will give later explicit examples of these degenerations in 5.3. So the
existence of the above configurations follows from the existence of these three configurations
[As,4A3, A3, 2A1]1, [As,4A2, A3, 2A1]3 and [As, 4A3, Ds)s.

Note that [As,4A;, A3,2A1];, i = 1,2 is an interesting weak Zariski configuration:
Both has the same decomposition type B; + Bs but X (Bs) = [4A32, A3] and B; N B; =
As+2Aq (respectively X (Bs) = [4A2,2A1]and BiNBs = A5+ Az) for[As, 4A2, A3, 2A1]4
(resp. for [As,4A>, A3z, 2A1]2). To distinguish them, we put the index 1 or 2. The config-
urations [As,4A2,2A1], [As5,4A2,3A1] are also weak Zariski configurations as there exist
irreducible sextics with these configurations ([7]). Hereafter we do not list up the weak Zariski
configurations. They can be read from the indices.

2. Now we consider the case X;, (C) = [2A2, 2A5].

(a) Consider the component type C = By + Bs. Then X (Bs) = [2A2, As] and B; N
Bs = A5 +2A; or As + A3. We can put at most one A or A; in Bs. In the case B N Bs =
As + Az, we assert that A, can not be inserted in Bs. In fact, assume that Bs is a quintic with
3A) + As. Then n*(Bs) = 5 and the dual curve B;‘ has the same singularities, as i (C) = 3
and As is self-dual ([6]). If B; N Bs = A5 4+ A3, Bj is a flex tangent and the dual singularity
is Ds, but this is impossible as the dual curve B;k can not have A5 + 2A, + Ds. However
the configurations [As, 245, D4] and [As, 2A5, D5]’f" (see 5.1-3) are possible by putting the
above extra Aj or A> on B N Bs. Note that we have a degeneration [2A5,3A>,2A1] —
(245,247, D5}

(b) Assume that C = B4+ B+ B{. Then to have 2A5 42 A5, B4 must have two cusps
and By, Bi must be flex tangents. Thus the configuration is generically [2A5, 2A2, 3A1]. The
configuration [2As, 2A;, D4] is given when two lines Bj, B{ intersect on By4. Furthermore
B4 can have one more node ( so [2A5,2A,,4A], see 5.3-4) but it can not have three cusp.
In fact, if B4 has three cusps, ij is a nodal cubic. This is impossible as ij have at least two
cusps.

(c) Assumethat C = By + B4, ¥ (Bs) = [2A2] and Bo N B4 = 2A5+2A generically.
We can put either A; or Ay on Bs. See 5.3-5. Consider the case By N By = 2A5 + Aj.
Then we can only insert A into B4. We can put A; into B4 only on By N By so that we get
[2A5,2A2, Ds]5'" (see 5.1-3). The case X' (Bs) = [3Az] and B, N B4 = 2As + A3 does not
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occur. In fact, assume that B N By = 2As5+ A3 and X' (B4) = [3A»]. Note that the dual curve
Bj is a conic and the dual Bj is cubic. Now the assumption implies that By N B} = 2As5+ A3
which is impossible by Bezout theorem.

(d) Assume that C = B3 + Bj. Then the cubics are cuspidal and B3 N\ B} = 2A5+3A
(generic) or 2A5+ A3+ A or 3As. This is the most difficult case to find explicit examples. See
the next section for explicit examples (see 5.1-1). The case [[2A5, 2A>], [As]] coincides with
[[3As5], [2A2]]. This corresponds to the fact that this configuration has two torus expressions
(see 5.1-6). Note that every configurations with X}, = [2As, 2A,] except [2As5,2A7,4A1] is
a weak Zariski configuration. For example, [2As, 2A3, 3A1] has 4 different cases.

3. Assume that ¥;, = [Eg, As, 2A2]. Then §* > 5 and the possibility is C = Bj + Bs,
X (Bs) = [FEs,2A2] and BiNBs = As5+2A; or A5+ A3. Asthere is no quintic with [ Eg, 3A3]
by the dual curve discussion, we can put at most one Aj. This gives the configurations in the
list. The added A can not be on Bj. This has to be checked by a direct computation or it also
follows from Yang, [11], as [E¢, As, 2A2, D4] does not exist. Note that [Eg, A5, 2A2,2A1]
and [Eg, As, 2A>, A3z] are weak Zariski configurations.

4. Assume that X;,, = [3As]. In the case of (a)-(c) of No. 4 in Theorem 1, Bs in (a),
B4 in (b) or (c) are rational. Thus the assertion is obvious except the existence. The case (a)
is given by X (Bs) = [2As5] and By N Bs = A5 + 2A or [A5 + A3]. See 5.3-6. The case
(b)is given by C = By + Bs, X (Bs) = [As] and Bo N By = 2A5 + 2A; or 2A5 + A3. See
5.3-7. The case (d), three As are colinear by Proposition 7 and assuming they are on y = 0,
the generic form is given by f3(x, y)> — y°, where f> = —y2. Thus every configurations in
(d) can be obtained by putting either A or A3 in the cubics. The cases (e), (f) are special
cases of (d). In case (e), we can put only Aj or A, in B3. However we need to show that
if B1 N By = A3z, B3z can not be cuspidal. In fact, if such a sextics exists, it gives rank 20
configuration [3As, A3, A2] which is known to be impossible ([9, 2]). The assertion of (f) is
also easy to see as three line components are flex tangents and a nodal (respectively cuspidal)
cubic has three flex points (resp. one flex point). The last configuration [3As, D4] is realized,
when three line components intersect at a point.

The case (g) is the only non-trivial case. By Proposition 7, three As can not be colinear.
The normal form is given in 5.1. In this family the intersection of any two conic components
gives As + Aj. The maximal configuration [3As5, Ds] is given by u = —1/4 where three
conics intersect at a point.

5. Assume that X, = [2A5, Eg]. Assume that C = B 4+ Bs and X' (Bs) = [As, Egl
and therefore Bs is rational. In the case C = By + Bsor C = By + Bi + B4, X (B4) = [E¢].
In any case, By is rational and the configurations have maximal ranks. Thus there are no
further possibility. See 5.1-4,5.

6. Assume that X;,(C) = [Ag, As, Az]. Then C = B; + Bs. The non-existence of
Y(Bs) = Ag + 2A; with X,y = [Ag, As5,2A5,2A1] is checked by a direct computation.
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This is also a result of Yang [11], as this is not in his table of maximal rank configuration. The
[Ag, As, 2A>, A3] does not exists as the rank is 20.

7. Assume that X, (C) = [A11, 2A2]. Itis easy to see that Aj; must be an intersection
singularity.

(a) Assume first C = By + Bs. As B4 has 2A», it can take only Aj or Aj. In the case
BN B4y = Aq1+ A3, it can be checked by computation that B4 can not have further singularity.
Namely [A11, A3, 2A3, A1] does not appear from this series. This also follows from the
connectedness of the moduli space of the sextics with the configuration [2A3, A1, A3, A(]™
(see [11]), as it exists for the component type C = B3 + Bg. See 5.3-8.

