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1. Introduction

For an irrational number x ∈ (0, 1), if a non-zero rational number
p

q
, (p, q) = 1, satisfies∣∣∣∣x − p

q

∣∣∣∣ <
1

2q2
, then it is the nth regular principal convergent

pn

qn

for some n ≥ 1. Here, the

nth regular principal convergents are defined by the regular continued fraction expansion of
x:

x = 1

a1
+ 1

a2
+ 1

a3
+ · · · .

We put {
p−1 = p−1(x) = 1 , p0 = p0(x) = 0

q−1 = q−1(x) = 0 , q0 = q0(x) = 1

and {
pn = pn(x) = an · pn−1 + pn−2

qn = qn(x) = an · qn−1 + qn−2
for n ≥ 1 .

Then it is well-known that

pn

qn

= 1

a1
+ 1

a2
+ · · · + 1

an

for n ≥ 1 .

If x ∈ [k, k + 1) for an integer k, we define its nth regular principal convergent by
pn(x − k)

qn(x − k)
+ k = pn(x − k) + k · qn(x − k)

qn(x − k)
.
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For some x ∈ (0, 1), there exists
p

q
with (p, q) = 1 and

∣∣∣∣x − p

q

∣∣∣∣ <
1

q2
, which is not the

nth regular principal convergent for any n ≥ 0. However, we can find such a fraction
p

q
in

the set

{
pn − pn−1

qn − qn−1
,

pn + pn−1

qn + qn−1
: n ≥ 1

}
. This leads us to the notion of the regular mediant

convergents of level n,
un,t

vn,t

, which is defined by{
un,t = t · pn + pn−1

vn,t = t · qn + qn−1
for 1 ≤ t < an+1, n ≥ 0 .

The regular principal and the regular mediant convergents are obtained by the following maps
T and F of [0, 1], which are called the Gauss map and the Farey map, respectively, see [2]:

T (x) =


1

x
−
[

1

x

]
if x ∈ (0, 1]

0 if x = 0

(1.1)

and

F(x) =


x

1 − x
if x ∈

[
0,

1

2

)
1 − x

x
if x ∈

[
1

2
, 1

]
,

where [y] = n if y ∈ [n, n + 1). We get the coefficients of the regular continued fraction
expansion of x ∈ [0, 1] by

an = an(x) = [(T n−1(x))−1] , n ≥ 1 .

We refer to Sh. Ito [3] on the relation between F and the regular mediant convergents. In this
paper, we generalize the notion of the mediant convergents to the continued fraction expansion
introduced by H. Nakada [5], which are called the α-continued fraction expansion. The α-
continued fraction expansion is a generalization of the regular continued fraction expansion

and is induced by the following map Tα of Iα = [α − 1, α] for
1

2
≤ α ≤ 1:

Tα(x) =


∣∣∣∣ 1

x

∣∣∣∣− [ ∣∣∣∣ 1

x

∣∣∣∣ ]
α

if x ∈ Iα \ {0}

0 if x = 0 ,

where [ y ]α = n if y ∈ [n − 1 + α, n + α). We note that T1 is the Gauss map. For n ≥ 1,
put

εα,n = εα,n(x) = sgn T n−1
α (x) ,
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cα,n = cα,n(x) =
[ ∣∣∣∣ 1

T n−1
α (x)

∣∣∣∣ ]
α

(or = ∞ if T n−1
α (x) = 0) .

Then we have the α-continued fraction expansion of x ∈ Iα :

x = εα,1

cα,1
+ εα,2

cα,2
+ εα,3

cα,3
+ · · · , cα,n ≥ 1 .

Next for n ≥ 1, we define the nth α-principal convergents
pα,n

qα,n

by{
pα,−1 = 1 , pα,0 = 0

qα,−1 = 0 , qα,0 = 1
and

{
pα,n = cα,n · pα,n−1 + εα,n · pα,n−2

qα,n = cα,n · qα,n−1 + εα,n · qα,n−2 .

We note that the {qα,n} is strictly increasing, see [5]. Also we define the α-mediant conver-

gents of level n ≥ 0,

{
uα,n,t

vα,n,t

: 1 ≤ t < cα,n+1

}
, by{

uα,n,t = t · pα,n + εα,n+1 · pα,n−1

vα,n,t = t · qα,n + εα,n+1 · qα,n−1
for 1 ≤ t < cα,n+1 . (1.2)

In §2, we define a new map Gα for each α,
1

2
≤ α ≤ 1 and show how Gα induces the

sequence of the α-principal and the α-mediant convergents. We call Gα the α-Farey map of
the first type. We note that Gα is the same as F in the above if α = 1. Our idea for getting the
mediant convergents is slightly different from the one in [3]. In §3, we give some estimates on

the error term of the convergence of
uα,n,t

vα,n,t

to x ∈ Iα . The first assertion is its upper estimate:∣∣∣∣x − uα,n,t

vα,n,t

∣∣∣∣ <
1

qα,n · qα,n−1
.

This shows that
uα,n,t

vα,n,t

converges to x. The second assertion is

lim sup
1≤t<cα,n+1

n→∞

v2
α,n,t

∣∣∣∣x − uα,n,t

vα,n,t

∣∣∣∣ = ∞ (a.e.) ,

though

lim inf
1≤t<cα,n+1

n→∞
v2
α,n,t

∣∣∣∣x − uα,n,t

vα,n,t

∣∣∣∣ < 2 if cα,n ≥ 2 occur infinitely often .

