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Lower Bound of Newton Number
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Abstract. We show a lower estimate of the Milnor number of an isolated hypersurface singularity, via its
Newton number. We also obtain analogous estimate of the Milnor number of an isolated singularity of a similar
complete intersection variety.

Introduction

We study the Newton number of a polyhedron in order to calculate the Milnor number
of an isolated singularity defined by an analytic mapping.

Section 2 treats the Newton number of a quasi-convenient polyhedron.
In Section 3, we consider the Milnor number µ(f, 0) of an isolated hypersurface singular

point 0 ∈ Cn defined by a function f ∈ C{z1, · · · , zn}. It is well known that the Milnor
number of a critical point 0 of a semi-quasihomogeneous function f is equal to that of its
initial part ([MO]-Thm.1, [A]-Thm.3.1, [LR]-Cor.2.4). On the other hand, Kouchnirenko
proved that µ(f, 0) ≥ ν(f ) holds for any function f ∈ C[[z1, · · · , zn]], where ν(f ) is the
Newton number of f ([K]). We show a lower estimate of µ(f, 0) for not necessarily semi-
quasihomogeneous function f as follows,

µ(f, 0) ≥ ν(g) ≥ (a1 − 1) · · · · · (an − 1) ,

where (a1, 0, · · · , 0), · · · , (0, · · · , 0, an) are vertices of an arbitrary n − 1 dimensional sim-
plex lying below Γ (f ) with ai ≥ 1 (i = 1, · · · , n), and g is a standard modification of f to
a convenient function. When all the ai are integers, this result follows from Kouchnirenko’s
Theorem and upper semicontinuity of µ under a deformation. Recently Tomari and I have
given a simple proof of this theorem which is quite different from the one of this note ([TF]).

In Section 4, we mention a µ-constant family of an isolated hypersurface singularity.
In Section 5, we consider the case of complete intersection singularities. Oka obtained a

formula of the Milnor number of an isolated similar complete intersection singularity ([O2])
which is a generalization of Kouchnirenko’s formula ([K]). We also obtain a lower estimate
of the Milnor number of an isolated similar complete intersection singularity.
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1. Preliminary

NOTATIONS.
For a subset I ⊆ {1, · · · , n}, we put |I | := the cardinality of I , I c := {1, · · · , n} � I ,
RI := {x = (x1, · · · , xn) ∈ Rn ; xi = 0 if i /∈ I },
RI := {x = (x1, · · · , xn) ∈ Rn ; xi = 0 if i ∈ I },
πI : Rn → RI , πI : Rn → RI : the projection maps.

For a polyhedron X in Rn, let XI := X ∩ RI ,
Vk(X) := the k-dimensional volume of X (dimR X ≤ k ≤ n),
Vert(X) := the set of all vertices of the polyhedron X,
ConeP (X) := the cone over the polyhedron X with cone vertex P , (ConeP (∅) := P ).
Let P1, · · · , Pr+1 be points in a general position in Rn (r ≤ n).
|P1, · · · , Pr+1| := the r dimensional simplex generated by the r+1 vertices P1, · · · , Pr+1.

Dn := {x = (x1, · · · , xn) ∈ Rn ; x2
1 + · · · + x2

n ≤ 1}.
∼= : topologically equivalent as subspaces of Euclidean space.

C{z} := C{z1, · · · , zn} and zλ := z
λ1
1 · · · · · z

λn
n (λ = (λ1, · · · , λn)).

Recall that an arbitrary compact polyhedron can be decomposed into finite union of com-
pact convex polytopes. The dimension of a convex polytope in Rn is defined by the dimension
of the smallest R-affine subspace of Rn containing it. The dimension of a polyhedron is de-
fined to be the largest possible dimension of a convex polytope contained in it. By convention,
the dimension of the empty set is taken to be −1. A polyhedron is called pure (or pure n di-
mensional) if it is a (not necessarily connected) finite union of n dimensional compact convex
polytopes. An arbitrary n dimensional compact polyhedron X in Rn can be subdivided into
n or less than n dimensional simplices as X = ⋃

t∈S ∆t such that Vert(∆t) ⊂ Vert(X). In
general, a way of subdividing the polyhedron X may not be unique.