(b) Assumethat C = B3+ Bé. Then two cubics are cuspidal and B3N Bg = A1 +34,
or Aj] + Az + A1. As the rank is bounded by 19, there are no possibility of [A11, A5, 2A3].

8. Assume that X;, = [Aqq, As].

(a) Assume that C = B+ Bs and X' (Bs) = [A11]. Then By is rational and we can not
put any further singularity in B5. As B1 N Bs = A5 + 2A1 or A5 + Az, the assertion is clear.

Assume that Aq; is an intersection singularity. Then it implies either C = B, + Ba,
C=B3+B§0rC=B1 + By + Bs3.

(b) Assume that C = By + B4. Then X (B4) = [As] and B, N By = A1 + 2A; or
A11 + Aj3 and the assertion is clear.

(c) Assume that C = B3 + B). We can make two cubics are tangent at two points with
multiplicity 6 and 3 so that B3 N B = A1 + As. Now the assertion follows by putting A} or
Aj in the cubics. As the rank is 19 for [A1;, As, A2, A1], we can not put A, in both cubics
simultaneously.

(d) Assume that C = B3 + By + B1. We can make them in the mutual position so that
B3N By = A1, By N B3 = As and By N B» is either 2A; or A3 and Bj is either smooth or
nodal.

9. Assume that ¥;, = [A7]. Then the only possibility is C = B3+ Bg with B3N Bé =
A17. The assertion is clear. See 5.1-17,18.

4. Proof of Theorem 2

In this section, we prove Theorem 2. As in the proof of Theorem 1, after eliminating
non-existing configurations, we give a computational proof of existence and we give some
non-trivial examples later. We first fix a non-simple inner singularity at the origin O and then
we consider the possibility of inner configurations and component types.

1. Assume that B3¢ € Xj,. Recall that (Ca, O) is smooth, (C3, 0) = A; and
t := I(C2,C3; O) = 3. Possible inner configurations are [3A2, B3 ¢l, [A2, As, B3 ¢l,
[A2, Es, B3 sl, [As, B3sl, [2B3,6]. We assume that (C, O) = Bs3g¢. First observe that
has locally three smooth components cl, C2, C3? with I(Ci, Cj; 0) = 2fori # j.
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Thus if B3 is an intersection singularity of two global components, say C', C? U C?,
(C2UC3 0)=Z Azand I(CY, C?UC3; 0) = 4.

(a) Assume that X, = [3A2, B3 6]. If C has two components, the singularities 3A;, A3
must be in a component. Then the unique possibility is the case C = Bj 4+ Bs and B3¢
is an intersection singularity of By and Bs and Bs has A3 + 3A> as singularities. Thus
I(B1,B5;0) =4, BN Bs = B3 + A1 and Bs can take further at most either one A
or Aj. Itis easy to observe that C can not have three irreducible components (see 5.2-1).

(b) Assume that X}, = [B36, Es, A2] or [B3,6, Ag]. Then by an easy consideration
about §*-genus, C = Bj + Bs and X (Bs) is [Aj, E¢, A3] or [Ag, A3] and Bs is already
rational. We get X,.q = [B3.6, E6, A2, A1l, [B3,6, Ag, A1]. See 5.2-4.

(c) Assume that X;;, = [Ap, As, B3]. In this case, we have more possibilities of
component types.

(1) Assume that C = Bj + Bs. Then X (Bs) = [Aj, As, A3] and Bs is rational.

(2) Assume that C = B> + B4. Then X' (B4) = A3z + Aj and By is thus rational and
By N By = B3+ As + Aj.

(3) Assume that C = By + B| + B4. B is as above and Bi N By = B3 g and BN By =
As + Aq. See 5.2-2.

(4) Assume that C has a cubic component B3. Then B3 has an A»-singularity and
smooth at O. To make Bj3 ¢, the other components can not be three lines. As an irreducible
cubic can not have an A3 singularity, the only possibility is C = By + B> + B3, Bo N\ B3 =
Az + As + A and Bj is tangent to By and B3z at O so that (B] U B, U B3, O) = B3¢ and
B1 N B3 has one transverse intersection outside of O which gives an A1 singularity. See 5.2-3.

(5) Finally for X, = [2B3 6], it is already observed in [8] that C = By + B, + B

2. Assume that C37 € Xj,. By the classification [8], C» is smooth, C3 is nodal at
O and ¢« = 3. Recall that C3 7 is an intersection singularity of a smooth component and
a component with A4. This implies that C must have a component of degree > 4. The
possibilities of X, are [3A2, C3.7], [A2, As, C3.7], [A2, Es, C3,7], [Ag, C3,7] ([8]). In any
case, as 8(C3,7) = 6, C3,7 must be an intersection singularity. We assume that O is C3 7-
singularity.

(a) Assume that X}, = [3A2, C37]. Then C = Bj 4 Bs. Note that I (B, Bs; O) =4
by Example 5 in the section 2 and B; N Bs = C3,7 + A;. Then X' (Bs) D 3A2 + A4, we can
put A; in Bs. Note that a quintic Bs can not have 4A, 4+ Ay as, if so, we get n*(Bs) = 3
which is a contradiction.

(b) Assume that X;, = [A2, E¢, C37] or [Ag, C3.7]. Then the possibility is C=
B1 + Bs and XY (Bs) = Ay + E¢ + Aq or A» + Eg + As. In any case Bs is rational and
Bi N Bs =C374 Ay and we get [C3,7, Eg, A2, A1] and [C3,7, Ag, A1]. See 5.2-5.

(c) Assume that X}, = [A3, A5, C3.7].

(1) If C = By + Bs, X(Bs) = Ay + As + A4 and thus Bs is rational. Thus X, .; =
[C3,7, As, Az, A1l
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(2) Assume that C = By + B4. Then XY (B4) = A4 + Aj and thus By is rational and
By N By = As + C37+ Ay as 1(Ba, Bs; O) = 4. Assume that C = By + B| + Bs. Then By
is as above and B; N By = C3 7 and B] N B4 = As + A1 and the corresponding configuration
is [C3,7, As, A2, 2A1]. See 5.2-6.

3. Assume that C3 g € X;,. Then C; is smooth, C3 is nodal at O and ¢ = 3. Assume
that O is C3_ g singularity defined by y®+ y%x? — x84 (higher terms) = 0 for simplicity. Recall
that it has three smooth components L1, Lo, L3 where L : y + x4+ (higher terms) = 0 and
Lo, L3 :y+ 3+ (higher terms) = 0. To make C3 g as an intersection singularity of two
components, there are two ways.

(a-1) Assume that L; is a smooth component of C and L1 U L3 is another component.
Then I (Ly, L1 U L3; O) =5and (L1 U L3; O) = As.

(a-2) Assume that L is a smooth component of C and L, U L3 is another component.
Then I (Ly, Lo U L3; O) =4 and (L, U L3; O) = As.

Possible inner configurations are [3A7, C3 3], [A2, As, C3 8], [A2, Ee, C33], [Ag, C33].