This means that we can not give any estimates after the normalization by the square of the
denominator. For the asymptotic behavior of the values

v2
α,n,t

∣∣∣∣x − uα,n,t

vα,n,t

∣∣∣∣ , (1.3)
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we give a 2-dimensional map Ĝα which we call the “natural extension” of Gα in §4. By this
map, we can discuss the distribution of (1.3) for almost every x by using the ratio ergodic theo-
rem. In §5, we describe a relation between the α-mediant convergents and the regular mediant
convergents. Actually, we show that the set of the α-principal and the α-mediant convergents
coincides with the set of the regular’s. K. Dajani and C. Kraaikamp [1] showed that Lehner
fractions induce the set of the regular principal and the regular mediant convergents. They
also showed that this set includes all principal convergents arising from S-expansions, see
[4] for the definition of S-expansions. In this sense, they called this set “the mother of all
semi-regular continued fractions”. Our claim is that we can construct the “mother” from any

α-continued fractions,
1

2
≤ α ≤ 1, by producing the α-mediant convergents. Incidentally, it

is easy to see that

uα,n,1

vα,n,1
= uα,n−1,cα,n−1

vα,n−1,cα,n−1
if εα,n+1 = −1 .

This means that one rational number appears twice when εα,n+1 = −1 in the approximating

sequence. In the final part of this paper, we give a new map Fα ,
1

2
≤ α ≤ 1, the α-Farey map

of the second type, which also induces the α-principal and the α-mediant convergents without
uα,n−1,cα,n−1

vα,n−1,cα,n−1
if εα,n+1 = −1.

2. The α-Farey maps and the α-mediant convergents

For a real number α,
1

2
≤ α ≤ 1, we put Jα =

[
α − 1,

1

α

]
. Define a map Gα of Jα by

Gα(x) =



− x

1 + x
if x ∈ [α − 1, 0) := Jα,1

x

1 − x
if x ∈

[
0,

1

1 + α

]
:= Jα,2

1 − x

x
if x ∈

(
1

1 + α
,

1

α

]
:= Jα,3 .

We note that G1 is the Farey map for the regular continued fractions. In this sense, Gα is a
generalization of the Farey map. We call this map the α-Farey map of the first type, because
we give a map which will be called the α-Farey map of the second type in the final part of this
paper.

In order to get the α-principal and the α-mediant convergents of x ∈ Jα by the iterations
of Gα, it is convenient to use the following matrices:

V− =
(−1 0

1 1

)
, V+ =

(
1 0
1 1

)
, U =

(
0 1
1 1

)
.
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Since

ax + b

cx + d
= u

v
with

(
u

v

)
=
(

a b

c d

)(
xz

z

)
for any real numbers x and z �= 0, we denote

A(x) = ax + b

cx + d
and A(−∞) = A(∞) = a

c
for A =

(
a b

c d

)
.

Hence, we can write

Gα(x) =


V −1− (x) if x ∈ Jα,1

V −1+ (x) if x ∈ Jα,2

U−1(x) if x ∈ Jα,3 .

Next, we put

Mn(x) :=


V− if (Gα)n−1(x) ∈ Jα,1

V+ if (Gα)n−1(x) ∈ Jα,2

U if (Gα)n−1(x) ∈ Jα,3 .

Then, we get a sequence of matrices

M1(x) , M2(x), · · ·
from the iterations of Gα for each x ∈ Jα. Here, all matrices Mn’s are of determinants ±1.
To investigate relationship between Tα and Gα, we need the following lemmas.

LEMMA 1.

(i)

(
0 1
1 t

)
=
(

1 0
1 1

)
· · ·
(

1 0
1 1

)
︸ ︷︷ ︸

t−1

(
0 1
1 1

)
= V+ · · · V+︸ ︷︷ ︸

t−1

U for t ≥ 1 .

(ii)

(
0 −1
1 t

)
=
(−1 0

1 1

)(
1 0
1 1

)
· · ·
(

1 0
1 1

)
︸ ︷︷ ︸

t−2

(
0 1
1 1

)
= V− V+ · · · V+︸ ︷︷ ︸

t−2

U

for t ≥ 2 .

LEMMA 2. Suppose that x ∈ Jα. If x ∈
[

− 1

j − 1 + α
,− 1

j + α

)
∪(

1

j + α
,

1

j − 1 + α

]
, then Gα(x) ∈

(
1

j − 1 + α
,

1

j − 2 + α

]
for j ≥ 2.
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We put

k0(x) := 0 and kn(x) := min{k > kn−1(x) : (Gα)k−1(x) ∈ Jα,3}, n ≥ 1 .

Next proposition shows that Tα is obtained as a jump transformation in the sense of F.
Schweiger, see [9].

PROPOSITION 1.

(Gα)k1(x)(x) = Tα(x) for x ∈ Iα = [α − 1, α] .

