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Abstract. For a real quadratic field k, we denote by 15 (k), uo (k) and v (k) the Iwasawa A-, - and v-invariants
of the cyclotomic Z;-extension of k, respectively. In this paper, we give certain families of real quadratic fields k
such that Ay (k) = o (k) = 0 and vy (k) = 2, by using Kuroda’s class number formula.

1. Introduction

Let k be a finite extension of the field Q of rational numbers. For a fixed prime number
[, we denote by ko the cyclotomic Z;-extension of k. Then the Galois group Gal(ks/k) is
isomorphic to the additive group Z; of [-adic integers. For each integer n > 0, ky has a
unique subfield &, which is a cyclic extension of degree I" over k, it is called n-th layer. Let
e, be the highest power of / dividing the class number of n-th layer k,. We denote by X; (k),
wi (k) and v (k) the Iwasawa A-, - and v-invariants of ko, respectively, satisfying Iwasawa’s
class number formula: e, = Aj(k)n + u;(k)I" 4 vi (k) for all sufficiently large n > 0 (cf.[6]
or [12]).

For each prime number /, it is conjectured (cf. [3]) that if k is a totally real number field
then A;(k) = ui(k) = 0, i.e., e, is bounded as n — oo. This is often called Greenberg’s
conjecture. Since this conjecture presented, it has been studied by many authors. In these
studies of Greenberg’s conjecture, the case for real quadratic fields k and even prime [ = 2
seems to be rather a special case because of the effects of genus theory. Ozaki and Taya
(cf.[10]) proved the existence of infinitely many real quadratic fields k with A (k) = w2 (k) =
0 in various situations. In this paper, we also deal with the cyclotomic Z;-extensions of certain
real quadratic fields k. The main theorem is the following.

THEOREM 1. Let p, q, r be prime numbers such that

p=qg=5 mod8), r=23 (modd), and (ﬁ>=_1,
r
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*
where (;) is Legendre’s symbol. Put k = Q(/pqr) or Q(/ 2pqr). Let A (k), ua(k)

and vy (k) be the Iwasawa M-, - and v-invariants of the cyclotomic Z,-extension ks of k,
respectively. Then we have Ay (k) = u2(k) = 0 and vo(k) = 2.

Here we note that as for p-invariants, it is well known that u;(k) = 0 for any prime
number / when k is an abelian extension of @, by the theorem of Ferrero and Washington
(cf.[1] or [12]). However, we show (k) = 0 here independently of it.

In the section 3, we prove Theorem 1 by using “Kuroda’s class number formula” (cf.
Proposition 1) and by the explicit description of the unit group of the first layer k; of the
cyclotomic Z;-extension ko of the real quadratic field k = Q(,/pgr).

2. Some known results

In this section, we mention some known results about Iwasawa invariants of the cyclo-
tomic Z;-extensions of real quadratic fields.

For each integer n > 0, let £, = exp(2m+/—1/2"%2), a primitive 2"2-th roots of unity
in the complex number field. Then the n-th layer Q,, of the cyclotomic Z,-extension Q/0
is the field Q(¢, + ¢, 1). Especially, the first layer @ is the real quadratic field 0(V/2). Ttis
proved by Weber (cf. [4], Satz 6, p. 29) that the class number of @), is odd for all n > 0, i.e.,
12(0) = u2(Q) = v2(Q) = 0.

Let m be a positive square-free integer, and let k = Q(y/m), a real quadratic field. The
cyclotomic Zs-extension koo Of k is given by kQs. If m = 2, ie., k = Q1 = Q(v/2) then
koo = Qoo, S0 we already know that A (k) = ua(k) = va(k) = 0. Therefore we consider the
case m > 2. In this case, the first layer k; = kQ1 = Q(v/2, +/m) has just three real quadratic
fields Q1 = Q(v/2), k = Q(/m), k' = Q(~/2m) as its subextensions. We note that k and k’
have the same cyclotomic Z»-extension, i.e., koo = kl,, so the Iwasawa invariants are also the
same.

In [5], Iwasawa proved the theorem which states that for each prime number /, if a Galois
l-extension K /k of number fields has at most one (finite or infinite) ramified prime and the
class number of k is not divisible by /, then the class number of K is also not divisible by /.
By this theorem, if a real quadratic field £ with odd class number has only one prime ideal
above the prime number 2, then for each n > 0 the class number of the n-th layer k, of the
cyclotomic Zj-extension koo /k is also odd, i.e., Aa(k) = ua(k) = vo(k) = 0. Furthermore,
by genus theory and the theorem of Rédei and Reichardt (cf.[11]), we can see that a real
quadratic field k has odd class number and only one prime ideal above the prime number 2
if and only if k = Q(/m) with positive square free integer m satisfies one of the following
conditions.
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2,
p, p =5 (mod38),
m=14¢q, g =3 (mod4),
2q, g =3 (mod4),
pqg, p=3, g =7 (mod 8),

where p and g denote prime numbers. Therefore the cyclotomic Z,-extension of k = Q(/m)
or Q(v/2m) with square free positive integer m satisfying the above condition has the Iwasawa
invariants Ay (k) = ua(k) = va(k) = 0. These cases are often called ‘trivial’ cases. In [10],
Ozaki and Taya treated ‘non-trivial’ cases and proved the following theorem.

