A Formula for the A-Polynomials of ($-2,3,1+2 n$)-Pretzel Knots

Naoko TAMURA and Yoshiyuki YOKOTA

Tokyo Metropolitan University

1. Introduction

Let M be a compact 3-manifold such that ∂M is a torus and $\{\lambda, \mu\}$ a basis of $\pi_{1}(\partial M)$. Then $R=\operatorname{Hom}\left(\pi_{1}(M), \operatorname{SL}(2, \mathbf{C})\right)$ is an affine algebraic variety. Let R_{U} be the set of representations $\rho \in R$ such that

$$
\rho(\lambda)=\left(\begin{array}{cc}
l & * \\
0 & 1 / l
\end{array}\right) \quad \rho(\mu)=\left(\begin{array}{cc}
m & * \\
0 & 1 / m
\end{array}\right)
$$

for some $l, m \in \mathbf{C}$. Note that any element of R can be conjugated to such a representation because λ and μ are commutative and that the Zariski closure of the image of the eigenvalue $\operatorname{map} \xi: R_{U} \rightarrow \mathbf{C}^{2}$ defined by $\xi(\rho)=(l, m)$ is an algebraic subset of \mathbf{C}^{2}. Let $C_{1}, C_{2}, \cdots, C_{k}$ be the one-dimensional components of the closure of $\xi\left(R_{U}\right)$ and $g_{1}(l, m), g_{2}(l, m), \cdots$, $g_{k}(l, m) \in \mathbf{Z}[l, m]$ their defining polynomials which are supposed to be reduced. Then, the A-polynomial of M is defined by

$$
A_{M}(l, m)=g_{1}(l, m) g_{2}(l, m) \cdots g_{k}(l, m)
$$

When M is the complement of a knot K in S^{3}, we choose $\{\lambda, \mu\}$ as the pair of the preferred longitude and the meridian of K. Then, the A-polynomial always has a factor $l-1$, and so we shall compute $A_{K}(l, m)=A_{M}(l, m) /(l-1)$.

In the study of knot theory, the polynomial invariants, such as Alexander and Jones polynomials, are very much useful and have been evaluated for a large number of knots. However, the A-polynomials have been computed for only some simple knots, see [1]. In particular, except for torus knots, there had been no formulae for the A-polynomials of infinite series of knots until Hoste and Shanahan found formulae for two infinite families of 2-bridge knots, including twist knots, in [3].

Inspired by [3], in this paper, we will derive a formula for the A-polynomials of the $(-2,3,1+2 n)$-pretzel knots. Let K_{n} denote the $(-2,3,1+2 n)$-pretzel knot depicted in Figure 1, where n is the number of left-handed full twists contained in the box. Note that

[^0]

Figure 1. K_{n}.
K_{0}, K_{1} and K_{2} are respectively the torus knots $5_{1}, 8_{19}$ and 10_{124} in the notation of the table in [6] and K_{3} is the famous ($-2,3,7$)-pretzel knot, and $A_{K_{0}}, A_{K_{1}}, A_{K_{2}}$ and $A_{K_{3}}$ are given by

$$
\begin{gathered}
A_{K_{0}}(l, m)=1+l m^{10}, \quad A_{K_{1}}\left(l m^{-4}, m\right)=1+l m^{8}, \quad A_{K_{2}}\left(l m^{-8}, m\right)=\left(1+l m^{7}\right)\left(1-l m^{7}\right), \\
A_{K_{3}}\left(l m^{-12}, m\right)= \\
+1-l m^{4}+2 l m^{6}-l m^{8}-2 l^{2} m^{12}-l^{2} m^{14}+l^{4} m^{24}+2 l^{4} m^{26} \\
\\
+l^{5} m^{30}-2 l^{5} m^{32}+l^{5} m^{34}-l^{6} m^{38}
\end{gathered}
$$