(1) Assumethat X;, = [3A42, C3g]or [A2, Eg, C3 8] or[Ag, C38]. Then C = B+ Bs.

(1-1) Assume first that By corresponds to Ly and Bs corresponds to L1 U L3. Then
(Bs, O) = A3z, Bj N Bs = C3 g and generically we have X' (Bs) = [3A2, A3], [A2, E6, A3],
[Asg, Az] respectively. In the last two cases, Bs is rational and it is easy to see that (a-2) does
not occur. We get X, = [C33, Eg, A2] and [C3 g, Ag].

Assume that X;, = [3A2, C33]. Then X'(Bs) = [3A2, Az] and we can put further one
Aj. Thus we get X,.q = [C38,3A2],[C38,3A2, A1]. See 5.2-7. We assert that we can not
put A; in Bs:

ASSERTION 9. Such a quintic Bs with X (Bs) = [4A3, A3] does not exist.

PROOF. Suppose that such a quintic exists. Then n*(Bs;) = 4. By the assumption,
(C, O) has locally three components L1, Ly, L3 and Bs has locally two components L1, L3.
Recall that I(Ly, L3; O) = 3. As we have assumed that By = L, this implies that L3
has a flex point at O. Other component L has I (L, L1; O) = 2. Assuming (x, y) is an
affine coordinate system so that y = 0 be the equation of Ly, Lj and L, are defined by
hi(x,y) = (y 4+ ax? + (higher terms)) = 0 and h3(x, y) = (y + bx3 + (higher terms)) = 0
for some a, b # 0. Here h1, hy are analytic functions defined in a neighborhood of O, though
(x, ) are affine coordinates. By the following lemma, this implies that the dual singularity
of (Bs, O) is a union of a cusp L} and a smooth curve L} which has the same tangent with
the cusp. Thus the Milnor number of (BZ, O*) is 7. (This implies A3 is not generic in the
sense of Puiseux order [6]). However a quartic can have at most 6 as the total Milnor number,
which is a contradiction. O

LEMMA 10. Let Bs be a projective curve with a singularity at the origin whose defining
function takes the form hyi(x, y)h3(x, y). Then the dual singularity (B*, O*) is locally defined
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by g(u, v) = 0 where

g(u,v) = (v + a'u® + (higher terms))(v> + b'u> + (higher terms)), a’,b’ #0
= 0> 4+ b'vu® + a'b'u’ + (higher term) = 0.

Thus the dual singularity is E7 and the Milnor number is 7.

PROOF. We use the parametrization L1 : x(¢) = ¢, y(t) = —ar® + (higher terms) and
L3 :x(t) =t, y(t) = —bt> + (higher terms). Then the equations of the images by the Gauss
map can be obtained by an easy computation (see [6]) and the assertion follows. a

(1-2) Now we consider the case C = B1 4+ Bs which corresponds to (a-2): (Bs, O) =
As and B; N Bs = C3g8 + Aj. Then the unique possible inner configuration is Xj, =
[C38,3A2] and ¥(Bs) = [3A2, As] and Bs is rational. This gives the configuration
[C3.8,3A2, A1]2. See 5.2-8.

(2) Now assume that X}, = [C3 3, As, A2].

(2-1) Assume that C = B] + Bs. As X (Bs5) D {As, Az}, Bs can not take another As.
Thus the case (a-1) is the unique possibility and Bs is rational with [As, A3, A2]. This gives
the configuration X,.; = [C3 3, As, Az].

(2-2) Assume C = By + B4. As we have seen in (a-1) and (a-2), we need either A3
or As on B4 to make C3g. Thus the only possibility is the case X' (Bs) = [A3, A2] ((a-
1)) and X, = [A2, As, C3g]. In fact, this case is possible and Bo N B4 = C3 g + As as
I(B2, B4; O) =5 and X,y = [A2, As, C38].

(2-3) Now we consider the case: C does not have any component of degree greater
than 3. Only possible inner configuration is [A2, As, C3 g] and the component type must be
{1, 2, 3} and the cubic component must be cuspidal. To make C3 g, we need either A3 or As
in the other union of components. We can make the components Bj, By, B3 in two ways.

(a-1) I(B1,By;0)=2,1(B;,B3;0)=3and (B, B3; O) =2and (B,UB3, 0) =
Asz: The corresponding configuration is denoted by [C3 g, As, A2, A1]1. This is a degenera-
tion of [C3 g, As, A2]1. See 5.2-9.

(a-2) I(By1,B3;0)=2,1(B1,B3; 0)=2andI(B,, B3; O) =3 and (B,UB3, 0) =
As: The corresponding configuration is denoted by [C3 g, As, A2, A1]2. This is a degenera-
tion of [C3 g, As, A2]>. See 5.2-10.

4. C39 € X;;. Then C; is smooth and C3 is nodal at O and ¢ = 3 or 4. We
assume that O is C3 9-singularity as before. First we observe that (C39) = 13 and it
must be an intersection singularity of a smooth component L and a component M with Ag.
Note that / (L, M; O) = 4. There are two C3 9 with different ¢ (=the intersection number
1(C3, C3; 0)).

(4-1) The case ¢ = 3, the only possibility of the inner configuration is X;,=
[3A2, C3,9] by [8] which is given by C = B; + Bs and X' (B5) = 3A2 + Ag and B; N Bs =
C3,9+ Ay, and X,oq = [3A3, C39, Al
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(4-2) The other case is ¢ = 4 and the possible inner configurations are [2A2, C3 9],
[As, C39], [E6, C3,9].

a. Assume X;, = [C3,9,2A2]. Then ¥ (Bs) = 2A; + A and we can put A; or Aj.
This gives Xyeq = [C3,9,2A2, A1],[C3,9,242,2A1],[C3,9,3A2, A1].

b. Inthe cases X}, = [As, C39] or [Eg, C3,9], we have ¥ (Bs) = As+ Ag or Eg+ Ag
and therefore Bs is already rational. Note that / (B, Bs; O) = 4 and thus By N Bs = C39 +
A1. Thus the possibilities for X4 are [2A2, C3.9, A1l, [2A2, C3.9,2A1], [3A2, C3,9, A1],
[As, C39, A1], [Es, C3,9, A1]. See 5.2-12.

REMARK 11. We get the reduced configuration [C39, 3A>, A1] from two inner config-
urations [C3,9, 3A2] and [C3,9, 2A>]. In fact, the moduli is the same and it has two different
torus decompositions. An example is the following.

16 2
f,y) =02+ (x+ Dy —x23+ (y3 + <?x + 1>y2 + (6x% 4 3x)y +x3)

343( , 15 3 923 1 3 2 2 2 3.2
= — — — — —(27 9 60 9 54 17y°)~.
27(y+7yx+7y+7x> 27( X7 4 9yx + 60yx“ 4+ 9y° 4+ 54y“x 4+ 17y°)

5. C3,12 € Xj,. In this case, Cy is smooth, C3 is nodal at O and ¢ = 5. Possible

inner configuration is [A2, C3,12]. First note that C3 12 has locally three smooth components
L1, Ly, L3 which satisfies

I(Ly,Ly; O)=1(Ly,L3;0)=2, (L2, L3;0)=35,
(L1ULy; 0), (L1 UL3; 0)= A3, (L2UL3; O) = Ag.