THEOREM 2 (Ozaki-Taya[10]). Let k = Q(/m) or Q(x/2m) and let Ly(k), uo(k)
and vy (k) be the Iwasawa \-, - and v-invariants of the cyclotomic Z»-extension koo /k,
respectively. Suppose that m is one of the following:

() m=p, p=1@mod8)and 2"7 £ (=1)’F (mod p),
(2) m=pq, p=q=3(modsg),

B3) m=pg, p=3,g=5(mods),

4 m=pg, p=5 g=7(mod8),

(5) m=pq, p=qg=5(modsg),

where p and q are distinct prime numbers. Then we have ly(k) = pa(k) = va(k) = 0 for (1)
and (2), and Ay (k) = na(k) =0, va(k) > 0 for (3), (4) and (5).

On the other hands, Yamamoto [13] determined all real abelian 2-extensions K /Q with
M(K) = ua(K) = v (K) = 0. As a corollary to the results of Yamamoto, we obtain the
following.

THEOREM 3 (cf. Yamamoto [13]). Let p, q, r be prime numbers such that

p=qg=3, r=7 (mod8), and (ﬂ)z—l,
r

*
where (—) is Legendre’s symbol. Put k = Q(/pqr) or Q(~/2pqr). Let Ay(k), na(k)

*
and va(k) be the Iwasawa A-, - and v-invariants of the cyclotomic Z,-extension ko of k,
respectively. Then we have L (k) = u2(k) = 0 and v (k) = 2.

PROOF. As mentioned before, it is sufficient to prove the case of k = Q(,/pqr). By
genus theory and the theorem of Rédei and Reichardt (cf. [11]), we can see that the Hilbert
2-class field of k is the field K = Q(,/p, /4. /). In [13], Yamamoto proved that A»(K) =
w2(K) = v (K) = 0 for the cyclotomic Z;-extension K, of this field K. Then for each
n > 0, the Hilbert 2-class field of n-th layer k, is K,, = KQ,, the n-th layer of Ko./K. By
class field theory, the highest power e, of 2 dividing the class number of k, is 2, i.e., e, = 2
for all n > 0. This complete the proof. O
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REMARK. The statements of Theorem 1 and Theorem 3 are similar. In fact, we can
prove Theorem 3 by the arguments similar to the proof of Theorem 1. But Theorem 1 is not
obtained as a corollary to Yamamoto’s results in [13].

In addition, Ozaki treated several cases different from each of the above theorems and
proved Az (k) = p2(k) = O for certain real quadratic fields k in his thesis [9]. The real qua-
dratic fields, which were treated in Theorem 2, have the ideal class group of 2-rank smaller
than 2. But in [9], Ozaki proved A»(k) = w2(k) = O for certain infinitely many real qua-
dratic fields & with the ideal class group of 2-rank 2. Similarly, the real quadratic fields
k = Q(\/pgqr) in Theorem 1 and Theorem 3 have the ideal class group of 2-rank 2.

3. Proof of Theorem 1

To prove Theorem 1, we need several propositions. The equation in the following propo-
sition is often called “Kuroda’s class number formula”.

PROPOSITION 1 (cf. Kuroda [8], Kubota[7]). Let K be a real bicyclic biquadratic ex-
tension of Q with the unit group E(K). The field K has three real quadratic subextensions
Fi/0 (i = 1,2,3). Let & (> 0) be the fundamental unit of F; (i = 1,2,3), and h(K),
h(F;) the class numbers of K, F;, respectively. Put the group index Q(K) = [E(K) :
(—1, €1, &2, €3)]. Then we have the equation

1
h(K) = 7 2K h(F1) - h(Fy) - h(F3) .

Furthermore, we have Q(K) = 1, 2 or 4, and a system of the fundamental units of K is one
of the following types:

1) e1,8&2,83

i) /2L €2, 63 (Nep =1)

1'11) \/57«/8—783 } (N81=N82:1)

v) /€162, €2, €3

V) VEIEs, /E2 E3 } (Nejy = Ney = Ne3 = 1)
Vi) /€182, \/€2€3, \/€3E]
vil)  /E1€283, €2, €3 (Nep = Nea = Ne3 = =£1)

where Ng; is the abbreviation of the absolute norm Nf, 9(¢;) (i = 1,2, 3).

PROPOSITION 2 (Fukuda [2]). Let kso/k be any Z;-extension of number fields such that
any prime of koo Which is ramified in ko / k is totally ramified. For each integer n > 0, we
denote by A(ky) the [-Sylow subgroup of the ideal class group of ky, the n-th layer of the
Z;-extension koo [ k. If |A(k1)| = |A(k)|, then |A(k,)| = |A(k)| for all n > 0, where | % |
means the order of the group.
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Now, we prove Theorem 1 by using the above propositions.