PROOF. If x ∈
(

1

j + α
,

1

j − 1 + α

]
∩ Iα , then by Lemma 2, we see

M1(x)M2(x) · · ·Mk1(x)(x) = V+ · · ·V+︸ ︷︷ ︸
j−1

U for j ≥ 1 . (2.1)

Hence, from Lemma 1, we have

(Gα)k1(x)(x) = U−1 V −1+ · · · V −1+︸ ︷︷ ︸
j−1

(x) =
(−j 1

1 0

)
(x) = −jx + 1

x
= Tα(x) . (2.2)

If x ∈
[

− 1

j − 1 + α
,− 1

j + α

)
∩ Iα , then by Lemma 2 again, we see

M1(x)M2(x) · · ·Mk1(x)(x) = V− V+ · · ·V+︸ ︷︷ ︸
j−2

U for j ≥ 2 . (2.3)

Thus, we also have

(Gα)k1(x)(x) = U−1 V −1+ · · · V −1+︸ ︷︷ ︸
j−2

V −1− (x) =
(

j 1
−1 0

)
(x) = Tα(x) . (2.4)

�

For any two numbers x and x ′ ∈ Iα , their α-continued fraction expansions are different
from each other since the expansions converge to x and x ′, respectively. Thus we have the
following.

COROLLARY 1.

(M1(x), M2(x), · · · ) �= (M1(x
′), M2(x

′), · · · ) whenever x �= x ′ ∈ Jα .

PROOF. Suppose that x �= x ′ ∈ Jα . If k1(x) �= k1(x
′) or Mi(x) �= Mi(x

′) for some
1 ≤ i ≤ k1(x), then the assertion is clear. So we assume that k1(x) = k1(x

′) and Mi(x) =
Mi(x

′) for 1 ≤ i ≤ k1(x). Then Lemma 2 implies that

x and x ′ ∈
[

− 1

k1(x) − 1 + α
, − 1

k1(x) + α

)
∪
(

1

k1(x) + α
,

1

k1(x) − 1 + α

]
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and

Gk1(x)
α (x) �= Gk1(x)

α (x ′) .

since G
k1(x)
α is a one-to-one map on

[
− 1

k1(x) − 1 + α
,− 1

k1(x) + α

)
∪
(

1

k1(x) + α
,

1

k1(x) − 1 + α

]
. Then we get sequences

Mk1(x)+1(x), Mk1(x)+2(x) , · · ·
and

Mk1(x)+1(x
′), Mk1(x)+2(x

′) , · · · .

Here we note that

Gk1(x)
α (x) ∈ Iα and Gk1(x)

α (x ′) = Gk1(x ′)
α (x ′) ∈ Iα .

By (2.1), (2.2), (2.3) and (2.4), the above sequences correspond to the α-continued fraction

expansions of G
k1(x)
α (x) and G

k1(x)
α (x ′), which are not the same. �

Finally we have the following theorem, which connects the map Gα to the α-mediant
convergents explicitly.

THEOREM 1. For x ∈ Iα , we have
(i) If l = kn(x), n ≥ 1,

M1(x)M2(x) · · ·Ml(x) =
(

pα,n−1 pα,n

qα,n−1 qα,n

)
(2.5)

(ii) If l = kn(x) + t, 1 ≤ t < cα,n+1, n ≥ 0,

M1(x)M2(x) · · ·Ml(x) =
(

uα,n,t pα,n

vα,n,t qα,n

)
(2.6)

PROOF. First, we show (2.5) by induction on n.
[I] n = 1

From (2.1), (2.2), (2.3) and (2.4), we have

M1(x)M2(x) · · ·Mk1(x)(x) =
(

0 εα,1

1 cα,1

)
=
(

pα,0 pα,1

qα,0 qα,1

)
.

[II] Suppose we have

M1(x)M2(x) · · ·Mkm(x)(x) =
(

pα,m−1 pα,m

qα,m−1 qα,m

)
and

(Gα)km(x)(x) = T m
α (x) =: y .
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Then, we see

Mkm(x)+1(x)Mkm(x)+2(x) · · ·Mkm+1(x)(x) = M1(y)M2(y) · · ·Mk1(y)(y)

since k1(y) = km+1(x) − km(x). Thus,

Mkm(x)+1(x) · · ·Mkm+1(x)(x) =
(

0 εα,1(y)

1 cα,1(y)

)
=
(

0 εα,m+1(x)

1 cα,m+1(x)

)
.

Hence, we have

M1(x)M2(x) · · ·Mkm+1(x)(x) =
(

pα,m−1 pα,m

qα,m−1 qα,m

)(
0 εα,m+1

1 cα,m+1

)
=
(

pα,m pα,m+1

qα,m qα,m+1

)
.

Moreover, we see that

(Gα)km+1(x)(x) = (Gα)km+1(x)−km(x)((Gα)km(x)(x)) = Tα(T m
α (x)) = T m+1

α (x) .

Consequently, we have

M1(x)M2(x) · · ·Mkn(x)(x) =
(

pα,n−1 pα,n

qα,n−1 qα,n

)
for any n ≥ 1 . (2.7)

Next, we prove (2.6). If (Gα)kn(x)(x) = T n
α (x) > 0, then εα,n+1(x) = 1, otherwise

εα,n+1(x) = −1. So by (2.7), we see that

M1(x)M2(x) · · ·Mkn(x)+t (x) =
(

pα,n−1 pα,n

qα,n−1 qα,n

)(
εα,n+1 0

1 1

)(
1 0
1 1

)t−1

=
(

pα,n−1 pα,n

qα,n−1 qα,n

)(
εα,n+1 0

t 1

)
=
(

uα,n,t pα,n

vα,n,t qα,n

)
for 1 ≤ t < cα,n+1. �

The following is a direct consequence of Theorem 1.