see [1] and [7].
Main Theorem 1. Put

$$
B_{n}= \begin{cases}-l^{2}\left(l m^{8}\right)^{3+n}\left(1-m^{2}\right)^{n}\left(1+l m^{6}\right)^{3+n} & (n>3) \\ -\left(l m^{8}\right)^{-(2+n)}\left(1-m^{2}\right)^{-(1+n)}\left(1+l m^{6}\right)^{2-n} & (n<0)\end{cases}
$$

and define C_{n} recursively by

$$
\alpha^{2} C_{n}-\alpha \gamma C_{n-1}-\left(2 \alpha^{2}+2 \alpha \gamma-\beta^{2}\right) C_{n-2}-\alpha \gamma C_{n-3}+\alpha^{2} C_{n-4}=0
$$

where

$$
\begin{aligned}
& \alpha=l m^{8}\left(1-m^{2}\right)\left(1+l m^{6}\right), \quad \beta=m^{2}-l m^{6}+2 l m^{8}-2 l^{2} m^{16}+l^{2} m^{18}-l^{3} m^{22}, \\
& \gamma=-1-m^{4}-2 l m^{8}-l m^{10}+l m^{12}-l^{2} m^{12}+l^{2} m^{14}+2 l^{2} m^{16}+l^{3} m^{20}+l^{3} m^{24}
\end{aligned}
$$

with the initial conditions

$$
\begin{array}{ll}
C_{0}=-\frac{l m^{8}\left\{A_{K_{0}}(l, m)\right\}^{2}}{\left(1+l m^{6}\right)^{2}}, & C_{1}=\frac{m^{4}\left(1-l m^{8}\right)\left\{A_{K_{1}}\left(l m^{-4}, m\right)\right\}^{2}}{\left(1-m^{2}\right)\left(1+l m^{6}\right)} \\
C_{2}=-\frac{\left\{A_{K_{2}}\left(l m^{-8}, m\right)\right\}^{2}}{l\left(1-m^{2}\right)^{2}}, & C_{3}=\frac{A_{K_{3}}\left(l m^{-12}, m\right)}{l^{2} m^{4}\left(1-m^{2}\right)^{3}}
\end{array}
$$

Then, $A_{K_{n}}\left(l m^{-4 n}, m\right)$ is a factor of $B_{n} C_{n} \in \mathbf{Z}[l, m]$ for $n>3$ and $n<0$.
REMARK. In fact, when $n \equiv 1 \bmod 3, B_{n} C_{n}$ contains the factor $1-l m^{8}$ but it is not a factor of the A-polynomial of K_{n}.

2. Proof of Main Theorem

Since K_{n} can be obtained from the link L depicted in Figure 1 by the $-1 / n$ surgery along L_{1}, we first consider an ideal triangulation \mathcal{S} of the complement of a hyperbolic link L and then apply the surgery along L_{1}.

Let D be an $(1,1)$-tangle presentation of L depicted in Figure 2. Then, we prepare 4 ideal tetrahedra at each crossing of D as shown in Figure 3, where $\pm \infty$ denote the poles of S^{3}. We glue them along the edges of D as shown in Figure 4, and recover $\dot{M}=M \backslash\{ \pm \infty\}$. In what follows, for $z \in \mathbf{C} \backslash\{0,1\}$, we denote by $T(z)$ the ideal tetrahedron in 3-dimensional hyperbolic space \mathbf{H}^{3} whose vertices are $0,1, z, \infty$ in $\partial \mathbf{H}^{3}=\mathbf{C} \cup\{\infty\}$ if it is not degenerate. We may use $T(z)$ as a symbol even if the corresponding ideal tetrahedron is degenerate. We assign complex numbers to the corners of D as shown in Figure 2 and identify $T(z)$ with the tetrahedron corresponding to the corner assigned z. Put

$$
B=\left\{T\left(a_{1}\right) \cup T\left(d_{1}\right)\right\} \cap\left\{T\left(c_{9}\right) \cup T\left(d_{9}\right)\right\} .
$$

As $\dot{M} \backslash B$ is homeomorphic to M, we can develop $\dot{M} \backslash B$ in \mathbf{H}^{3}, where each tetrahedron touching B can not specify distinct 4 points in $\partial \mathbf{H}^{3}$ and so is degenerate. In fact,

$$
T\left(a_{1}\right), T\left(d_{1}\right), T\left(c_{9}\right), T\left(d_{9}\right)
$$

Figure 2.