If C has two components, it can be either L1 + (L2 U L3) or Ly + (L1 U L3).

Assume that C = By + Bs. As I(By, Bs; O) < 5, we must have Bs = L, U L3. Then
B1NBs =C3,12+ A1 and X (Bs) = [A2, Ag] and Bs is rational. This gives the configuration
[C3.12, A2, Aq]1. See 5.2-13.

Assume that C = B, + B4. Then as B4 can not have Ag, we must have By = L1 U L3
and X' (Bs) = [A3, A2l and Bo N By = C3,12+ Ay as [(L2, L1 U L3; O) = 7. Thus By is
rational and X,.4 = [A2, C3,12, A1]2. See 5.2-13.

Assume that C3 12 is an intersection singularity of three global components. The inter-
section singularity of two of them have to make Ag. To make Ag, we need the intersection
multiplicity 5. Thus the unique possibility is the case: C = B+ By + B3 with (B,UB3, 0) =
Ag. Thus we may assume that B = Ly, By = Ly, B3 = L3, Bo N\ B3 = Ag + A and By is
tangent to B at O so that (B; U By U B3, O) = (3, 12. The corresponding configuration is
[C3.12, A2, 2A1]. This is a degeneration of [C3 12, A2, A1]i,i =1, 2.

6. Cee6 € Xiy. In this case, both of C2 and C3 are nodal at O and ¢ = 4. Possible
inner configurations are [2A2, C¢ 6] and [As, Ce 6]. We assume Cg ¢ singularity is at O and is
locally defined by y® — x?y% + x° + (higher terms) = 0 for simplicity. First note that Cg ¢ has
locally 4 smooth components Li, Ly, K1, K> suchthat Ly, Ly : x &+ y2 + (higher terms) = 0
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and K1, K> : y £ x4+ (higher terms) = 0 and I(Ky, K2; O) = I(L1,Ly; O) = 2 and
I(L;, Kj; O) = 1. Note also that (L1 U L, U K1, O) = D (same for any three components)
and (L1 U Ly, O), (K1 UK>3, 0) = Ajs.

(6-1) Assumethat C = B+ Bs. Then ¥ (Bs) = 2A2+Dg and X,y = [2A2, Cs 6, A1l
As Bs is already rational, the case X, = [Cg 6, As] does not occur.

The case C = B; + B4 does not exist because B4 can not have a Dg-singularity.

(6-2) Assume that C = B3 + Bé. Then this case is possible only if X;, = [As, Cs6]
and two cubics are nodal at O with the same tangent cone so that B3 N B} = As + Ce¢
and X,.q = [As, Ce6]. Note that /(L1 U K1, Lo U K; O) = 6. Another decomposition
possibilities:

(6-3) Assume C = B4 + By + B|: X (Bs) = [2A2, A1] and B; and B are tangent
to branches of A of By so that (B U Bi U B4, O) = Ce and Xy = [2A3, Ce,6, 2A1].
Two A;’s are the transverse intersection of B or B{ and By outside of O. See 5.2-14. As
I(Bq, Bs; O) = 3, the case X;,, = [C¢ 6, As] does not exist.

(6-4) Assume C = B3+ B> + By: B3 isnodal and X}, = [As5,Ce6]. BI1N By N B3 =
Co.6and By N B3 = As + D¢ and X,.g = [Ce 6, As].

(6-5) C = By + B} + B; + Bj: This can be understood as a degeneration of B3 + Bj
and X,.q = [As, Ce6,2A1]. See 5.2-15. The case C = B3 + By + B + B{ can not make
Ce.6.

7. Ce9 € Xj,. Possible inner configuration is [Az, Cg9]. Note that Cg 9 has two
smooth components L1, Ly defined by L; : y + aix2 + (higher terms) = 0, a; # 0, a1 # az,
and one component K defined by y* + bx’ + (higher terms) = 0, b # 0 with Ag singularity
and I (L1, L>; O) =2and I(L;, K; O) = 2. Note that (L, U K; O) = Dg. Thus the unique
possibility is the case C = By 4+ Bs with X (Bs) = [A3, Dg], B1 N Bs = Ce9 + A1 and
Yred = [A2, Co 9, A1].

8. (3,15 € Xiy. Then C3 is smooth and C3 is nodal at O. Note that C3 15 has two
components: a smooth component L and another component K with Ay, singularity and
I(L, K; O) = 4. Thus the unique possibility is the case C = By + Bs, X (Bs) = [A12] and
B1 N Bs = C3,15 + Ay. This case gives X,.q = [C3,15, A1]. See 5.2-17.

9. Bs,12 € Xj,: This case is unique and C = By + B), + BJ and X,y = [B3 12]. See
5.2-18 and [8].

10. Ce,12 € Xi,. In this case, Cy is a multiple line and C3 is nodal at O. Note that
Cs,12 has 4 smooth components L1, Lo, K1, K2 with I (L1, L2; O) =2, I(K1,K2; 0) =5
and I(L;, Kj; O) = 1. Note also that

(Li1UK;;0)= A1, (L1ULy; 0)= A3, (K1UKp; 0) = Ag,
(LiUL,UK1;0)=Dg, (LobUK{UK>,0)=Dq.

Thus C = Bj + Bj is not possible. If C = B; + Bs is the case, (Bs, O) = Dg and
Bs = L1 ULy U K. But this is impossible as 5 < I(Bj, Bs; O) = 1.
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Assume that C = B3 +Bé. Then the cubics are nodal and they correspond to L; UK;, i =
1, 2 respectively and I (B3, B3; O) = 9. This case exists and X,.q = [C¢,12]

Suppose that Bé degenerate into By + B;. Then By N B3 = D¢ and B> N B3 = D13 and
By N By =2A,. This also exists and X,.q = [Ce 12, A1]. See 5.2-16.

There are no other possibility of three components case. Note also that C can not have
two line components. In fact, if it has two line components, we may assume that L, K| are
the lines components. Put C = L; + K| + J, where J is the union of other components,
degree(J) = 4 and J = L, U K». Then we have a contradiction 8 > I(Ly U Ky, J; O) =
I(Li1 UK, LyUK>; O) =09.

11. Bae € Xji,. In this case, C2 is a multiple line and C3 has a cusp ( or A3). The
possible inner configurations are [2A2, B4,¢] and [As, Bs ¢]. Note that B4 ¢ can be intersection
singularity of two cuspidal components with intersection number 6. Thus the only possibility
isthat C = B3z + Bg and it is easy to see that [2A;, B4, 6] does not exist as a reducible sextics.
For [As, B4, we can take two cuspidal cubic B3, B} such that B3 N B} = B4+ As. There
are no other possibility.