COROLLARY 2. We have

(M1(x)M2(x) · · ·Ml(x))(∞) =


pα,n−1

qα,n−1
if l = kn(x) , n ≥ 1

uα,n,t

vα,n,t

if
l = kn(x) + t ,

1 ≤ t < cα,n+1 , n ≥ 0 .

REMARK. In [3], the regular mediant convergents were obtained as

(M1(x)M2(x) · · ·Ml−1(x))(1) .
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3. The convergence of the approximation

In this section, we discuss the convergence of the α-mediant convergents to x. We put

xl = (Gα)l(x) for l ≥ 0 .

From the definitions of Gα and Mn in §2, we see that

x = (M1(x)M2(x) · · ·Ml(x))(xl) . (3.1)

First, we show the fundamental formulas concerning the error of the α-principal and the α-
mediant convergents to x.

PROPOSITION 2.
(i) If l = kn(x), n ≥ 1,

q2
α,n−1

∣∣∣∣x − pα,n−1

qα,n−1

∣∣∣∣ = 1∣∣∣∣xl −
(

− qα,n

qα,n−1

)∣∣∣∣ .

(ii) If l = kn(x) + t, 1 ≤ t < cα,n+1, n ≥ 0,

v2
α,n,t

∣∣∣∣x − uα,n,t

vα,n,t

∣∣∣∣ = 1∣∣∣∣xl −
(

− qα,n

vα,n,t

)∣∣∣∣ .

REMARK. We note that

(M1(x)M2(x) · · ·Ml(x))−1(∞) =


− qα,n

qα,n−1
if l = kn(x) , n ≥ 1

− qα,n

vα,n,t

if
l = kn(x) + t ,

1 ≤ t < cα,n+1, n ≥ 0 ,

see Theorem 1 .

PROOF. (i) If l = kn(x), n ≥ 1, from (3.1) and (2.5), we see that

q2
α,n−1

∣∣∣∣x − pα,n−1

qα,n−1

∣∣∣∣ = q2
α,n−1

∣∣∣∣pα,n−1xl + pα,n

qα,n−1xl + qα,n
− pα,n−1

qα,n−1

∣∣∣∣ = 1∣∣∣∣xl −
(

− qα,n

qα,n−1

)∣∣∣∣ .

(ii) From (3.1) and (2.6), we conclude the assertion by the same calculation. �

From this proposition, it is possible to show that the sequence of the α-mediant con-
vergents certainly converges to x. However, this convergence also follows from Theorem 2
below. To prove it, we need the following lemma.

LEMMA 3. For n ≥ 0, we have
(i) vα,n,1 > qα,n−1,

(ii) vα,n,t > (t − 1)qα,n for 2 ≤ t < cα,n+1.
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PROOF. If t ≥ 2, then

vα,n,t = t · qα,n ± qα,n−1 > (t − 1)qα,n ,

since qα,n is strictly increasing.
Suppose that t = 1. If εα,n+1 = −1, then either εα,n = −1 and cα,n ≥ 3 or εα,n = 1 and

cα,n ≥ 2 holds, see H. Nakada [5], p. 403. In the first case, we have

vα,n,t = qα,n − qα,n−1 ≥ 3qα,n−1 − qα,n−2 − qα,n−1 > qα,n−1 .

In the latter case,

vα,n,t = qα,n − qα,n−1 ≥ 2qα,n−1 + qα,n−2 − qα,n−1 > qα,n−1 .

This completes the proof of this lemma. �

From Proposition 2 (ii) and Lemma 3, we have the following theorem which implies the

convergence of
uα,n,t

vα,n,t

to x.

THEOREM 2. For n ≥ 0 and 1 ≤ t < cα,n+1, we have∣∣∣∣x − uα,n,t

vα,n,t

∣∣∣∣ <
1

qα,n · qα,n−1
.

PROOF. If l �= kn(x), we see xl > 0. From Proposition 2 (ii), we see∣∣∣∣x − uα,n,t

vα,n,t

∣∣∣∣ = 1

v2
α,n,t

1∣∣∣∣xl −
(

− qα,n

vα,n,t

)∣∣∣∣
= 1

vα,n,t

∣∣∣∣ 1

vα,n,t xl + qα,n

∣∣∣∣
= 1

vα,n,t

∣∣∣∣ 1

(t · qα,n + εα,n+1 · qα,n−1)xl + qα,n

∣∣∣∣
<

1

vα,n,t

· 1

qα,n .

Then from Lemma 3, we have the assertion of the theorem. �

The above theorem shows that

∣∣∣∣x−uα,n,t

vα,n,t

∣∣∣∣ is bounded by
1

q2
α,n−1

. However, next theorem

shows that v2
α,n,t

∣∣∣∣x − uα,n,t

vα,n,t

∣∣∣∣ is not bounded by any absolute constant.