Figure 3

Figure 4.
are essentially one-dimensional objects and

$$
\begin{gathered}
T\left(b_{1}\right), T\left(c_{1}\right), T\left(a_{2}\right), T\left(b_{2}\right), T\left(c_{2}\right) T\left(d_{2}\right), T\left(a_{3}\right), T\left(b_{3}\right), T\left(d_{4}\right), T\left(d_{5}\right), T\left(d_{6}\right), \\
T\left(b_{7}\right), T\left(c_{7}\right), T\left(a_{8}\right), T\left(b_{8}\right), T\left(c_{8}\right) T\left(d_{8}\right) T\left(a_{9}\right), T\left(b_{9}\right)
\end{gathered}
$$

are essentially $t w o$-dimensional objects in $\dot{M} \backslash B$. Thus, we obtain an ideal triangulation \mathcal{S} of M with

$$
\begin{gathered}
T\left(c_{3}\right), T\left(d_{3}\right), T\left(a_{4}\right), T\left(b_{4}\right), T\left(c_{4}\right), T\left(a_{5}\right), T\left(b_{5}\right), T\left(c_{5}\right), \\
T\left(a_{6}\right), T\left(b_{6}\right), T\left(c_{6}\right), T\left(a_{7}\right), T\left(d_{7}\right),
\end{gathered}
$$

see [5]. The triangulation of $\partial N\left(L_{1}\right)$, the boundary of a tubular neighbourhood of L_{1} in S^{3}, induced by \mathcal{S} is given by Figure 5, where the dotted edges should be contracted and the edges assigned the same number should be identified. Similarly, that of $\partial N\left(L_{2}\right)$ is given in Figure

Figure 5.

Figure 6.

6, where the triangulation of the annulus \mathcal{A} is given in Figure 7. If \mathcal{S} determines a hyperbolic structure of M, the product of the moduli around each edge in \mathcal{S} should be 1 . In fact, we can read

$$
\begin{equation*}
1=a_{4} b_{4} c_{4}=a_{5} b_{5} c_{5}=a_{6} b_{6} c_{6} \tag{1}
\end{equation*}
$$

corresponsing to certain crossings of D,

$$
\begin{equation*}
1=d_{3} a_{4} c_{6} d_{7}=c_{3} b_{4} b_{5} b_{6} a_{7}=c_{4} a_{5}=c_{5} a_{6} \tag{2}
\end{equation*}
$$

corresponding to certain faces of D and

$$
\frac{\left(1-1 / d_{3}\right)\left(1-1 / b_{4}\right)}{\left(1-c_{3}\right)\left(1-a_{4}\right)}=\frac{\left(1-1 / b_{6}\right)\left(1-1 / d_{7}\right)}{\left(1-c_{6}\right)\left(1-a_{7}\right)}=1
$$

corresponding to the non-alternating edges of D. Then, as explained in [4], the other equations should be generated by

$$
\frac{1-a_{7}}{1-c_{3}}=\frac{1-1 / d_{7}}{1-1 / d_{3}}=t^{2}, \quad \frac{\left(1-1 / b_{6}\right)\left(1-c_{5}\right)}{\left(1-a_{6}\right)\left(1-1 / b_{5}\right)}=\frac{\left(1-1 / b_{5}\right)\left(1-c_{4}\right)}{\left(1-a_{5}\right)\left(1-1 / b_{4}\right)}=m^{2}
$$

