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Abstract. For a real quadratic field k, we denote by λ2(k), µ2(k) and ν2(k) the Iwasawa λ-, µ- and ν-invariants
of the cyclotomic Z2-extension of k, respectively. In this paper, we give certain families of real quadratic fields k

such that λ2(k) = µ2(k) = 0 and ν2(k) = 2, by using Kuroda’s class number formula.

1. Introduction

Let k be a finite extension of the field Q of rational numbers. For a fixed prime number
l, we denote by k∞ the cyclotomic Zl-extension of k. Then the Galois group Gal(k∞/k) is
isomorphic to the additive group Zl of l-adic integers. For each integer n ≥ 0, k∞ has a
unique subfield kn which is a cyclic extension of degree ln over k, it is called n-th layer. Let
en be the highest power of l dividing the class number of n-th layer kn. We denote by λl(k),
µl(k) and νl(k) the Iwasawa λ-, µ- and ν-invariants of k∞, respectively, satisfying Iwasawa’s
class number formula: en = λl(k)n + µl(k)ln + νl(k) for all sufficiently large n ≥ 0 (cf. [6]
or [12]).

For each prime number l, it is conjectured (cf. [3]) that if k is a totally real number field
then λl(k) = µl(k) = 0, i.e., en is bounded as n → ∞. This is often called Greenberg’s
conjecture. Since this conjecture presented, it has been studied by many authors. In these
studies of Greenberg’s conjecture, the case for real quadratic fields k and even prime l = 2
seems to be rather a special case because of the effects of genus theory. Ozaki and Taya
(cf. [10]) proved the existence of infinitely many real quadratic fields k with λ2(k) = µ2(k) =
0 in various situations. In this paper, we also deal with the cyclotomic Z2-extensions of certain
real quadratic fields k. The main theorem is the following.

THEOREM 1. Let p, q , r be prime numbers such that

p ≡ q ≡ 5 (mod 8) , r ≡ 3 (mod 4) , and

(
pq

r

)
= −1 ,
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where

(∗
∗
)

is Legendre’s symbol. Put k = Q(
√

pqr) or Q(
√

2pqr). Let λ2(k), µ2(k)

and ν2(k) be the Iwasawa λ-, µ- and ν-invariants of the cyclotomic Z2-extension k∞ of k,

respectively. Then we have λ2(k) = µ2(k) = 0 and ν2(k) = 2.

Here we note that as for µ-invariants, it is well known that µl(k) = 0 for any prime
number l when k is an abelian extension of Q, by the theorem of Ferrero and Washington
(cf. [1] or [12]). However, we show µ2(k) = 0 here independently of it.

In the section 3, we prove Theorem 1 by using “Kuroda’s class number formula” (cf.
Proposition 1) and by the explicit description of the unit group of the first layer k1 of the
cyclotomic Z2-extension k∞ of the real quadratic field k = Q(

√
pqr).

2. Some known results

In this section, we mention some known results about Iwasawa invariants of the cyclo-
tomic Z2-extensions of real quadratic fields.

For each integer n ≥ 0, let ζn = exp(2π
√−1/2n+2), a primitive 2n+2-th roots of unity

in the complex number field. Then the n-th layer Qn of the cyclotomic Z2-extension Q∞/Q

is the field Q(ζn + ζ−1
n ). Especially, the first layer Q1 is the real quadratic field Q(

√
2). It is

proved by Weber (cf. [4], Satz 6, p. 29) that the class number of Qn is odd for all n ≥ 0, i.e.,
λ2(Q) = µ2(Q) = ν2(Q) = 0.

Let m be a positive square-free integer, and let k = Q(
√

m), a real quadratic field. The

cyclotomic Z2-extension k∞ of k is given by kQ∞. If m = 2, i.e., k = Q1 = Q(
√

2) then
k∞ = Q∞, so we already know that λ2(k) = µ2(k) = ν2(k) = 0. Therefore we consider the

case m > 2. In this case, the first layer k1 = kQ1 = Q(
√

2,
√

m) has just three real quadratic

fields Q1 = Q(
√

2), k = Q(
√

m), k′ = Q(
√

2m) as its subextensions. We note that k and k′
have the same cyclotomic Z2-extension, i.e., k∞ = k′∞, so the Iwasawa invariants are also the
same.