THEOREM 3. We have the following:
(i) lim sup

1≤t<cα,n+1
n→∞

v2
α,n,t

∣∣∣∣x − uα,n,t

vα,n,t

∣∣∣∣ = ∞ (a.e. x) ,
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(ii) lim inf
1≤t<cα,n+1

n→∞
v2
α,n,t

∣∣∣∣x − uα,n,t

vα,n,t

∣∣∣∣ < 2 if cα,n+1 ≥ 2 occur infinitely often .

PROOF. Suppose cα,n+1 > 4M for any sufficiently large M . Let l = kn(x) + t , t =[
cα,n+1

2

]
. Since (Gα)kn(x)(x) = T n

α (x) and

[ ∣∣∣∣ 1

T n
α (x)

∣∣∣∣ ]
α

= cα,n+1, we see that

1

cα,n+1 + α
< |(Gα)kn(x)(x)| ≤ 1

cα,n+1 − 1 + α
.

Hence, from Lemma 2,

1

cα,n+1 −
[
cα,n+1

2

]
+ α

< xl ≤ 1

cα,n+1 − 1 −
[
cα,n+1

2

]
+ α

.

Thus we have

xl <
2

cα,n+1 − 4
. (3.2)

By Lemma 3 (ii), we have(
cα,n+1

2
− 2

)
qα,n <

([
cα,n+1

2

]
− 1

)
qα,n < vα,n,t

and so

qα,n

vα,n,t

<
2

cα,n+1 − 4
. (3.3)

From Proposition 2 (ii), (3.2) and (3.3), we have

v2
α,n,t

∣∣∣∣x − uα,n,t

vα,n,t

∣∣∣∣ ≥ 1∣∣∣∣ 2

cα,n+1 − 4
+ 2

cα,n+1 − 4

∣∣∣∣ = |cα,n+1 − 4|
4

> M − 1 .

By the ergodicity of Tα , there exist infinitely many such n’s for almost every x. On the other
hand, if we choose t = 1 with any n ≥ 0 such that cα,n+1 ≥ 2, we have

v2
α,n,1

∣∣∣∣x − uα,n,1

vα,n,1

∣∣∣∣ = 1∣∣∣∣xl −
(

− qα,n

vα,n,1

)∣∣∣∣ = 1∣∣∣∣xl + qα,n

qα,n ± qα,n−1

∣∣∣∣ <
qα,n ± qα,n−1

qα,n

< 2 ,

since xl > 0 and qα,n > qα,n−1. This completes the proof of the theorem. �

Recall xl = (M1(x)M2(x) · · ·Ml(x))−1(x). From the remark after Proposition 2, we see

that the explicit value of q2
α,n

∣∣∣∣x − pα,n

qα,n

∣∣∣∣ or v2
α,n,t

∣∣∣∣x − uα,n,t

vα,n,t

∣∣∣∣ is determined by the images of
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x and ∞ by (M1(x)M2(x) · · ·Ml(x))−1. This leads us to the notion of the natural extension
of Gα, which is defined in next section.

4. Natural extension of Gα

In this section, we discuss the distribution of v2
α,n,t

∣∣∣∣x − uα,n,t

vα,n,t

∣∣∣∣ using a 2-dimensional

map Ĝα, which is called the natural extension of Gα.

We define the map Ĝα of Ĵα as follows:

Ĵα =



[
α − 1,

1 − 2α

α

)
×
[

− ∞,−
√

5 + 3

2

]
∪
[

1 − 2α

α
, 0

)
× [−∞,−2] ∪ [0, α)

×[−∞, 0] ∪
[
α,

1 − α

α

)
×
[

−
√

5 + 1

2
, 0

]
∪
[

1 − α

α
,

α

1 − α

)
× [−1, 0]

∪
[

α

1 − α
,

1

α

]
×
[

−
√

5 − 1

2
, 0

]
if

1

2
≤ α ≤

√
5 − 1

2

[α − 1, 0) × [−∞,−2] ∪ [0, α) × [−∞, 0] ∪
[
α,

1

α

]
× [−1, 0]

if

√
5 − 1

2
≤ α ≤ 1

and

Ĝα(x, y) =



(
− x

1 + x
, − y

1 + y

)
if x ∈ Jα,1(

x

1 − x
,

y

1 − y

)
if x ∈ Jα,2(

1 − x

x
,

1 − y

y

)
if x ∈ Jα,3 .

From Proposition 2 (ii), we see that the deviation of the α-mediant convergent
uα,n,t

vα,n,t

from x

normalized by v2
α,n,t is equal to

∣∣∣∣ 1

xl − yl

∣∣∣∣ with (xl, yl) = Ĝα
l
(x, ∞), l = ∑n

i=1 ki(x) + t

for x ∈ Jα, 1 ≤ t < cα,n+1. A number of properties associated to the approximation by α-
mediant convergents are obtained by dynamical behaviors of this map. One of the important
applications which are obtained from the construction of Ĝα is the derivation of the density
function of the absolutely continuous invariant measure for Gα. In the rest of this section, the
most of proofs can be completed by routine calculation, and therefore, we will only sketch the
ideas involved.
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PROPOSITION 3. Ĝα is a one-to-one onto map of Ĵα modulo a set of Lebesgue measure
0.