where t, m denote the eigenvalues of the holonomy representations of the meridians of L_{1}, L_{2}, and
(3)

$$
c_{3} d_{3} a_{7} d_{7}=1
$$

Figure 7.
where we have used

$$
\frac{c_{3} d_{3}\left(1-b_{6}\right)\left(1-c_{5}\right)\left(1-c_{4}\right)\left(1-b_{5}\right)\left(1-a_{6}\right)\left(1-d_{7}\right)}{\left(1-1 / a_{7}\right)\left(1-1 / a_{6}\right)\left(1-1 / a_{5}\right)\left(1-1 / b_{4}\right)\left(1-1 / c_{5}\right)\left(1-1 / c_{6}\right)}=m^{2} c_{3} d_{3} a_{7} d_{7}
$$

modulo the relations above. Furthermore, the left hand side of Figure 7 gives us a nice view of a fundamental domain of M in $\mathbf{H}^{\mathbf{3}}$ from ∞ and we can read the eigenvalues s, l of the holonomy representations of the longitudes of L_{1}, L_{2} as

$$
s^{2}=\frac{c_{3} d_{3}\left(1-1 / d_{3}\right)\left(1-1 / a_{7}\right)}{\left(1-c_{3}\right)\left(1-d_{7}\right)}=\left(c_{3} d_{3}\right)^{2}
$$

which is the product of the moduli along a holizontal line in Figure 5, and $l^{2} m^{10}$ is given by $m^{2} P Q$, where

$$
\begin{aligned}
P= & \frac{1}{c_{3}} \cdot \frac{1-c_{3}}{1-1 / b_{4}} \cdot \frac{1}{b_{4} c_{4}} \cdot \frac{\left(1-c_{4}\right)\left(1-b_{5}\right)}{\left(1-1 / a_{5}\right)\left(1-1 / b_{6}\right)} \cdot \frac{1}{b_{6} c_{6}} \cdot\left(1-c_{6}\right) \\
& \times \frac{1-b_{4}}{\left(1-1 / a_{4}\right)\left(1-1 / b_{5}\right)} \cdot \frac{1}{b_{5} c_{5}} \cdot \frac{\left(1-c_{5}\right)\left(1-b_{6}\right)}{\left(1-1 / a_{6}\right)\left(1-1 / a_{7}\right)}
\end{aligned}
$$

is the product of the moduli along a holizontal line in Figure 6. and

$$
\begin{aligned}
Q= & \frac{1-a_{7}}{1-1 / c_{3}} \cdot \frac{1-c_{3}}{1-1 / b_{4}} \cdot \frac{\left(1-b_{4}\right)\left(1-a_{5}\right)}{\left(1-1 / c_{4}\right)\left(1-1 / b_{5}\right)} \cdot \frac{\left(1-c_{4}\right)\left(1-b_{5}\right)}{\left(1-1 / a_{5}\right)\left(1-1 / b_{6}\right)} \\
& \times \frac{1-b_{6}}{1-1 / a_{7}} \cdot R \cdot \frac{1-d_{7}}{1-1 / c_{6}} \cdot\left(1-c_{6}\right) \cdot \frac{1-b_{4}}{\left(1-1 / a_{4}\right)\left(1-1 / b_{5}\right)} \cdot \frac{\left(1-b_{5}\right)\left(1-a_{6}\right)}{\left(1-1 / b_{6}\right)\left(1-1 / c_{5}\right)} \\
& \times \frac{\left(1-c_{5}\right)\left(1-b_{6}\right)}{\left(1-1 / a_{6}\right)\left(1-1 / a_{7}\right)} \cdot R \cdot\left(1-1 / d_{7}\right) \cdot d_{7} c_{6} \cdot \frac{\left(1-1 / a_{6}\right)\left(1-1 / b_{5}\right)\left(1-1 / c_{6}\right)}{\left(1-c_{6}\right)\left(1-c_{5}\right)\left(1-b_{6}\right)} \\
& \times c_{6} d_{7} \cdot \frac{1}{1-1 / d_{3}} \cdot R
\end{aligned}
$$