PROOF OF THEOREM 1. As already mentioned, it is enough to show only the case of
k = Q(/pqr). We may assume that prime numbers p, g, r satisfy the condition
— _ P q
g=5 (mod8), r=3 (mod4), and — | =41, - =-1. 1)
r

r

p

The first layer of the cyclotomic Z;-extension k, of the real quadratic field k = Q(,/pqr) is
the real bicyclic biquadratic field k; = Q(v/2, /pqr). The field k; contains just three real
quadratic fields: Q(v/2), k and k' = Q(/2pqr).

We denote by A(k), A(k") and A(k;) the 2-Sylow subgroups of the ideal class groups of
k, k" and kj, respectively. Let L and L’ be the Hilbert 2-class fields of k and k', respectively.
By genus theory and the theorem of Rédei and Reichardt (cf. [11]), we can see that both A (k)
and A(k") are the abelian 2-group of type (2,2), and we have L = Q(,/p, /9, +/r) and
L' = Q(/P, /4, ~2r). Especially, we have |A(k)| = |A(K")| = 4.

Let ¢ and ¢’ be the fundamental units of the real quadratic fields k and &/, respectively. By
genus theory, we can also see that each of the real quadratic fields k and k" has the narrow class
number different from the class number in wider sense. Therefore we have Ne = Ng’ =1,
where N means the absolute norm. Now, we have the following lemma.

LEMMA. /¢, +/¢&' and ~/g¢’ are not contained in the first layer k.

ProoOF. (I) First, we assume that <Z> = +1. Let p be a prime ideal of k above the
4

prime number p, which is ramified in k. Since p> = (p), the ideal class containing p is an
element of A(k). By the assumption and the condition (f), we can see that the prime p splits
completely in L, so that p is a principal ideal of k. Let & € k* be a generator of the prime
ideal p: p = («). Since (p) = p2 = (?) and « is real, we have p = g?a? for some integer
z. If ziseven, /p = £« £%/2 € k>, which is a contradiction. Therefore z must be odd,
and there is an element 8 € k* such that p = & 8. Since JP = £ B/, we know that
k(J/€) = k(/p) and /¢ is not contained in the first layer k| = k(V2).

Let g’ be a prime ideal of k¥’ above the prime number ¢, which is ramified in k’. By
the similar arguments, we can see that the prime ¢’ is a principal ideal of k’, and there is an
element B’ € kK’ such that ./g = & p’+/¢’. Then we know that k' (v/¢') = k'(\/q) and V&’
is also not contained in the first layer k1 = k' (V2).

We have ki (/) = ki(/P) # k1(\/q) = k1(¥/€), so that v/e¢’ must not be contained

inkl.

(II) Secondly, we assume that (1) = —1. Let p and [ be the prime ideals of k£ above
p

the prime numbers p and 2, respectively, which are ramified in k. We note that both of the
ideal classes containing p or [ are elements of A (k). By the assumption and the condition (),
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we can see that p and [ have the same decomposition field k(/r) with respect to the extension

L/k. This means that
LIk _ (Llk
p /L)

L/k
where (L) is the Artin symbol. Therefore the ideal classes containing p or [ are the same
*

element of the ideal class group of k, and there is an element ¢ € k£ such that [ = («)p.
Since (2) = 2 = (oz)zp2 = (ozzp) and « is real, 2 = 8Za2p for some integer z. If z is even,
V2 =+« 82/2\/]_7, so that k; = k(,/p), which is a contradiction. Then z must be odd, and
2 = ¢ B2p for some B € k*. Since v/2 = + /e /P, we know that ki ({/¢) = ki1(,/p) and
/€ is not contained in kj.

Let " and [ be the prime ideals of k’ above the prime number ¢ and 2, respectively, which
are ramified in k’. By the assumption and the condition (7), we can see that q’ and I' have
the same decomposition field k’(+/2r) with respect to the extension L’/k’, so that the ideal
classes containing q’ or I are the same element of the ideal class group of k’. By the similar
arguments, we know that v/2 = iﬂ/\/?\/(? for some B’ € k', and k1 (Ve') = k1(/q).
Therefore +/¢’ is also not contained in k.

We have k1 (/€) = ki(/p) # ki(\/q) = k1(v/¢'), so that v/e&’ must not be contained

in k1. Now, we complete the proof of the lemma. O

We note that the real quadratic field Q(+/2) has the class number 1 and the fundamental
unit 1 4 +/2 with the absolute norm N (1 4+ +/2) = —1. By the above lemma and Proposition
1, a system of the fundamental units of k; must be {1 ++/2, ¢, &’}. Therefore the group index
Oky) =[Eky) : (-1, 1 —i—ﬁ, g, €')] = 1, where E (k) is the group of the units of k;. By
the Kuroda’s class number formula in Proposition 1, we have

1 1
[Atk)] = 7 - Q1) - [AK)] - |AGKD| = 7 Lad=4

Then we know that |A (k)| = |A(k)| = 4. Note that any prime of ko, which is ramified in
koo/ k 1is totally ramified. By Proposition 2, |A(k,)| = |A(k)| = 4 for all n > 0, so that the
Iwasawa invariants satisfy A (k) = pa(k) = 0 and vy(k) = 2. This complete the proof of
Theorem 1. O
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