DEFINITION 1.1 (Kouchnirenko [K]-Def.1.7). Let X be an n-dimensional compact
polyhedron in R≥0

n. Then the Newton number ν(X) of X is defined by

ν(X) =
∑

I⊆{1,··· ,n}
(−1)n−|I ||I |!V|I |(XI ) .

Note that V0(X
∅) = 1 (if O ∈ X) or V0(X

∅) = 0 (if O /∈ X).

DEFINITION 1.2. Assume that P1, · · · , Pn+1 are points in (R≥0)
n in a general posi-

tion and let X = |P1, · · · , Pn+1| be the n dimensional simplex with vertices P1, · · · , Pn+1.
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A coordinate subspace RI of Rn is called a full-supporting coordinate subspace for X if
dimR XI = |I |. Note that this is equivalent that RI contains exactly |I | + 1 vertices of X.

LEMMA 1.3. Assume that X is as above. Suppose that we have two full-supporting
coordinate subspaces RI and RJ . Then RI∩J is also a full-supporting coordinate subspace
for X. In particular, there exists a unique minimal full-supporting coordinate subspace RI0

for X.

PROOF. Suppose that we have two full-supporting coordinate subspaces RI and RJ .
Then it holds that �Vert(XI ) = |I | + 1, �Vert(XJ ) = |J | + 1. Put K := I ∩ J and assume
that s ≤ |K| + 1 vertices of X are in RI ∩ RJ = RK . Then we have |I | + |J | + 2 − s

vertices of X in the coordinate subspace RI∪J . Consider the inequality |I | + |J | + 2 − s =
(|I | + |J | − |K| + 1) + (|K| − s + 1) ≥ |I | + |J | − |K| + 1. By the assumption of general

position, this implies that s = |K| + 1 and thus RI∩J is also full-supporting for X. Q.E.D.

LEMMA 1.4. Assume that X is as above such that O /∈ X and that RI is the minimal
full-supporting coordinate subspace for X. Then ν(X) = |I |!V|I |(XI )ν(πI (X)).

PROOF. We may assume that I = {m + 1, · · · , n}, XI = |Pm+1, · · · , Pn+1|.
Let Pi = (pi1, · · · , pin), Qi = (qi1, · · · , qin) = −−−−→

Pn+1Pi,

Q = (qij )1≤i≤n, 1≤j≤n =




p11 · · · p1m q1 m+1 · · · q1n

...
...

...
...

pm1 · · · pmm qm m+1 · · · qmn

0 · · · 0 qm+1 m+1 · · · qm+1 n

...
...

...
...

0 · · · 0 qn m+1 · · · qnn




.

By calculation of the determinant or minor determinants of the matrix Q, we have

|J |!V|J |(XJ ) = |I |!V|I |(XI )|J � I |!V|J�I |(πI (X)J ) (I ⊆ J ⊆ {1, · · · , n}) .

Therefore

ν(X) =
∑

I⊆J⊆{1,··· ,n}
(−1)n−|J ||J |!V|J |(XJ ) = |I |!V|I |(XI )ν(πI (X)) . Q.E.D.

COROLLARY 1.5. Let X be a pure n-dimensional compact polyhedron in (R≥0)
n such

that O /∈ X. Assume that there is a triangulation of X so that X is a union of n-simplices ∆t

(t ∈ S) and that Vert(∆t) ⊂ Vert(X). We assume also that the simplices have the common

minimal full-supporting coordinate subspace RI so that X ∩ RI = ∆t ∩ RI for any t ∈ S.
Then we have ν(X) = |I |!V|I |(XI )ν(πI (X)).

PROOF. For a point P in ∆t , we denote the minimal face of ∆t containing P and XI

by Supp(P,∆t ).
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CLAIM 1.6. Take points P ∈ ∆t � XI and Q ∈ ∆u � XI and assume that πI (P ) =
πI (Q). Then Supp(P,∆t ) = Supp(Q,∆u). In particular, πI (∆t)∩πI (∆u) = πI (∆t ∩∆u).

PROOF. Assume that πI (P ) = πI (Q). Then it holds that R := P −Q ∈ RI . Let M be
the barycenter of XI . Consider a relative interior point Pε := εP +(1−ε)M of Supp(P,∆t ).
Then Pε is also in the relative interior of Supp(Q,∆u) for a sufficiently small ε > 0 because

εP + (1 − ε)M = εQ + (1 − ε)

(
ε

1 − ε
R + M

)
.