with

$$
R=\frac{\left(1-b_{4}\right)\left(1-a_{5}\right)\left(1-a_{6}\right)\left(1-b_{5}\right)\left(1-c_{4}\right)\left(1-d_{3}\right)}{\left(1-1 / c_{3}\right)\left(1-1 / c_{4}\right)\left(1-1 / c_{5}\right)\left(1-1 / b_{6}\right)\left(1-1 / a_{5}\right)\left(1-1 / a_{4}\right)}=\frac{c_{3} d_{3}}{m^{2}}
$$

is the product of the moduli along the curve in \mathcal{A} depicted in Figure 8(a). Note that

$$
Q=P \cdot\left(c_{3} b_{4} c_{4} b_{6} c_{6} b_{5} c_{5} c_{6} d_{7} c_{3} d_{3} \cdot t^{2} \cdot m^{-6}\right)^{2}
$$

and $m^{2} Q$ should be equal to the product of the moduli along the curve depicted in Figure 8(b), that is,

$$
m^{2} Q=\left(c_{6} d_{7} c_{3} d_{3} \cdot t \cdot m^{-3}\right)^{2} .
$$

Therefore we have

$$
l^{2} m^{10}=\left(\frac{c_{6} d_{7} c_{3} d_{3}}{c_{3} b_{4} c_{4} b_{6} c_{6} b_{5} c_{5} \cdot m}\right)^{2}
$$

Figure 8.

Now, the equations (1), (2), (3) suggest putting

$$
\begin{gathered}
c_{3}=a / x, d_{3}=y / a, a_{4}=a / m, b_{4}=b / a, c_{4}=m / b, a_{5}=b / m, b_{5}=c / b, \\
c_{5}=m / c, a_{6}=c / m, b_{6}=d / c, c_{6}=m / d, a_{7}=x / d, d_{7}=d / y .
\end{gathered}
$$

Then the hyperbolicity equations for L are given by

$$
\begin{gathered}
\frac{(1-a / y)(1-a / b)}{(1-a / x)(1-a / m)}=\frac{(1-c / d)(1-y / d)}{(1-m / d)(1-x / d)}=1 \\
\frac{(1-b / c)(1-m / b)}{(1-b / m)(1-a / b)}=\frac{(1-c / d)(1-m / c)}{(1-c / m)(1-b / c)}=m^{2} \\
\frac{1-x / d}{1-a / x}=\frac{1-y / d}{1-a / y}=t^{2}, \quad l m^{8}=-b c, \quad s=y / x
\end{gathered}
$$

Since the edges in \mathcal{S} are nontrivial and M is hyperbolic, we have the following lemma.
Lemma 1. The moduli of the tetrahedra in \mathcal{S} are in $\mathbf{C} \backslash\{0,1\}$.
From $\frac{(1-a / y)(1-a / b)}{(1-a / x)(1-a / m)}=1$, we have

$$
a \frac{\{a(-m x+b y)+b m x-b m y-b x y+m x y\}}{b y(a-m)(x-a)}=0,
$$

where $a, b, y, a-m, x-a \neq 0$ because of Lemma 1 , and so we put

$$
P_{a}=a(-m x+b y)+b m x-b m y-b x y+m x y=0 .
$$

Similarly we have

$$
\begin{aligned}
& P_{d}=d(c-m-x+y)+m x-c y=0, \\
& P_{b}=b(1-c m)-c+a c m=0, \\
& P_{c}=c(1-d m)-d+b d m=0, \\
& P_{x}=a d t+x(d-d t)-x^{2}=0, \\
& P_{y}=a d t+y(d-d t)-y^{2}=0, \\
& P_{l}=b c+l m^{8}=0, \quad P_{s}=s x-y=0 .
\end{aligned}
$$