PROOF. We put

Ĵα,i = {(x, y) ∈ Ĵα : x ∈ Jα,i} , i = 1, 2, 3

and

K̂α,i = Ĝα Ĵα,i , i = 1, 2, 3 .

It is easy to see the following:

case (i)
1

2
≤ α ≤

√
5 − 1

2

K̂α,1 =
[

0,
2α − 1

1 − α

]
× [−2,−1] ∪

[
2α − 1

1 − α
,

1 − α

α

]
×
[

−
√

5 + 1

2
, −1

]
,

K̂α,2 =
[

0,
α

1 − α

]
× [−1, 0] ∪

[
α

1 − α
,

1

α

]
×
[

−
√

5 − 1

2
, 0

]
,

K̂α,3 =
[
α − 1,

1 − 2α

α

]
×
[

− ∞,−
√

5 + 3

2

]
∪
[

1 − 2α

α
,

2α − 1

1 − α

]
× [−∞,−2]

∪
[

2α − 1

1 − α
, α

]
×
[

− ∞, −
√

5 + 1

2

]
.

case (ii)

√
5 − 1

2
≤ α ≤ 1

K̂α,1 =
[

0,
1 − α

α

]
× [−2,−1] ,

K̂α,2 =
[

0,
1

α

]
× [−1, 0] ,

K̂α,3 =
[
α − 1,

1 − α

α

]
× [−∞,−2] ∪

[
1 − α

α
, α

]
× [−∞,−1] .

Then we see

• Ĝα maps Ĵα,i to K̂α,i one-to-one and onto fashion,

• ⋃3
i=1 K̂α,i = Ĵα,

• the interiors of K̂α,i, i = 1, 2, 3, are disjoint from each other.

Hence, we have the assertion of this proposition. �

PROPOSITION 4. The measure µ̂α given by the density function ĥα(x, y) = 1

(x − y)2

is an invariant measure for Ĝα .
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PROOF. It is easy to check that

ĥα(Ĝα(x, y)) · | det(DĜα(x, y))| · ĥα
−1

(x, y) = 1 (a.e.) ,

which implies the assertion of this proposition, where det(DĜα(x, y)) denotes the determi-
nant of the Jacobian matrix DĜα(x, y). �

REMARK. ∫∫
Ĵα

ĥα(x, y)dxdy = ∞ .

THEOREM 4. The dynamical system (Ĵα, Ĝα, µ̂α) is ergodic.

PROOF. We put

Îα =



[
α − 1,

1 − 2α

α

)
×
[

− ∞,−
√

5 + 3

2

]
∪
[

1 − 2α

α
,

2α − 1

1 − α

)
×
[

− ∞,−2

]
∪
[

2α − 1

1 − α
, α

]
×
[

− ∞,−
√

5 + 1

2

]
if

1

2
≤ α ≤

√
5 − 1

2
,

[
α − 1,

1 − α

α

)
× [−∞,−2] ∪

[
1 − α

α
, α

]
× [−∞,−1] if

√
5 − 1

2
≤ α ≤ 1 .

It is not so hard to see that Îα is invariant under the map (x, y) �→ Ĝα
k1(x)

(x, y) and this

map is the induced transformation (Ĝα)Îα
of Ĝα . It is also possible to show that Ĝα

k1(·) is

isomorphic to the map T̂α of H. Nakada [5], via the isomorphism (x,w) �→ (x,− 1

w
). Since

T̂α is ergodic, so are (Ĝα)Îα
and Ĝα

k1(x)
(x, y) ∈ Îα for any (x, y) ∈ Ĵα. Then we have the

ergodicity of Ĝα from the ergodicity of (Ĝα)Îα
. �

REMARK. For the notion of the induced transformation and its ergodicity, we refer to
K. Petersen [8].

We put

hα(x) =
∫

{y:(x,y)∈Ĵα}
ĥα(x, y)dy .

Then, we have the following corollaries:

COROLLARY 3. The measure µα, which is defined by dµα(x) = hα(x)dx, is infinite
and Gα-invariant.

COROLLARY 4. The dynamical system (Jα,Gα,µα) is ergodic.

Next proposition shows that a number of “µ̂α-a.e. (x, y)” properties induce “µα-a.e. x”.
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PROPOSITION 5. For any (x, z) ∈ Ĵα, we put (xl, zl) = Ĝα
l
(x, z). Then we see

lim
l→∞ |zl − yl| = 0 ,

where (xl, yl) = Ĝα
l
(x,∞).

PROOF. For (x, z) ∈ Îα , it is possible to show that

lim
n→∞ |zkn(x) − ykn(x)| = 0 .

Then the rest of the proof is easy. �

By this proposition and the ratio ergodic theorem, we can get some metric properties of
the α-mediant convergents, which were given by Sh. Ito for the regular case, see [3]. However
we do not discuss them in detail. For basic facts on ergodic theory, we refer to K. Petersen
[8].

For example, we can get the following:
Put

ηl

ξl

:= (M1(x)M2(x) · · ·Ml(x))(∞) .