In [5], Iwasawa proved the theorem which states that for each prime number l, if a Galois
l-extension K/k of number fields has at most one (finite or infinite) ramified prime and the
class number of k is not divisible by l, then the class number of K is also not divisible by l.
By this theorem, if a real quadratic field k with odd class number has only one prime ideal
above the prime number 2, then for each n ≥ 0 the class number of the n-th layer kn of the
cyclotomic Z2-extension k∞/k is also odd, i.e., λ2(k) = µ2(k) = ν2(k) = 0. Furthermore,
by genus theory and the theorem of Rédei and Reichardt (cf. [11]), we can see that a real
quadratic field k has odd class number and only one prime ideal above the prime number 2
if and only if k = Q(

√
m) with positive square free integer m satisfies one of the following

conditions.
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m =




2,

p, p ≡ 5 (mod 8) ,

q, q ≡ 3 (mod 4) ,

2q, q ≡ 3 (mod 4) ,

pq, p ≡ 3, q ≡ 7 (mod 8) ,

where p and q denote prime numbers. Therefore the cyclotomic Z2-extension of k = Q(
√

m)

or Q(
√

2m) with square free positive integer m satisfying the above condition has the Iwasawa
invariants λ2(k) = µ2(k) = ν2(k) = 0. These cases are often called ‘trivial’ cases. In [10],
Ozaki and Taya treated ‘non-trivial’ cases and proved the following theorem.

THEOREM 2 (Ozaki-Taya [10]). Let k = Q(
√

m) or Q(
√

2m) and let λ2(k), µ2(k)

and ν2(k) be the Iwasawa λ-, µ- and ν-invariants of the cyclotomic Z2-extension k∞/k,

respectively. Suppose that m is one of the following:
(1) m = p, p ≡ 1 (mod 8) and 2

p−1
4 �≡ (−1)

p−1
8 (mod p) ,

(2) m = pq, p ≡ q ≡ 3 (mod 8) ,

(3) m = pq, p ≡ 3, q ≡ 5 (mod 8) ,

(4) m = pq, p ≡ 5, q ≡ 7 (mod 8) ,

(5) m = pq, p ≡ q ≡ 5 (mod 8) ,

where p and q are distinct prime numbers. Then we have λ2(k) = µ2(k) = ν2(k) = 0 for (1)

and (2), and λ2(k) = µ2(k) = 0, ν2(k) > 0 for (3), (4) and (5).

On the other hands, Yamamoto [13] determined all real abelian 2-extensions K/Q with
λ2(K) = µ2(K) = ν2(K) = 0. As a corollary to the results of Yamamoto, we obtain the
following.

THEOREM 3 (cf. Yamamoto [13]). Let p, q, r be prime numbers such that

p ≡ q ≡ 3 , r ≡ 7 (mod 8) , and

(
pq

r

)
= −1 ,

where

(∗
∗
)

is Legendre’s symbol. Put k = Q(
√

pqr) or Q(
√

2pqr). Let λ2(k), µ2(k)

and ν2(k) be the Iwasawa λ-, µ- and ν-invariants of the cyclotomic Z2-extension k∞ of k,

respectively. Then we have λ2(k) = µ2(k) = 0 and ν2(k) = 2.

PROOF. As mentioned before, it is sufficient to prove the case of k = Q(
√

pqr). By
genus theory and the theorem of Rédei and Reichardt (cf. [11]), we can see that the Hilbert
2-class field of k is the field K = Q(

√
p,

√
q,

√
r). In [13], Yamamoto proved that λ2(K) =

µ2(K) = ν2(K) = 0 for the cyclotomic Z2-extension K∞ of this field K . Then for each
n ≥ 0, the Hilbert 2-class field of n-th layer kn is Kn = KQn, the n-th layer of K∞/K . By
class field theory, the highest power en of 2 dividing the class number of kn is 2, i.e., en = 2
for all n ≥ 0. This complete the proof. �
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REMARK. The statements of Theorem 1 and Theorem 3 are similar. In fact, we can
prove Theorem 3 by the arguments similar to the proof of Theorem 1. But Theorem 1 is not
obtained as a corollary to Yamamoto’s results in [13].