Suppose $-m x+b y=0$. Then from $P_{a}=0$ we have

$$
\frac{b y(m-b)(y-m)}{m}=0 .
$$

However $b, y, b-m, y-m \neq 0$ because of Lemma 1 and this is a contradiction. Thus we have $-m x+b y \neq 0$ and hence

$$
a=\frac{-b m x+b m y+b x y-m x y}{-m x+b y} .
$$

By substituting this equation for P_{d}, P_{b}, P_{x} and P_{y}, the variable a is eliminated. Similarly we can eliminate b, c, d, x, y and finally obtain the following two equations.

$$
\begin{aligned}
P_{1}= & \left(-1-m^{4}-3 l m^{10}+l m^{12}-l^{2} m^{12}+3 l^{2} m^{14}+l^{3} m^{20}+l^{3} m^{24}\right) \\
& +\left(m^{2}-l m^{6}+2 l m^{8}-2 l^{2} m^{16}+l^{2} m^{18}-l^{3} m^{22}\right)\left(s^{-1}+s\right) \\
& +\left(l m^{8}-l m^{10}+l^{2} m^{14}-l^{2} m^{16}\right)\left(s^{-2}+s^{2}\right)=0, \\
P_{2}= & \left(l^{2} m^{12}-2 l^{2} m^{14}+l^{2} m^{16}\right)\left(1+t^{2} s^{7}\right)+\left(2 l m^{6}-2 l m^{8}-2 l^{3} m^{20}+2 l^{3} m^{22}\right)\left(1+t^{2} s^{5}\right) s \\
& +\left(1-l m^{8}+l m^{10}+l^{2} m^{12}-4 l^{2} m^{14}+l^{2} m^{16}+l^{3} m^{18}-l^{3} m^{20}+l^{4} m^{28}\right)\left(1+t^{2} s^{3}\right) s^{2} \\
& +\left(-m^{2}+l m^{6}-l m^{8}+l^{2} m^{12}+l^{2} m^{16}-l^{3} m^{20}+l^{3} m^{22}-l^{4} m^{26}\right)\left(1+t^{2} s\right) s^{3} \\
& +\left(-l m^{8}-2 l^{2} m^{14}-l^{3} m^{20}\right)\left(1+t^{2} s^{-1}\right) s^{4}=0 .
\end{aligned}
$$

Then the A-polynomial $A_{K_{n}}(l, m)$ is obtained by eliminating s and t from P_{1}, P_{2} and

$$
\begin{equation*}
t^{2} s^{-2 n}=1 \tag{4}
\end{equation*}
$$

Put $X=s+s^{-1}$ for simplicity. Then, P_{1} becomes

$$
P_{1}^{\prime}=\alpha X^{2}+\beta X+\gamma
$$

where α, β and γ are given in Main Theorem, and P_{2} becomes

$$
\begin{aligned}
f_{n}(X)= & \left(l^{2} m^{12}-2 l^{2} m^{14}+l^{2} m^{16}\right) a_{n+4}+\left(2 l m^{6}-2 l m^{8}-2 l^{3} m^{20}+2 l^{3} m^{22}\right) a_{n+3} \\
& +\left(1-l m^{8}+l m^{10}+l^{2} m^{12}-4 l^{2} m^{14}+l^{2} m^{16}+l^{3} m^{18}-l^{3} m^{20}+l^{4} m^{28}\right) a_{n+2} \\
& +\left(-m^{2}+l m^{6}-l m^{8}+l^{2} m^{12}+l^{2} m^{16}-l^{3} m^{20}+l^{3} m^{22}-l^{4} m^{26}\right) a_{n+1} \\
& +\left(-l m^{8}-2 l^{2} m^{14}-l^{3} m^{20}\right) a_{n}
\end{aligned}
$$