This implies that Supp(P,∆t ) = Supp(Q,∆u). Thus πI (P ) ∈ πI (∆t ∩ ∆u). Q.E.D.

Therefore {πI (∆t) ; t ∈ S} gives a triangulation of πI (X), and for any J ⊇ I , we have
dimR ∆J

t ∩ ∆J
u = dimR(πI (∆t)

J ∩ πI (∆u)
J ) + |I |. Put J ′ = J � I . Thus

ν(X) =
∑

I⊆J⊆{1,··· ,n}
(−1)n−|J ||J |!V|J |(XJ )

=
∑

I⊆J⊆{1,··· ,n}
(−1)n−|J | ∑

t∈S

1

mJ
t

|J |!V|J |(∆J
t )

=
∑

I⊆J⊆{1,··· ,n}
(−1)|I c|−|J ′| ∑

t∈S

1

mJ
t

|I |!V|I |(XI )|J ′|!V|J ′|(πI (∆t)
J ′

)

= |I |!V|I |(XI )
∑

I⊆J⊆{1,··· ,n}
(−1)|I c|−|J ′||J ′|!V|J ′|(πI (X)J

′
)

= |I |!V|I |(XI )ν(πI (X)),

where mJ
t := �{u ∈ S ; ∆J

t = ∆J
u }. Q.E.D.

2. Newton number of quasi-convenient polyhedron

We first note that:

LEMMA 2.1. Let X, Y be pure n dimensional compact polyhedra in Rn with Y � X.

Then the polyhedron X � Y is also pure n dimensional.

DEFINITION 2.2. A polyhedron X in (R≥0)
n is called quasi-convenient if the follow-

ing two conditions (i) and (ii) are satisfied:
(i) O ∈ X and for any other vertex P = (p1, · · · , pn) of X, the inequality pi ≥ 1 is

satisfied if pi = 0,
(ii) XI is topologically equivalent to D|I | for each I ⊆ {1, · · · , n}.
Note that the vertices of X need not be rational.
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THEOREM 2.3. Let X be a quasi-convenient polyhedron in (R≥0)
n and assume that

X ⊇ Ya for some a ≥ 1 where Ya := {x = (x1, · · · , xn) ∈ (R≥0)
n ; x1 + · · · + xn ≤ a}.

Then ν(X) ≥ ν(Ya) = (a − 1)n.

PROOF. Let Y = Ya . We may assume that X � Y is not empty. So it is pure n di-
mensional. We show the assertion by induction on the dimension of the polyhedron X. It is

obvious for n = 1. So we assume n ≥ 2. Note that it holds that ν(X) = ν(Y ) + ν(X � Y ).

First, we would like to subdivide the n dimensional polyhedron X � Y into pure n dimen-

sional polyhedra as X � Y = ⋃
t̄∈S̄ Zt̄ satisfying the equality

ν

( ⋃
t̄∈S̄

Zt̄

)
=

∑
t̄∈S̄

ν(Zt̄ ) .

We construct such n dimensional polyhedra Zt̄ as below. The polyhedron X � Y is subdivided

into n dimensional simplices as X � Y = ⋃
t∈S ∆t satisfying dimR ∆t ∩∆u < n (t = u) and

Vert(∆t) ⊂ Vert(X � Y ). According to Lemma 1.3, the index set S can be decomposed as a
disjoint union as follows:

S =
∐

∅=I⊆{1,··· ,n}
S(I) where

S(I) := {t ∈ S ; RI is the minimal full-supporting coordinate subspace for ∆t } .

We define an equivalence relation between two elements t and u in S as follows:

t ∼ u
def
� t, u ∈ S(I) and ∆I

t = ∆I
u for some I ,

and denote the equivalence class of t by t̄ . Then it holds dimR ∆J
t ∩ ∆J

u < |J | for any
J ⊆ {1, · · · , n} and t, u ∈ S such that t ∼ u. Thus we define

Zt̄ :=
⋃
u∼t

∆u , S̄ := S/ ∼ ,

so that the subdivision X � Y = ⋃
t̄∈S̄ Zt̄ satisfies the equality ν(X � Y ) = ∑

t̄∈S̄ ν(Zt̄ ).