In addition, Ozaki treated several cases different from each of the above theorems and
proved λ2(k) = µ2(k) = 0 for certain real quadratic fields k in his thesis [9]. The real qua-
dratic fields, which were treated in Theorem 2, have the ideal class group of 2-rank smaller
than 2. But in [9], Ozaki proved λ2(k) = µ2(k) = 0 for certain infinitely many real qua-
dratic fields k with the ideal class group of 2-rank 2. Similarly, the real quadratic fields
k = Q(

√
pqr) in Theorem 1 and Theorem 3 have the ideal class group of 2-rank 2.

3. Proof of Theorem 1

To prove Theorem 1, we need several propositions. The equation in the following propo-
sition is often called “Kuroda’s class number formula”.

PROPOSITION 1 (cf. Kuroda [8], Kubota [7]). Let K be a real bicyclic biquadratic ex-
tension of Q with the unit group E(K). The field K has three real quadratic subextensions
Fi/Q (i = 1, 2, 3). Let εi (> 0) be the fundamental unit of Fi (i = 1, 2, 3), and h(K),

h(Fi) the class numbers of K, Fi, respectively. Put the group index Q(K) = [E(K) :
〈 −1, ε1, ε2, ε3 〉]. Then we have the equation

h(K) = 1

4
· Q(K) · h(F1) · h(F2) · h(F3) .

Furthermore, we have Q(K) = 1, 2 or 4, and a system of the fundamental units of K is one
of the following types:

i) ε1, ε2, ε3

ii)
√

ε1, ε2, ε3

iii)
√

ε1,
√

ε2, ε3

iv)
√

ε1ε2, ε2, ε3

v)
√

ε1ε3,
√

ε2, ε3

vi)
√

ε1ε2,
√

ε2ε3,
√

ε3ε1

vii)
√

ε1ε2ε3, ε2, ε3

(Nε1 = 1)}
(Nε1 = Nε2 = 1)}
(Nε1 = Nε2 = Nε3 = 1)

(Nε1 = Nε2 = Nε3 = ±1)

where Nεi is the abbreviation of the absolute norm NFi/Q(εi) (i = 1, 2, 3).

PROPOSITION 2 (Fukuda [2]). Let k∞/k be any Zl-extension of number fields such that
any prime of k∞ which is ramified in k∞/k is totally ramified. For each integer n ≥ 0, we
denote by A(kn) the l-Sylow subgroup of the ideal class group of kn, the n-th layer of the
Zl-extension k∞/k. If |A(k1)| = |A(k)|, then |A(kn)| = |A(k)| for all n ≥ 0, where | ∗ |
means the order of the group.
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Now, we prove Theorem 1 by using the above propositions.

PROOF OF THEOREM 1. As already mentioned, it is enough to show only the case of
k = Q(

√
pqr). We may assume that prime numbers p, q , r satisfy the condition

p ≡ q ≡ 5 (mod 8) , r ≡ 3 (mod 4) , and

(
p

r

)
= +1,

(
q

r

)
= −1 . (†)

The first layer of the cyclotomic Z2-extension k∞ of the real quadratic field k = Q(
√

pqr) is

the real bicyclic biquadratic field k1 = Q(
√

2,
√

pqr). The field k1 contains just three real

quadratic fields: Q(
√

2), k and k′ = Q(
√

2pqr).
We denote by A(k), A(k′) and A(k1) the 2-Sylow subgroups of the ideal class groups of

k, k′ and k1, respectively. Let L and L′ be the Hilbert 2-class fields of k and k′, respectively.
By genus theory and the theorem of Rédei and Reichardt (cf. [11]), we can see that both A(k)

and A(k′) are the abelian 2-group of type (2, 2), and we have L = Q(
√

p,
√

q,
√

r) and

L′ = Q(
√

p,
√

q,
√

2r). Especially, we have |A(k)| = |A(k′)| = 4.
Let ε and ε′ be the fundamental units of the real quadratic fields k and k′, respectively. By

genus theory, we can also see that each of the real quadratic fields k and k′ has the narrow class
number different from the class number in wider sense. Therefore we have Nε = Nε′ = 1,
where N means the absolute norm. Now, we have the following lemma.