by using (4), where $a_{n} \in \mathbf{Z}[X]$ is defined by

$$
a_{n}=X a_{n-1}-a_{n-2}, \quad a_{0}=1, \quad a_{1}=1
$$

Then $f_{n}(X)$ obeys

$$
\begin{equation*}
f_{n}(X)=X f_{n-1}(X)-f_{n-2}(X) \tag{5}
\end{equation*}
$$

Let X_{1}, X_{2} be the solutions to $P_{1}^{\prime}=0$ with respect to X. Then, the A-polynomial of K_{n} is a factor of

$$
\begin{equation*}
F_{n}=f_{n}\left(X_{1}\right) f_{n}\left(X_{2}\right) \tag{6}
\end{equation*}
$$

From now on, we evaluate a recursive formula for F_{n}. First of all, using (5), we can reduce (6) as

$$
\begin{aligned}
F_{n} & =\left\{X_{1} f_{n-1}\left(X_{1}\right)-f_{n-2}\left(X_{1}\right)\right\}\left\{X_{2} f_{n-1}\left(X_{2}\right)-f_{n-2}\left(X_{2}\right)\right\} \\
& =X_{1} X_{2} F_{n-1}+F_{n-2}-\left\{X_{1} f_{n-1}\left(X_{1}\right) f_{n-2}\left(X_{2}\right)+X_{2} f_{n-1}\left(X_{2}\right) f_{n-2}\left(X_{1}\right)\right\}
\end{aligned}
$$

where

$$
\begin{aligned}
& X_{1} f_{n-1}\left(X_{1}\right) f_{n-2}\left(X_{2}\right)+X_{2} f_{n-1}\left(X_{2}\right) f_{n-2}\left(X_{1}\right) \\
& \quad=X_{1}\left\{X_{1} f_{n-2}\left(X_{1}\right)-f_{n-3}\left(X_{1}\right)\right\} f_{n-2}\left(X_{2}\right)+X_{2}\left\{X_{2} f_{n-2}\left(X_{2}\right)-f_{n-3}\left(X_{2}\right)\right\} f_{n-2}\left(X_{1}\right) \\
& \quad=\left(X_{1}^{2}+X_{2}^{2}\right) F_{n-2}-\left\{X_{1} f_{n-3}\left(X_{1}\right) f_{n-2}\left(X_{2}\right)+X_{2} f_{n-3}\left(X_{2}\right) f_{n-2}\left(X_{1}\right)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& X_{1} f_{n-3}\left(X_{1}\right) f_{n-2}\left(X_{2}\right)+X_{2} f_{n-3}\left(X_{2}\right) f_{n-2}\left(X_{1}\right) \\
& \quad=X_{1} f_{n-3}\left(X_{1}\right)\left\{X_{2} f_{n-3}\left(X_{2}\right)-f_{n-4}\left(X_{2}\right)\right\}+X_{2} f_{n-3}\left(X_{2}\right)\left\{X_{1} f_{n-3}\left(X_{1}\right)-f_{n-4}\left(X_{1}\right)\right\} \\
& \quad=2 X_{1} X_{2} F_{n-3}-\left\{X_{1} f_{n-3}\left(X_{1}\right) f_{n-4}\left(X_{2}\right)+X_{2} f_{n-3}\left(X_{2}\right) f_{n-4}\left(X_{1}\right)\right\}
\end{aligned}
$$

Similarly we have

$$
F_{n-2}=X_{1} X_{2} F_{n-3}+F_{n-4}-\left\{X_{1} f_{n-3}\left(X_{1}\right) f_{n-4}\left(X_{2}\right)+X_{2} f_{n-3}\left(X_{2}\right) f_{n-4}\left(X_{1}\right)\right\}
$$

and so

$$
F_{n}=X_{1} X_{2} F_{n-1}+\left(2-X_{1}^{2}-X_{2}^{2}\right) F_{n-2}+X_{1} X_{2} F_{n-3}-F_{n-4}
$$