Then, for almost every x ∈ Iα , we have

�

{
n : 1 ≤ n ≤ N, ξ2

l

∣∣∣∣x − ηl

ξl

∣∣∣∣ < t

}
�

{
n : 1 ≤ n ≤ N, ξ2

l

∣∣∣∣x − ηl

ξl

∣∣∣∣ < t ′
} = t

t ′
for any 0 < t, t ′ ≤ cα ,

where

cα =



α√
5 − 1

2
− α + 1

if
1

2
≤ α ≤ α∗

1 − α if α∗ < α ≤
√

5 − 1

2
α

1 + α
if

√
5 − 1

2
< α < 1

1 if α = 1

and α∗ is the unique positive root of α2 + √
5α −

√
5 − 1

2
= 0.

5. Some properties of the α-mediant convergents

The aim of this section is to describe relations between the α-mediant convergents and
the regular mediant convergents. At first, we give a coding method which translates the α-
continued fraction expansion of x to the regular continued fraction expansion of x (if 0 ≤
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x ≤ α) or 1 + x (if α − 1 ≤ x < 0).

We suppose that

x = εα,1

cα,1
+ εα,2

cα,2
+ εα,3

cα,3
+ · · · for x ∈ Iα

and

x = 1

a1
+ 1

a2
+ 1

a3
+ · · · if 0 ≤ x ≤ α

or

1 + x = 1

a1
+ 1

a2
+ 1

a3
+ · · · if α − 1 ≤ x < 0 .

We put ln = ln(x) := �{1 ≤ k ≤ n : εα,k(x) = −1}. Note that l1 = 1 and a1 = 1 if x < 0
(equivalently εα,1 = −1).

LEMMA 4.
(i) an+ln = cα,n and ln+1 = ln if (εα,n, εα,n+1) = (1, 1)

(ii) an+ln = cα,n − 1, an+ln+1 = 1 and ln+1 = ln + 1 if (εα,n, εα,n+1) = (1,−1)

(iii) an+ln = cα,n − 1 and ln+1 = ln if (εα,n, εα,n+1) = (−1, 1)

(iv) an+ln = cα,n − 2, an+ln+1 = 1 and ln+1 = ln + 1 if (εα,n, εα,n+1) = (−1,−1)

PROOF. The assertions follow from a discussion in §3, [6]. �

This lemma implies that we can determine a1, · · · , an+ln when (εα,1, cα,1), · · · ,
(εα,n, cα,n) are given and, moreover, an+ln+1 = 1 if εα,n+1 = −1. Now we see that the
following repetition of a rational number occurs in the sequence of the α-mediant convergents
and such a rational number is a regular principal convergent.

PROPOSITION 6. Suppose that x ∈ Iα and εα,n+1(x) = −1, then we have

uα,n,1(x)

vα,n,1(x)
= uα,n−1,cα,n−1(x)

vα,n−1,cα,n−1(x)
= pn+ln (x)

qn+ln(x)
.

PROOF. We note that if cα,n = 1, then εα,n+1 = 1. In other words, εα,n+1 = −1
implies cα,n ≥ 2. From the definition (1.2), we see

uα,n,1

vα,n,1
= 1 · pα,n − pα,n−1

1 · qα,n − qα,n−1

= cα,npα,n−1 + εα,npα,n−2 − pα,n−1

cα,nqα,n−1 + εα,nqα,n−2 − qα,n−1

= (cα,n − 1)pα,n−1 + εα,npα,n−2

(cα,n − 1)qα,n−1 + εα,nqα,n−2
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= uα,n−1,cα,n−1

vα,n−1,cα,n−1
.

Hence, we have the first equality of the assertion.
Next, we consider the second equality. We only show it in the case of 0 ≤ x ≤ α. For

α − 1 ≤ x < 0, the proof is essentially the same since
pn(1 + x)

qn(1 + x)
= pn(x)

qn(x)
+ 1. By using

Lemma 4, we have

pα,n

qα,n

=


pn+ln

qn+ln

if εα,n+1 = 1

pn+ln+1

qn+ln+1
if εα,n+1 = −1 .

(5.1)

In particular, if εα,n+1 = −1, then an+ln+1 = 1 and{
pn+ln+1 = pn+ln + pn+ln−1

qn+ln+1 = qn+ln + qn+ln−1 .
(5.2)

On the other hand, by (5.1),

pα,n−1

qα,n−1
= pn−1+ln

qn−1+ln

, (5.3)

since ln = ln−1 if εα,n = 1 and ln = ln−1 + 1 if εα,n = −1, respectively. Hence, from (5.1),
(5.3) and (5.2), we have

uα,n,1

vα,n,1
= pα,n − pα,n−1

qα,n − qα,n−1
= pn+ln+1 − pn+ln−1

qn+ln+1 − qn+ln−1
= pn+ln

qn+ln

.

�

Next theorem explains how the α-mediant convergents of level n correspond to the reg-
ular mediant and the regular principal convergents.