12. D47 € Xiy. Then the possible inner configurations are [2A2, D4 7] and [As, D4 7].
Recall that Dy 7 is defined by y* + x3y2 +ayx® +bx” = 0 with a®> — 4b # 0 and w(Ds47) =
16. It has three components Ly, Lo, K where K is cuspidal component of type x3 + y? +
(higher terms) = 0 and L1, L are smooth components of type y + ax? + (higher terms) = 0
and thus /(L{,L;; O) = 2 and I(L;, K; O) = 3. Thus (L1 U Ly; O) = Az and (L, U
K,O) = E;. For [2A2, D4 7], as an component have to support 2A, and E7, the only
possibility is the case C = Bj 4+ Bs and X' (Bs) = 2A, + E7 and so Bs is rational and
B1 N Bs = Dy 7.

Consider the case X, = [As, D4,7]. If D4 7 is an intersection singularity of two compo-
nents, this is only possible for C = B + Bs, but then we can not make As. Thus C has three
components and the unique possibility is C = B3 4+ B> + Bj. In fact, this is possible if B3 is
cuspidal and B, U B3 = E7 + As and X,.4 = [As, D4,7]. See 5.2-19 and [8].

13. Spy € X;,. This case is studied by [8] and given by C = B3 + B, where both
cubics are cuspidal with the same tangent cone and 7 (B3, Bé; 0)=09.

14.  Bs,e is possible only when f2(x, y), f3(x, y) are homogeneous polynomials of de-
gree2and 3 in x, y.

5. Examples

5.1. Examples 1. Simple singularities. We give explicit examples of the sextics,
mostly for the configurations with maximal rank, to confirm the existence of the configu-
rations listed in Theorem 1. The most of the configurations in the list are easily computed
starting from the normal form of the given inner configuration and component type. For ex-
ample, if the component type is {1, 5} or {2, 4}, take the intersection singularity at the origin
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and assuming the line component (respectively the conic component ) is defined by y = 0
(resp. by y — x2 = 0), we solve the equation f(x,0) = 0 (resp. f(x, xz) = (). We do not
give the whole moduli description but it can be computed as in [7].

1. C= B3+Bé with X (C)=[2A5,2A5,3A1]as #1, S—:l> X (C)=[2A5,2A,, A3, A1]3,
(2-(d):

2187 , s (15 9, , 9,
= _ 23 2T 4+ 292 — =220
Fi=as O =) | 3y ggy v ls #2yT = geyiV2lex

9 27 9 1
- EysVZl - 3yx2 + 2xy — 9—8xyv21s + @yx2v21s + §x2
284+ D3 ATy — 2Bl + —x25/30 2
98 98 49 '
2. C = By + Bs with X,.q = [Eg, As5,2A2, A3, A(]™":

. 32,3 2\
f.—(—iy +§y—x)

(T (0 T e (P2 0 TN s 2
- — ——x+ — - —x X - — X .
16” s 8 ) 160 8" 16)7

3. [2A5,2A5, D5 ilnr’ C = By + Bs and [2A5,2A5, Ds rznr’ C = B + By:

16

;107 7843 , 7 155 5 283 , 2
=y + 5y | - X+ SX |yt oo X — X"+ x|,

2, 25 2 ’
fi=l -y +—xy—x"+x

32 2048 2 128 128

1 1, 3\
f:= (Eyz—i-xy—zxz—ix)

(B (2B Ve (Pl L, 097 5 2
— - —x - —x°— = — ="+ — .
16” 1024 YTAY 716 ) T 10247 T

4. [Eg. 2As, As]™ (C = By + Bs) and [Ee, 2As, A3]2". C = B, + By
fi= SC I I I N 3
Ty DY R
(L (2B 3 e (T 53 L L] 12
- ——x—= —x“+-x+- X"+ -x"—-x—-=],
g” g T g)Y T\ T Tg) Tt TR T TR
' 7, (1 1 1, 1\ (37 4 13 63\ »
f"( 16° +<8x+2)y+16x 16) s T st s

N 17 2,5 2\ Ly 1, 1)\?
- —x —X+ — —X —_— X —x——] .
128" T4 T 128)7 T 128 128 128" 128
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5. [Ee,2A5,3A1]™,C = B4+ By + B{:

fi= (= 4+ 1=+ 0+ e =Dy + (=2 + Dy + 0 +x2 —x — D2,

6. C = B3z + B}, X(C) = [3As,2A,]. This case has two torus decomposition:
[[3As], [242]], [[245, 2A2], As].

1 23 1 1 7 13 2
6 3 3 2 2 2 2
e —x A 2y Tyt - — —yt— - —=
f y +<12x+ X +24y yXx 24y+x +12y 6yx+12y x)
343 [, 60 8 48 , 12 1\’ 1 5 3
= (- Dyx— 2y —xP+ —x+4-) ———(—1+12y—33y?+22
1728(y R R +7’”“7) 728" YTy mesy

— 18x + 156yx — 282y%x — 120x% + 552yx? — 288x7)2.

7. C = By + B} + B} with ¥(C) = [3As5,3A1]s, (u : generic) or [3As, D4]§", u =
—1/4:

f = —(x*+ y2 — D3+ Qu —2x%u — 2yu + 2yx2u —y+ yx2 + 2y2 - y3)2(u +1).
8. [3As, D4]?", i =1, 2, 3 with component types (1,1,4), (1,1,1,3) and (2,2,2):
(1,1,4): f:=yBx—+ 16 — 15y)(16x* — 32yx> + 32x3 + 24y%x? — 24yx?
— 24yx +48y%x — 24yx + 16y — 39y% 4 30y° — Ty%),
(1,1,1,3): f:=y(x — y)(x + 3y)(4x> — 23x%y + 12x% — 48xy + 50xy>
+ 12x + 4 + 48y — 35y — 24y) ,
(2,2,2): f:=@y*+ x> —1DQ2y*—3xy —3y+2x>+3x+ 1)
(2y2+3xy—3y+2x2—3x+1).
9. C =By + Bywith[Aq1, 342, 2A]™":
fi=(=y +y-—9x?*+ <y3+%y2+ (— %x2+§x— %)y— 84—1x3+%x2)2.
10. C = B3+ Bjand Zyeq = [A11,242,3A1]:
= —(262087 + 18817x2 + 1351y% — 155578x + 94085y + 151316+/3 + 780y%/3
— 89823x+/3 — 220762yx + 10864x%/3 — 127457 yx~/3 + 54320y+/3)%/

1
(97 + 56+v/3)3 2 + V3)%) + 7 (— 27246964 — 6500766x> — 1053390y

+24261189x — 14671830y — 10084y> — 15731042+/3 — 608175y%v/3
+ 14007204x~/3 + 2471685y%x — 9224454yx* + 31450440yx + 524174x>
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— 5822y3V/3 + 302632x3+/3 — 3753219x2+/3 + 18157920yx+/3 — 5325741yx2/3
+ 1427028y%x+/3 — 8470785y~/3)%/((97 + 56+/3)%(2 + +/3)%) .
11. C = B3+ Bjand Xyoq = [A11,242, A3, A{]"
o= (—=27y* = 2yx + 10x* — 14x)*
14 32 14 98 4 70 ,\?
+ (?yx — ?yx2 — ?xy2 — 63y — 3 + §x3 + 18y + ?xz) .