LEMMA.
√

ε,
√

ε′ and
√

εε′ are not contained in the first layer k1.

PROOF. (I) First, we assume that

(
q

p

)
= +1. Let p be a prime ideal of k above the

prime number p, which is ramified in k. Since p2 = (p), the ideal class containing p is an
element of A(k). By the assumption and the condition (†), we can see that the prime p splits
completely in L, so that p is a principal ideal of k. Let α ∈ k× be a generator of the prime

ideal p : p = (α). Since (p) = p2 = (α2) and α is real, we have p = εzα2 for some integer

z. If z is even,
√

p = ± α εz/2 ∈ k×, which is a contradiction. Therefore z must be odd,

and there is an element β ∈ k× such that p = ε β2. Since
√

p = ± β
√

ε, we know that

k(
√

ε) = k(
√

p) and
√

ε is not contained in the first layer k1 = k(
√

2).
Let q′ be a prime ideal of k′ above the prime number q , which is ramified in k′. By

the similar arguments, we can see that the prime q′ is a principal ideal of k′, and there is an

element β ′ ∈ k′× such that
√

q = ± β ′√ε′. Then we know that k′(
√

ε′) = k′(√q) and
√

ε′

is also not contained in the first layer k1 = k′(
√

2).

We have k1(
√

ε) = k1(
√

p) �= k1(
√

q) = k1(
√

ε′), so that
√

εε′ must not be contained
in k1.

(II) Secondly, we assume that

(
q

p

)
= −1. Let p and l be the prime ideals of k above

the prime numbers p and 2, respectively, which are ramified in k. We note that both of the
ideal classes containing p or l are elements of A(k). By the assumption and the condition (†),
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we can see that p and l have the same decomposition field k(
√

r) with respect to the extension
L/k. This means that (

L/k

p

)
=

(
L/k

l

)
,

where

(
L/k

∗
)

is the Artin symbol. Therefore the ideal classes containing p or l are the same

element of the ideal class group of k, and there is an element α ∈ k× such that l = (α)p.

Since (2) = l2 = (α)2p2 = (α2p) and α is real, 2 = εzα2p for some integer z. If z is even,√
2 = ± α εz/2√p, so that k1 = k(

√
p), which is a contradiction. Then z must be odd, and

2 = ε β2p for some β ∈ k×. Since
√

2 = ± β
√

ε
√

p, we know that k1(
√

ε) = k1(
√

p) and√
ε is not contained in k1.

Let q′ and l′ be the prime ideals of k′ above the prime number q and 2, respectively, which
are ramified in k′. By the assumption and the condition (†), we can see that q′ and l′ have

the same decomposition field k′(
√

2r) with respect to the extension L′/k′, so that the ideal
classes containing q′ or l′ are the same element of the ideal class group of k′. By the similar

arguments, we know that
√

2 = ± β ′√ε′√q for some β ′ ∈ k′×, and k1(
√

ε′) = k1(
√

q).

Therefore
√

ε′ is also not contained in k1.

We have k1(
√

ε) = k1(
√

p) �= k1(
√

q) = k1(
√

ε′), so that
√

εε′ must not be contained
in k1. Now, we complete the proof of the lemma. �

We note that the real quadratic field Q(
√

2) has the class number 1 and the fundamental

unit 1 + √
2 with the absolute norm N(1 + √

2) = −1. By the above lemma and Proposition

1, a system of the fundamental units of k1 must be {1 +√
2, ε, ε′}. Therefore the group index

Q(k1) = [E(k1) : 〈−1, 1 + √
2, ε, ε′〉] = 1, where E(k1) is the group of the units of k1. By

the Kuroda’s class number formula in Proposition 1, we have

|A(k1)| = 1

4
· Q(k1) · |A(k)| · |A(k′)| = 1

4
· 1 · 4 · 4 = 4 .

Then we know that |A(k1)| = |A(k)| = 4. Note that any prime of k∞ which is ramified in
k∞/k is totally ramified. By Proposition 2, |A(kn)| = |A(k)| = 4 for all n ≥ 0, so that the
Iwasawa invariants satisfy λ2(k) = µ2(k) = 0 and ν2(k) = 2. This complete the proof of
Theorem 1. �
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