Next, we would like to show ν(Zt̄ ) ≥ 0 (t̄ ∈ S̄). For t ∈ S(I), it follows from Corollary

1.5 that ν(Zt̄ ) = |I |!V|I |(ZI
t̄
)ν(πI (Zt̄ )). On the other hand, the n − |I | dimensional polyhe-

dron πI (Zt̄ ) is quasi-convenient. In fact, it holds for a relative interior point P in ∆I
t and for

a sufficiently small ε > 0 that Zt̄ ∩ Uε(P ) = (R≥0)
n ∩ Uε(P ), and thus

πI (Zt̄)∩U ′
ε(O) = πI (Zt̄ ∩Uε(P )) = πI ((R≥0)

n ∩Uε(P )) = (R≥0
n)I

c ∩U ′
ε(O) ∼= Dn−|I | ,

where Uε(P ) (resp. U ′
ε(O)) is the open ε-neighbourhood of P in Rn (resp. of O in RI ).

Hence πI (Zt̄ ) = ⋃
u∼t πI (∆u) ∼= Dn−|I |. Similarly we have πI (Zt̄ )

J ∼= D|J | for J ⊆ I c.
Therefore, by inductive hypothesis, it holds ν(πI (Zt̄ )) ≥ 0, and so ν(Zt̄ ) ≥ 0. Q.E.D.
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COROLLARY 2.4. We have the following assertion for a quasi-convenient polyhedron
X in (R≥0)

n.
(i) If ν(X) = 0 then Ej = (0, · · · , 0, 1

�
j

, 0, · · · , 0) ∈ Vert(X) for some j ∈ {1, · · · , n}.

(ii) Then the equality ν(X) = 0 holds if Ej ∈ Vert(X) for some j ∈ {1, · · · , n} and
the other vertices are in R{j}.

(iii) Assume further that (R≥0)
n � X is convex. Then the equality ν(X) = 0 holds if

and only if Ej ∈ Vert(X) for some j ∈ {1, · · · , n}.
PROOF. First we prove the assertion (i). Suppose that Ej /∈ Vert(X) for any j ∈

{1, · · · , n}. Then the polyhedron X includes a subset Y1+ε for a sufficiently small ε > 0.
This proves the assertion (i). We show the assertion (ii) by induction on the dimension of X.
Assume Ej ∈ Vert(X) and Vert(X) � {Ej } ⊂ R{j}. Let Y = Y1. Note that Y1 ⊆ X. For
any subdivision X = Y ∪ ⋃

t∈S ∆t as in Proof of Theorem 2.3, each simplex ∆t has vertices

in R{j} except Ej . Thus the minimal full-supporting coordinate subspace RI satisfies j /∈ I .

Take an index t ∈ S(I). By Corollary 1.5, we get ν(Zt̄ ) = |I |!V|I |(ZI
t̄
)ν(πI (Zt̄ )). Note

that Ej is again a vertex of πI (∆t) and the other vertices of πI (∆t) are in RI c
�{j}. Thus

by the inductive hypothesis, we have ν(Zt̄ ) = 0. We consider the assertion (iii). Assume
that Ej ∈ Vert(X) and (R≥0)

n � X is convex. Then we assert that Vert(X) � {Ej } ⊂ R{j}.
In fact, suppose that Vert(X) � {Ej } ⊂ R{j} and that the j -th coordinate of a point P ∈
Vert(X) � {Ej } is equal to the maximum of the j -th coordinates of all vertices of X. Then
(R≥0)

n � X is non-convex around the point P . Q.E.D.

The following Corollary is a generalization of Theorem 2.3.

COROLLARY 2.5. Let X, Y be quasi-convenient polyhedra in (R≥0)
n with Y ⊆ X.

Then ν(X) ≥ ν(Y ) ≥ 0 and ν(X � Y ) ≥ 0. In particular, if Y = |O,A1, · · · , An|,
Ai = (0, · · · , 0, ai

�
i

, 0, · · · , 0) (1 ≤ i ≤ n), then ν(X) ≥ (a1 − 1) · · · · · (an − 1) ≥ 0.

PROOF. Put Z := X � Y . Then it holds that dimR Y I ∩ ZI < |I | for each I ⊆
{1, · · · , n}. Therefore ν(X) = ν(Y ) + ν(Z). The rest is similar to Proof of Theorem
2.3. Q.E.D.