REMARK 12. Infact, [A11,2A2,3A1], C = B3 + B} degenerates into [A11, 242, A3,
A1]™ but we could not find any good family with simple coefficients. The above examples

factor into cubics over Q(+/3, v/2) or Q(+/3) respectively.
12. Xyeq =[A11, As, A3]{" and C = By + Bs.

17 1 2
f:=(—y2+y—x2)3+<Ey3+<—x——>y2+<—x2+x+1>y—x3> .
13. Xeq = [As, Ar1, A3]’2"’ and C = B> + Bj.
2 2.3 3 3, 3, 1 L, ?
J=0=y"Hy=x)"+(y =y H 5+ 5 )y =527 ),
2 2 2
14, Xyeq = [A11, As, A3]5" with C = By + B> + B3. An example is given by

fi= —y6 + (=2 + 2x)y2 + (1 + 2x2 — 2x)y + ¥ - x2)2.

15, Xeq = [A11, As, A2, A1]™" with C = B3 + Bj can be given by
23 1 1 2
6 3 2 2 3 2
= -z —x— — 7 — )y —4xd—x2) .
f y—l—( 24y —i—( X 12)y —|—(x +x+24>y X x)
16. [A11, As,2A ] with C = B3 + B> + Bj:

5 1 1 1 2
f= —y6+(((—Z+1s>x—2>y2+<st2—x+1)y+zx3+x2+x> .

Two degenerations: [A1, A5, A3]"™ ats = —11 and [A11, As5,3A (] ats = 5.
17. Xyeq = [A17 +2A1] with C = B3 + Bj:

==y + 2y =292+ (—6x% + 1)y 4 4x3)2.
18. Xyeq =[A17, A2l with C = B3z + Bé:

1 2
fi=—y0+ <2y3+(—x —-2)y% + (Zx2+x+ 1)y+x3) .
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5.2. Examples II. Non-simple singularities. We give explicit examples for some
configurations. The normal form of B3 g-singularity at O with y = 0 a linear component
is given as

f2 = any?* + (@nx +ao)y — 1*x?
f3 = bo3y? + (b12x + bo2)y* + (ba1x? + biix)y + 77 .
The normal form of torus decomposition with C = B>+ B4 and B3 ¢ at O where B; is defined
by y — x? = 0/is given

1 (41%ag; + ay12)x> 3 1
f2=<—t2y2+(anx+am)y—z( o 2 u) ) +a(—8t6y3+12y2t4anx
— 8y2t3b02 — 6x2yt2a112 + 8x2yt3b02 — 8xyt3b11 + x3a113 + 8x3t3b11)2/t6.

In the following examples, those with a line or conic component can be easily derived from
the above normal forms.
(1) B3 € Xint Xrea = [4A2, B3s, A1l, C = B1 + Bs, X(Bs) = [4A2, A3]:

2 2\3 3.3 15 3\.2 2,9 5\’
f=0"+5x+Dy—x)Y + —=-y +|—x+- )y "+ - 15x"+-x)y+x .
4 4 4 4
(2) Xyea =[A2, As, B3s,2A1], C = By + B] + By:
fo= (=Y 4y =4 + (07 + (—4x — Dy* +4yx — 8x)°.
(3) Xrea =[A2, As, B36,2A1], C = B3+ B2+ Bi:

2 23 (25 (1B, 2\ 27 5\
fi=(=y"+(=3x+ Dy —x7)" + §y+ ?X—g)’—i- 5X—§X y+x7) .

(4) [As, B3, A1l, C = B + Bs and X' (Bs5) = [Asg, A3]:

2 11 2
fi=(=y?+(3x+D)y—x2>+ (— ¥+ <§x + 1>y2 + <10x2 - ?x>y +x3> .
(5) Zyrea = [C3,7, Ag, A1] with C = By + Bs:
Fi=(=y2+y =2+ =2y + (=3x +2)y* + (=2x> + 3x)y + x)2.
6) Xrea =1[C37,As5,A2,2A1] with C = By + B{ + Ba:

9 9 2
f:=(—y2+y—x2)3+(—5y3+<3x+§)y2—3xy—x3> :
(7)) Xrea =[3A2,C38, A1]h, C = By + Bs, ¥ (Bs) = [3A2, A3, A1]:

3 3 2
fo= (y2+(—2x+1)y—x2)3+(y3+(—§x+3>y2+(—3x2—§x)y+x3) .
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(8) Xrea =1[3A2,C338, A1l2, C = By + Bs, X (Bs) =[3A3, As]:
=024+ (=x+Dy—x)>+ >+ @+ Dy? +3xy +x)2.
9) C=B1+By+ B3, BN B3 =A3+ A5+ Ajand Xy =[C3 8, As, A2, Arli:

3 3 3 3 9 2
fi=<—y2+<x+z)y—x2> +(y3+(—5x+z>y2—§yx+x3> :

(10) C=B1+ B+ B3, BN B3 = A5+ As and X,.qg = [C33, As, A2, A1]2:

I, 2 } 1 5 3 5 2 3 ?

fi= (—Ey + @ =3y —x ) +<6—4y —gFY HGxT -9y +x ) .
(11) C = B1 + Bs, ¥(Bs) = [As, Az] and X;eq = [As, C33]:

27 69 27
==+ (B4 Dy -+ <_ T <_ _“‘_)yz

8 8 8
9, 3 2
+ (gx2 —~ Ex)y +x3) :

(12)  Xyeq =1C3,9, E6, A1] with C = By + Bs:

f = (—y2 +y—- xz)3 + (yzx + (—2x2 —Xx)y +x3)2.
—1

(13) [C3.12, A2, Al1==>[C5.12, A2, Ajl3:

2)3 2

fi=uy?+y =3+ P+ + (2P + 0y — )

and [C3 12, A2, Al]zg[cmz, Ay, Alls:
f= (—y2 +uy — ux2)3 + (y3 + yz + (_x2 +x)y— x3)2_
(14)  Zred = [Co6,2A2, Arly with C = By + Bs “=3 [Cg6, 242, 2A1]; with C =
Bi + B + By:
Fim (2 4y =P+ 0P+ (=T + )% + 232 + (2 — )y + 292
(15) Xreqd = [Ce,6, As,2A1] with C = By + B} + B> + B):
fi==+ 7+ + 2+ o)y + 207 + 3%

(16) C =Bz + Bé with [Ce 12] for s # 1 and C = B3 + By + B with [Ce, 12, A1] for
s = 1 are given by:

f = —y6 + (y3 + (x + 1)y2 + (x2 +x)y+ 2sx3)2.
(17)  Xyeqa = 1C3,15, A1l with C = By + Bs:

fr= @Dy =+ 07+ (4 Dy Fxy =)
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18)  Xyeq = [B3,12]:
fi==y+y =)+ (7 = 3y7 +3yx?)?
= (=x2 432+ 2023+ 2 —y =3y + 2232 — y).
(19) C = By + Bs, Zrea = [Da7,2421°5C = B + By + B3, [Da 7, As]:

[ = (sxy— x2)3 + (—y3 + (x + 1)y2 + y)c2 +x3)2 .