THEOREM 5. Suppose that x ∈ Iα . The set of the α-mediant convergents of level n

coincides with the following:
(i) the set of the regular mediant convergents of level n+ln(x)+1 and the (n+ln(x))th

regular principal convergents if (εα,n+1, εα,n+2) = (−1, 1)

(ii) the set of the regular mediant convergents of level n + ln(x) + 1, the (n + ln(x) −
1)th regular principal convergents and the (n + ln(x) + 2)th regular principal convergents if
(εα,n+1, εα,n+2) = (−1,−1)

(iii) the set of the regular mediant convergents of level n + ln(x) if (εα,n+1, εα,n+2) =
(1, 1)

(iv) the set of the regular mediant convergents of level n+ln(x) and the (n+ln(x)+1)th
regular principal convergents if (εα,n+1, εα,n+2) = (1,−1)
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PROOF. (i) We assume x ≥ 0. If εα,n+1 = −1 and εα,n+2 = 1, then from (5.1), (5.3)
and (5.2), we have

uα,n,t = t · pα,n − pα,n−1

= t · pn+ln+1 − pn+ln−1

= t (pn+ln + pn+ln−1) − pn+ln−1

= un+ln+1,t−1

and

vα,n,t = vn+ln+1,t−1

for 2 ≤ t < cα,n+1 = an+ln+2 + 1. In the case x < 0, we use
pm(1 + x)

qm(1 + x)
= pm(x)

qm(x)
+ 1 and

get the same conclusion. Thus

uα,n,t

vα,n,t

= un+ln+1,t−1

vn+ln+1,t−1
for 2 ≤ t < an+ln+2 + 1 .

For t = 1, by Proposition 6,

uα,n,1

vα,n,1
= pn+ln

qn+ln

.

Consequently, we have{
uα,n,t

vα,n,t

: 1 ≤ t < cα,n+1

}
=
{

pn+ln

qn+ln

}
∪
{

un+ln+1,t−1

vn+ln+1,t−1
: 2 ≤ t < an+ln+2 + 1

}
.

This completes the proof of the assertion (i). (ii), (iii) and (iv) follow in the same way. �

As a corollary of Theorem 5, we claim that the set of the α-principal and the α-mediant
convergents coincides with the set of the regular principal and the regular mediant conver-
gents.

COROLLARY 5. For any α,
1

2
≤ α < 1 and x ∈ Iα ,

{
pα,n(x)

qα,n(x)
: n ≥ 1

}
∪
{

uα,n,t (x)

vα,n,t (x)
: 1 ≤ t < cα,n+1, n ≥ 0

}
=
{

pn(x)

qn(x)
: n ≥ 1

}
∪
{

un,t (x)

vn,t (x)
: 1 ≤ t < an+1, n ≥ 0

}
.

PROOF. The only regular principal convergents which are not α-principal convergents

are
pn+ln

qn+ln

with εα,n+1 = −1. However, these are α-mediant convergents, see Proposition 6.

Since an+ln+1 = 1, there is no regular mediant convergent of level n + ln when εα,n+1 = −1.
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Other mediant convergents are α-mediant convergents because of Theorem 5. Indeed, the
α-mediant convergents of level n include the regular mediant convergents of level n + ln + 1
if εα,n+1 = −1. In this case, ln+1 = ln + 1. Then the next mediant convergent level is
(n + 1) + ln+1. The same holds for the case εα,n+1 = 1 (then ln+1 = ln). This completes the
proof of this corollary. �

Finally we construct a map Fα which we call the α-Farey map of the second type. By

this map Fα , we can also get the sequence of the α-mediant convergents without
uα,n−1,cα,n−1

vα,n−1,cα,n−1

associated to εα,n+1 = −1, that is, without the repetition which was stated in Proposition 6.

We put Jα = [α − 1, 1] for
1

2
≤ α ≤ 1 and define a new map Fα of Jα by

Fα(x) =



V −1− (x) = − x

1 + x
if x ∈ [α − 1, 0) =: Jα,1

V −1+ (x) = x

1 − x
if x ∈

[
0,

1

2

)
=: Jα,2

(V+U)−1(x) = 1 − 2x

x
if x ∈

[
1

2
,

1

1 + α

]
=: Jα,3

U−1(x) = 1 − x

x
if x ∈

(
1

1 + α
, 1

]
=: Jα,4 .

Similarly as in §2, we put

Mn(x) :=



V− if (Fα)n−1(x) ∈ Jα,1

V+ if (Fα)n−1(x) ∈ Jα,2

V+ U if (Fα)n−1(x) ∈ Jα,3

U if (Fα)n−1(x) ∈ Jα,4

and {
k∗

0(x) := 0 ,

k∗
n(x) := min{k > kn−1(x) : (Fα)k−1(x) ∈ Jα,3 ∪ Jα,4}, n ≥ 1 .

This means that we abbreviate V+UV− to (V+U)V− and get a new sequence M1(x),

M2(x), · · · from M1(x),M2(x), · · · . Then it is easy to see the following.

THEOREM 6. For x ∈ Iα ,

M1(x)M2(x) · · ·Ml(x)
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=



(
pα,n−1 pα,n

qα,n−1 qα,n

)
if l = k∗

n(x), n ≥ 1

(
uα,n,t pα,n

vα,n,t qα,n

)
if

l = k∗
n(x) + t, n ≥ 0

with

{
1 ≤ t < cα,n+1 if εα,n+1 = 1

1 ≤ t < cα,n+1 − 1 if εα,n+1 = −1 .

Thus we see that
uα,n−1,cα,n−1

vα,n−1,cα,n−1
is removed whenever εα,n+1 = −1 by this abbreviation.

The author will discuss the α-Farey map of the second type from the ergodic theoretic
point of view in [7].
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