3. Lower bound of Milnor number of hypersurface singularity

As a result of Kouchnirenko’s formula ([K]-Thm.I) and Corollary 2.5 above, we obtain
a lower estimate of Milnor number of an isolated hypersurface singularity (Corollary 3.1).
Using the same notation as in [K], let Γ (f ) be the Newton boundary of f with respect to
the fixed coordinates (z1, · · · , zn), and let Γ−(f ) be the cone of Γ (f ) and the origin. An
analytic function f is called convenient if the intersection of Γ (f ) and each coordinate axis
is non-empty. Note that if a function f is convenient then Γ−(f ) is quasi-convenient.
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COROLLARY 3.1. Let f ∈ C{z1, · · · , zn} define an isolated singularity at the origin
0 ∈ Cn. Let H be an arbitrary hyperplane lying below Γ (f ) and intersecting coordinate axis
x1, · · · , xn at points a1, · · · , an, where ai ≥ 1 (i = 1, · · · , n). Then

µ(f, 0) ≥ (a1 − 1) · · · · · (an − 1) .

PROOF. Take a sufficiently large positive integer m and let g := f + zm
1 + · · · + zm

n be
a standard modification of f to a convenient function. Then it follows from Kouchnirenko’s
formula ([K]-Theorem I) and Corollary 2.5 that

µ(f, 0) = µ(g, 0) ≥ ν(Γ−(g)) ≥ (a1 − 1) · · · · · (an − 1) .

Q.E.D.

REMARK 3.2. The main results Theorem 2.3, Corollary 2.5 and 3.1 for the case that all
the vertices of the polyhedra X, Y, H are lattice points follow from Kouchnirenko’s Theorem
([K]-Theorem I) and upper semicontinuity of µ under a deformation ([M]).

REMARK 3.3. Tomari has recently given a simple proof of Corollary 3.1 which uses a
theory of multiplicity of filtered ring. He has also proved that the equality holds if and only if
f is semi-quasihomogeneous ([TF]).

4. µ-constant family of three dimensional hypersurface singularity

Let f (z) = ∑
λ∈Λ γλzλ ∈ C{z} be an analytic function. As an application of Corollary

2.4 and 2.5 above, we investigate the family of a negligible truncation defined in [O1].
Let A be a vertex of Γ (f ) and put ft (z) = f (z) − (1 − t)γAzA. We assume that both

f1 and f0 are convenient and that Γ−(f1) is a proper subset of Γ−(f0). Then we see that

Γ−(f0) � Γ−(f1) = ConeA(Γ (f0) � Γ (f1)). Therefore if A /∈ RI then Γ−(f0)I � Γ−(f1)I

is strictly less than |I | dimensional. If A ∈ RI then Γ−(f0)I � Γ−(f1)I is pure |I | dimen-
sional because Γ−(f0)

I = Γ−(f1)
I and both Γ−(f0)

I and Γ−(f1)
I are pure |I | dimensional.

Now we consider the case that n = 4 and C{z} = C{x, y, z,w}. By account in the
preceding paragraph, we have the following Proposition as a particular case of Corollary 2.5.

PROPOSITION 4.1. Let A = (a1, a2, a3, a4) and assume that Γ−(f0) = Γ−(f1) ∪ ∆

holds for some 4-simplex ∆ = |A,B,C,D,E|. Then the equality ν(Γ−(f0)) = ν(Γ−(f1))

holds if and only if one of the following (i)–(iii) is satisfied (up to a permutation of the
coordinates).

(i) Case a1 = 0, ai > 0 (i = 2, 3, 4). Then E = (1, ∗, ∗, ∗).
(ii) Case a1 = a2 = 0, a3 > 0, a4 > 0. Then either D = (0, 1, ∗, ∗) or E =

(1, 0, ∗, ∗).
(iii) Case a1 = a2 = a3 = 0, a4 > 0. Then either C = (0, 0, 1, ∗) or D = (0, 1, 0, ∗)

or E = (1, 0, 0, ∗).
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PROOF. If ai > 0 (i = 1, 2, 3, 4) then R4 is the minimal full-supporting coordinate
subspace for ∆, hence ν(∆) > 0. Thus the vertex A must be as in one of (i)–(iii) above.

Case (i). Then R{2,3,4} is the minimal full-supporting coordinate subspace for ∆. The
equality ν(∆) = 0 holds if and only if π{2,3,4}(∆) = |O,E1| where E1 := (1, 0, 0, 0).