5.3. Non-trivial degenerations. We give some non-trivial degenerations. We do not
give the whole moduli description but it can be computed as in [7].

(1) Xyeqa =[As5,4A2, A3,2A1]2, C = By + Bs and X (Bs5) = [4A3, A3] can not degener-

ate into any further simple configuration, but it degenerates into Co = By + B| + By

with X,.g = [As, C3.7, A2,2A1]ast — 0. Fort =0, As and C3 7 are at O and (0, 1).

fr(x, ) = (=1 — 1)y + (—4rx + 1)y — x2)°

3 3
+<<—t3—Et—i—1)y3+((—3—6t2)x+§t—2>y2
15 , 2\
+ —7tx +3x+1 y+x .

2) Xrea = [A5,4A7, A3,2A1]3, C = By + Bs, ¥ (Bs) = [4A4,2A1] degenerates into
Co = By + Bs, with X,y = [As, Eg, A3,2A2, A{]™ whent — 0.

1
fi(x,y) = (—y2 - y2t2 —3yx —4yxt+y — x4+ 6—4(8y3t4 + 48y2)ct3 + 8y3t3
+ 60yx2t? — 129217 + 84y%xt? + 12312 — 12y%1 + 12931 + 132yx2t + 60y°x1
—24yxt — 8x31 — 6y% — 8x> — 24yx 4+ 72yx% 4 24y%x 4+ 3y 4+ 3y°)2 /(1 +1)%.

(3) Xyea = [As5,4A2, Ds]p, C = By + Bs degenerates into X,.q = [2As,2A3, Ds]|":
Fort = 0, two As’s are at {(0, 0), (0, 1)}.

25 1 3 1

2 2 3 3.2

= = Ly 1)y — (64281603 + 65536x°3¢
f ( y+(( 16+16>x+ )y x)+4294967296( v+ x

+ 655361 — 1179648y1 — 11736576y + 1552896yt — 41472y

+ 1536y%13 — 36y 1* — 2586y + y3 17 — 49110331 + 66204312 + 5308416y
+ 4128768yxt — 229376 yxt* — 6144yx>1> + 329728 yx%t> — 4442112yx°t
+96y%xr* — 4992y2%x1> + 186432y%x1% — 3602304 y%xt — 18579456 yx
+5308416x> + 20329056 y*x — 1179648x>t + 17750016x2y)? /(=9 + 1)* .
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(4) [245,2A2.4A1].C = By + Bi + B| — [3As.4A1]"".a =0, By + Bi + B| + B}:

1 1 3
3 Zax%y — —x2a® + 5yxzaz

12
—y Xxa 3 2

f:= (yxaz—x2a+ax —4y)ca—yz)3 + (2
7 2.2 1 3.2 2 1 2 2 1 2 2
—Ey xa +§xa + yxa —Ex a—+2yx a—3yxa+§ax+7yxa—4yx
+lx—3yx2—yx—y3—lx3 ’
2 2 '

The curve f(x, y, 0) has three line components and a nodal cubic component.

1
f(x,v,0) = Zx(x +1429)(x — 1 4+4y)(4y> + 8y%x + 6yx +2yx + x> — x)

(5) Cyu =B+ By, Xpeq =1[24A5,3A2,2A1]p — [3A5, A2, 2A1]"" with Co = B+ B +

Bs.

1 1 1 1
fr: = —y2 + y2t1u — Eyzu2 — Xyt +xyu — sznz + Exznu — —xzuz —xtiu + Exuz,

3 3 9 1 3
f3:= y3 + —x3t1u2 + —y3u2 + —xztlzu — —yzxu3 + —)czyu2 — —xyu2 — §y3t1u

2 4 2 4 2
3 9 15 9 9
— —xzytlu + —xytiu + —yzxtlu2 — —yzxtlzu — —u2y2t1 + 3uy2t12 — 3uxt12
2 2 8 4 4
1 1 1 1 3 9 15
— Exu3 — §x3u3 + §x2u3 + §y2u3 — §x3t12u + Zuzxtl — §x2t1u2 — y2t13

1 3
+ yzxt13 +xt13 + §x3t13 + 3y3t12 — x2t13 + Eyzxtl — 3xyt12 + szytlz — Eyzxu ,

1
witht] :=u + E«/uz — 6. For t; = 0, this degenerates into:

f(x,y,0) = 33—2(9x3 —36x% 4 36x — 18x2y/—6 + 36xy+/—6
—36y%x —36y% — 20y°V=6)(x — 1 — V/=6y)(x — y?).
(6) [34s, A3l1,C = By + Bs"=5[345, D4], C = By + By + By:
f:= (—y2 —3xy — x2+x)° + %(—4)}314 - 14xy2u + xy2 —i—4xyzu2 — 1Ox2yu
2

+3x2y + 4x2yu? + dxyu — dxyu® — 2ux® + x> + u’x> 4+ 2x%u — x

—2x%u’ + )cuz)z/u2 .
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(7) [3As, A3lp, C = By + B4—>[3As, D41 (a = 1/4), [3As, D415 (a = —1/12):

1 1 .
f(x,y)::<—y2a—§y2+§y—ax2+a)

35 1, 1, 5 , 5 1 1 , 1\
4 8 4 27 4 477787 4 T4

§3 >3 22, - e _ - S 2
+ ya—+ -y yoa y°+ —-yax ya—+ =y ax”+ —a

(8) A degeneration [A11,2A2, Az]s # 1 — [A11,2A2, D4],s = 1 with C = By + Bj.

5 8 x2\? s 5, (10x2 3 8x3  ,\?
fi=1-—-y —l—y—g? + y—Zy—i- —?—l—x—i-—s y——?—x .

6. Appendix

PROOF OF PROPOSITION 7. The proof is computational.

1. Assume that C is a sextics of linear type with 3As. This is a special case of the
result of Tokunaga, [10]. We assume that L is defined by y = 0. We start from the generic
polynomial of degree 6:

fee,y)= Y aijx'yl.

i+j<6

By the action of PGL(3, C), we may assume that three As’s are at {P; = (—1,0), P, =
(0,0), P = (1,0)} and the tangent cones at Py, P3 are given by x = =£1. These condition
says

() f(x,0) =x2(x2—=1)%?and

2) fx(P) = fy(P)=0fori =1,2,3and

) fay(P) = fyy(P)=0,i=1,3.