From this equation, we obtain

$$
\alpha^{2} F_{n}-\alpha \gamma F_{n-1}-\left(2 \alpha^{2}+2 \alpha \gamma-\beta^{2}\right) F_{n-2}-\alpha \gamma F_{n-3}+\alpha^{2} F_{n-4}=0
$$

On the other hand, we can compute directly the initial conditions F_{0}, F_{1}, F_{2} and F_{3} from (6):

$$
\begin{gathered}
F_{0}=-\frac{l m^{8}\left(1+l m^{10}\right)^{2}}{\left(1+l m^{6}\right)^{2}} W, \quad F_{1}=\frac{m^{4}\left(1-l m^{8}\right)\left(1+l m^{8}\right)^{2}}{\left(1-m^{2}\right)\left(1+l m^{6}\right)} W, \\
F_{2}=-\frac{\left(1-l m^{7}\right)^{2}\left(1+l m^{7}\right)^{2}}{l\left(1-m^{2}\right)^{2}} W,
\end{gathered}
$$

F_{3}

$$
=\frac{1-l m^{4}+2 l m^{6}-l m^{8}-2 l^{2} m^{12}-l^{2} m^{14}+l^{4} m^{24}+2 l^{4} m^{26}+l^{5} m^{30}-2 l^{5} m^{3} 2+l^{5} m^{34}-l^{6} m^{38}}{l^{2} m^{4}\left(1-m^{2}\right)^{3}} W
$$

where

$$
W=\left(1+l m^{4}\right)^{4}\left(-1+m^{2}+l m^{8}\right)\left(-1-l m^{6}+l m^{8}\right) .
$$

Note that $-1+m^{2}+l m^{8}$ and $-1-l m^{6}+l m^{8}$ are not a factor of $A_{K_{n}}(l, m)$ because the curve $\left(-1+m^{2}+l m^{8}\right)\left(-1-l m^{6}+l m^{8}\right)=0$ does not pass through the points $(l, m)=$ $(1,1),(1,-1),(-1,1)$ and $(-1,-1)$, see Section 2.8 in [1]. Then, we can complete the proof of the Main Theorem by the following two lemmas.

LEMMA 2. None of $1+l m^{6}, 1-m^{2}, 1+l m^{4}, 1-l m^{8}$ are a factor of $A_{K_{n}}(l, m)$.

Proof. Otherwise, we have only finite points of (l, m) from $P_{1}^{\prime}=0$ and $f_{n}(X)=0$.
Lemma 3. For any integer $n, \frac{B_{n} C_{n}}{W}$ is a polynomial of l, m.
Proof. This is easily proved by induction on n.

References

[1] D. Cooper, M. Culler, H. Gillet, D. D. Long and P. B. Shalen, Plane curves associated to character varieties of 3-manifolds, Inventiones mathematicae 118 (1994), 47-84.
[2] D. Cooper and D. D. Long, Remarks on the A-polynomial of a knot, Journal of Knot Theory and Its Ramifications. 5 (1996), 609-628.
[3] J. Hoste and P. D. Shanahan, A formula for the A-polynomial of twist knots, preprint.
[4] Y. Yокота, From the Jones polynomial to the A-polynomial of hyperbolic knots, Interdisciplinary Information Sciences 9 (2003), 11-21.
[5] Y. YOKOTA, On the volume conjecture for hyperbolic knots, preprint, available from http://www.comp.metrou.ac.jp/~jojo.
[6] A. KAWAUCHI, A survey of knot theory, Birkhauser Verlag (1996).
[7] S. TiLLMAN, Boundary slopes and the logarithmic limit set. preprint, available from arXiv:math.GT0306055.

Present Address:

Department of Mathematics, Tokyo Metropolitan University,
TOKYO, 192-0397 JAPAN.
e-mail: tamu@math.keio.ac.jp
jojo@math.metro-u.ac.jp

[^0]: Received July 17, 2003; revised August 28, 2003