Case (ii). Then R{3,4} is the minimal full-supporting coordinate subspace for ∆. The
equality ν(∆) = 0 holds if and only if the 2-simplex π{3,4}(∆) has either E1 or E2 :=
(0, 1, 0, 0) as a vertex.

Case (iii). Then R{4} is the minimal full-supporting coordinate subspace for ∆. The
equality ν(∆) = 0 holds if and only if the 3-simplex π{4}(∆) has at least one of E1 or E2 or
E3 := (0, 0, 1, 0) as a vertex. Q.E.D.

Each family ft in the following examples is negligible truncation, so it is µ-constant.

EXAMPLE 4.2. ft = x3 + y3 + z5 + xw5 + ty2zw + wm (m ≥ 8) .

PROOF. It holds that Γ−(f0) = Γ−(f1) ∪ ∆ for the 4-simplex ∆ with the vertices

(0, 3, 0, 0), (0, 0, 5, 0), (1, 0, 0, 5), (0, 2, 1, 1), (0, 0, 0,m), and R{2,3,4} is the minimal full-
supporting coordinate subspace for ∆. We see that π{2,3,4}(∆) = |O,E1| and so ν(∆) = 0.

Q.E.D.

EXAMPLE 4.3. ft = x3 + y3 + z5 + xw5 + yw5 + tzw6 + wm (m ≥ 8) .

PROOF. It holds that Γ−(f0) = Γ−(f1) ∪ ∆ for the 4-simplex ∆ with the vertices

(0, 0, 5, 0), (1, 0, 0, 5), (0, 1, 0, 5), (0, 0, 1, 6), (0, 0, 0,m), and R{3,4} is the minimal full-
supporting coordinate subspace for ∆. We see that π{3,4}(∆) = |O,E1, E2| and so ν(∆) = 0.

Q.E.D.

EXAMPLE 4.4. ft = x2 + y5 + z6 + yw6 + z2w5 + tw8 + wm (m ≥ 9) .

PROOF. Γ−(f0)=Γ−(f1)∪∆ for ∆ = |(2, 0, 0, 0), (0, 1, 0, 6), (0, 0, 2, 5), (0, 0, 0, 8),

(0, 0, 0,m)|. Therefore π{4}(∆) = |(0, 0, 0, 0), (2, 0, 0, 0), (0, 1, 0, 0), (0, 0, 2, 0)| and
ν(∆) = 0. Q.E.D.

5. The r-th Newton number and similar complete intersection singularity

The r-th Newton number is a natural generalization of the Newton number ([O2]-
Theorem 7.2). Let d1, · · · , dr be positive integers. For an n-dimensional compact polyhe-
dron X in R≥0

n, the r-th Newton number of (d1, · · · , dr )-type νr
d1···dr

(X) of X (1 ≤ r ≤ n)

is defined by

νr
d1···dr

(X) =
∑

I⊆{1,··· ,n}, r≤|I |
(−1)n−|I |F |I |

r (d1, · · · , dr )|I |!V|I |(XI ) + ε(−1)n−r+1 ,

where

ε = 1 (if O ∈ X) or ε = 0 (if O /∈ X) ,

F l
k(d1, · · · , dk) :=

∑
i1+···+ik=l−k

d1
i1+1 · · · dk

ik+1 .
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Then the following is shown in the same way as the case of the Newton number.

THEOREM 5.1. Let X ⊂ (R≥0)
n be a quasi-convenient polyhedron. Then νr

d1···dr
(X) ≥

0 for 2 ≤ r ≤ n.

COROLLARY 5.2. Let X, Y be quasi-convenient polyhedra in (R≥0)
n with Y ⊆ X.

Then νr
d1···dr

(X) ≥ νr
d1···dr

(Y ) ≥ 0 and νr
d1···dr

(X � Y ) ≥ 0 for 2 ≤ r ≤ n.

In particular, if Y = |O,A1, · · · , An|, Ai = (0, · · · , 0, ai
�
i

, 0, · · · , 0) (i = 1, · · · , n), then

νr
d1···dr

(X) ≥
n∑

s=r

(−1)n−sF s
r (d1, · · · , dr )σs(a1, · · · , an) + (−1)n−r+1 ≥ 0 ,

where σs(a1, · · · , an) is the s-th elementary symmetric function of a1, · · · , an defined by

n∏
i=1

(t − ai) = tn − σ1t
n−1 + · · · + (−1)nσn .