Eliminating coefficients from f(x, y) using these equations, then we eliminate further
coefficients using the assumptions (C, P;) = As. Then we get a normal form of sextics
with four parameters ao4, aos, t, s. Then we apply the degeneration method to the family
fu = f —uy® (see [7]). Finally we find that f(x, y) has a torus expression:

f(x,y) = Ty6 + ( — ty2 — sy2 — yx2 + xty2

1 1 1 2
+y-— xsy2 _|_x3 —x = y3st + —y3ao4 _ —y352 _ —y3t2 7
2 2 2
! 3 3202 1,

T =aps + 55%aos — s — 57t — =577 — lt4 + tapss — 154 — —ap4
2 2 4 4 4

1 2
—apgt” .
+ 2004
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The proof for the cases X (C) D Ay + As, Aj7 are similar. In the case of Aj; + As, we
assume that Ay is at O and As is at (1,0). We assume that the tangent cone at (1, 0) is
x = 1. In the case A7, we assume that A7 is at O. For the condition of (C, O) = A,
(respectively for = A7) at the origin, we assume that the normal form is given by the change
of coordinates yj := y+ Y5, t;x! (resp. y1 1= y+ Y +_, tix). Let f/(x,y) = f(x, y1) and
let co = f’(x,0) and c; be the coefficients of y in f’(x, y). As we assume that f/(x, y) =
ay®* +byx® +cex'?+ (higher terms)s (resp. f'(x,y) = ay?+byx? +cx'8 4+ (higher terms)s),
normal forms are obtained by solving the equalities: Coeff(co, x, j) = 0 for j < 11 and
Coeff(c1,x,k) =0fork <5 (resp. Coeff(co,x, j) =0forj < 17and Coeff(c1,x,k) =
0 for k < 8). Then we find the torus expressions by the degeneration method. For the case
A1+ As, f(x,y) =uny® + f3(x, y)? where

1
Uy = —Z(4ao4t29t4t32 + 0*1y* — 2a040"014% — 208 aout* + 612%14%13*

—40°1°067 — 45510 + aps’ 1'% + 138 — dagenn ') /1214

1
fz3(x,y) = E(6t23y2t3xt4 — 2t27x2 — 2t24y2t4 — 2t26yx + 2t23y2t32

— 2t23y2t32x + 2t24y2xt4 — 4t22y2t33x + 2t26y — 2t24y2xt5 — y3t22t42

+ 20y’ 1% — ¥3 6t + 26073 + 08y a0s — 20°yi3x 4 20° yisx?) /1’

and f(x,y) = u17y6 + h3(x, y)2 for the case A7 where

1
uy7 = —1(24t62t36t52t42 — 24t44t62t35t5 + 8a04t313t4t6t5 — 8t4t63t37t5

— 8apats 21514 + Saouts 1315 + apa13%° — 2a0ats%13"° — 2apar3 416>
+ 4143163130 + 6140162 13% — dapats Pt 16 + 13816" + 414716137 — dapetz'®
+ 24t48t52t32 — 8t410t5t3 + 48t45t6t34t52 — 24t47t6t33t5 + t412

— 32t6t35t53t43 + 16t44t54t34 — 32t46t53t33)/t318 ,
1
h3(x,y) : = 5(—4t52t32y3t42 + 21521370 y2x + ditgtstz vty — 108s13% y2xts?
+ 4t5t35y2t4 + 4t5t3y3t44 — 2t5t37yx2 — 2t39x3 + 2t36x2t42y
— 2t36y2xt7 + 6t6t35y2xt4 + 4t33xy2t44 — 2t37xyt4 — y3t62t34
— 216132y 14 — 3148 — 21613897 — 263%y% 143 + 2658y + y3131%0) /15 .
2. Next we consider the case C = B3 + B} and C is a sextics of torus type and assume

that X, (C) = [3As] or [A11, As] or [A17] and let P;, P>, P3 be the corresponding singular
points. (In the case of [A11, As] or [A17], P, = P3 and P = P, = P3 respectively.) We
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show that three Py, P>, P3 must be colinear. We start from the expression:
f(x,y) == fa1(x, y) fr2(x, y)
= (ao3y® + (a12x + ap)y* + (a21x* + anix + ao)y + azox’ + a0x? + aiox + ago)

(bo3y” + (b12x + bo2)y? + (ba1x? + bi1x + bo1)y + b3ox> + baox? + biox + boo) -

Assume that C is defined by f>(x, y)3 + fa(x, y)2 = 0 and let C, and C3 be the conic and
the cubic defined by f> = 0 and f3 = 0. Let P; € C be an inner singularity. Recall that by
[8] we have the equivalence

(*) (C, P) = Agj—1 % 1(C2,C3; P;) =2j and C3 is smooth at P; for j =1,2, 3.

In particular, if C; is smooth at P;, (x) implies that C» and C3 are tangent at P;. Again
by an easy computation, we can see that there are no cases when P;, P>, P3 are not colinear.
We give a recipe of the computation. Assuming that P;, P», P3 are not colinear. To each P;,
we associate its tangent cone direction ¢; and we identify ¢; and a line in P2.

There are two cases.

(a) C3 is a smooth conic, or

(b) (> is aunion of two distinct lines L1, Lj.

In the case of (a), we may assume that Py = (—1,1), P, = 0 = (0,0) and P3 = (1, 1)
and ¢; = {y+2x+ 1 =0},43 = {y —2x + 1 = 0}. Then the conic must be defined by
y —x%2 = 0. Thus £, = {y = 0}. Here we used the next easy lemma.

LEMMA 13. Let (C,{P1, P2, P3}) and (C’, {P{, P;, P}}) two smooth conics with three
points on the respective conic. Then they are isomorphic by an action of a matrix A €

PGL(3,C).

Thus we need to have the equations

() - {fSl(Pi)ZfSZ(Pi)ZOa i=123,
N (Bjx—2H0P) =0, (fjx+2/)P) =0, f3,(0)=0j=1,2.

The last condition says that two cubic are tangent to y = x%at P;, P;. Let R(x) and S (y) be
the resultant of f3; and f3, with respect to y-variable and x-variable respectively. The above
equality implies that (x? — 1)2x%|R(x) and )12(y2 —1)2IS (y). Eliminating coefficients using
these equalities, we consider the further condition for P;, P>, P3 to be As-singularities. This
is given by the condition 32— 1)3|R(x) and y3(y2 — 1)3|S(y). At the end of calculation,
we find that there are no such f31, f32 which corresponds to a reducible sextics.

We consider the case (b). Assume that C» is a union of two lines L, L>. Then we can
see that L; are tangent to the cubic C3 and the intersection L N L3 is also on C3 so that this
makes the third As. In this case, we may assume that Py, P>, P3 be as above but £1is y = —x
and £3 is y = x. The = should be replaced by

) - {fSl(Pi) =fnP)=0, i=123,
N (Bjx— Li) P =0, (fjx+ fj9)P3) =0, j=12.
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Then we consider the As-condition to see that there exists no such sextics.
The case X;, = [Aj1, As], we take As at P; and Aq; at O and the (x)-condition is
replaced by

(P =) =0, i=1.2. (0= 2f)(P) =0, j=12,
' {x4|f3,~(x,x2),j =1,2.

The last condition says that the intersection multiplicity of each cubic and the conic y—x2 = 0
at O is 4. The reason that we have chosen the conic y — x2 = 0 is to make the last condition
to be easier to be used.

The case X;, = [A17], we take A7 at P>, and the the torus type condition is

*) @ 5100,0) = f3200,00 =0, x°| f3;(x,x?),j=1,2.

In any cases, one conclude that there does not exist any solution which corresponds to a
reduced sextics.
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