The key Lemma for Proof of Theorem 5.1 is the following 5.3 which is an application of
Corollary 1.5. Using this Lemma, we can show Theorem 5.1 by the same arguments of Proof

of Theorem 2.3. Let Gl
k(d1, · · · , dk) := ∑

i1+···+ik=l−k d1
i1 · · · dk

ik .

LEMMA 5.3. Let X, I be as in Corollary 1.5. Set m = n − |I |, X′ = πI (X). Then the
following hold for 1 < r < n. If r ≤ |I | then

νr
d1···dr

(X) =
∑

I⊆J⊆{1,··· ,n}
(−1)n−|J |F |J |

r (d1, · · · , dr)|J |!V|J |(XJ )

= |I |!V|I |(XI ){dr
n−mνr

d1···dr
(X′) + drG

n−m+1
2 (dr−1, dr)ν

r−1
d1···dr−1

(X′)

+ · · · + dr · · · d2G
n−m+1
r (d1, · · · , dr )ν

1
d1

(X′)} (r ≤ m), or

|I |!V|I |(XI ){dr · · · dm+1G
n−m+1
r−m+1(dm, · · · , dr )ν

m
d1···dm

(X′) + · · ·
+ dr · · · d2G

n−m+1
r (d1, · · · , dr)ν

1
d1

(X′) + Fn−m
r−m (dm+1, · · · , dr )} (r > m) .

If r > |I | then

νr
d1···dr

(X) =
∑

I⊆J⊆{1,··· ,n}, r≤|J |
(−1)n−|J |F |J |

r (d1, · · · , dr)|J |!V|J |(XJ )

= |I |!V|I |(XI ){Gn−m+1
1 (dr )ν

r
d1···dr

(X′) + drG
n−m+1
2 (dr, dr−1)ν

r−1
d1···dr−1

(X′)

+ · · · + dr · · · dr−n+m+1G
n−m+1
n−m+1(dr, · · · , dr−n+m)νr−n+m

d1···dr−n+m
(X′)}

(r ≤ m) , or

|I |!V|I |(XI ){dr · · · dm+1G
n−m+1
r−m+1 (dr, · · · , dm)νm

d1···dm
(X′) + · · ·

+ dr · · · dr−n+m+1G
n−m+1
n−m+1(dr , · · · , dr−n+m)νr−n+m

d1···dr−n+m
(X′)
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+ Fn−m
r−m (dm+1, · · · , dr)} (r > m) .

Next we would like to give a similar result as Corollary 3.1 for more general situation.
Let f = (f1, · · · , fr ) : (Cn, 0) → (Cr , 0) (2 ≤ r < n) be a germ of an analytic mapping

such that f(0) = 0. We assume that f−1(0) is a germ of a similar complete intersection variety
(SCIV) with an isolated singularity at the origin 0 ∈ Cn. (See [O2]-7.) As a consequence of
Corollary 5.2 and Oka’s formula, we obtain a lower estimate of the Milnor number µ(f, 0).

THEOREM 5.4 (Oka [O2]-Thm.7.2). Let f = (f1, · · · , fr ) : (Cn, 0) → (Cr , 0)

define a germ of a SCIV such that Γ (fj ) = djΓ (f ) with an isolated singularity at the origin.

Then it holds that µ(f, 0) ≥ νr
d1···dr

(Γ−(f )). If f −1(0) is non-degenerate then the equality

holds.

COROLLARY 5.5. Let f be as in Theorem 5.4. Suppose that Γ−(f ) ⊇ |O,A1, · · · ,
An|, Ai = (0, · · · , 0, ai

�
i

, 0, · · · , 0), ai ≥ 1 (i = 1, · · · , n). Then

µ(f, 0) ≥
n∑

s=r

(−1)n−sF s
r (d1, · · · , dr )σs(a1, · · · , an) + (−1)n−r+1 .

Particularly, if d1 = · · · = dr = 1 then

µ(f, 0) ≥
n∑

s=r

(−1)n−s

(
s − 1

r − 1

)
σs(a1, · · · , an) + (−1)n−r+1 .
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