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1. Introduction

For an irrational number x € (0, 1), if a non-zero rational number E, (p, q) = 1, satisfies
q

1
x — Pl 277 then it is the nth regular principal convergent P for some n > 1. Here, the
q q qn
nth regular principal convergents are defined by the regular continued fraction expansion of
X:
1] 1
X=—+—+—+
o o s
We put
p-1=p-1(x)=1, po=pox) =0
g-1=9-1x) =0, go=qolx) =1
and
Pn = Pn(X) =@y - pp—1 + Pn—2 for n>1.
Gn = qn(X) = an - gn—1 + Gn-2
Then it is well-known that
1 1 1
4n |a1 |az |an

If x € [k,k + 1) for an integer k, we define its nth regular principal convergent by
Pn(x — k) k:pn(x_k)+k'Qn(x_k)
gn(x — k) gn(x — k) '
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1
< —, which is not the

P
q%

For some x € (0, 1), there exists L with (p,q) = 1 and
q

nth regular principal convergent for any n > 0. However, we can find such a fraction L in
q

the set { Pn — Pn—1 , Pn + Pn-1 n > 1}. This leads us to the notion of the regular mediant
dn —4qn-1  qn T qn—1
convergents of level n, @, which is defined by
Un,t

=1- _
{un’t Pt Pnl for 1<t<auy;, n>0.

Unt =1 qn+ qn-1
The regular principal and the regular mediant convergents are obtained by the following maps
T and F of [0, 1], which are called the Gauss map and the Farey map, respectively, see [2]:
1 1 )
——[—} if xe(0,1]
T(x)=1"* X
0 if x=0

1
x if xelo, =
1—x 2

1—x 1
if e|=, 1],

where [y] = nif y € [n,n 4+ 1). We get the coefficients of the regular continued fraction
expansion of x € [0, 1] by

(1.1)

and

F(x) =

an = ap(x) = [(T" '™, n>1.

We refer to Sh. Ito [3] on the relation between F' and the regular mediant convergents. In this
paper, we generalize the notion of the mediant convergents to the continued fraction expansion
introduced by H. Nakada [5], which are called the «-continued fraction expansion. The «-
continued fraction expansion is a generalization of the regular continued fraction expansion

1
and is induced by the following map T, of Iy = [a — 1, «] for 3 <a<l:

d

0 if x=0,

1

X

1

X

i| if x e I, \ {0}
To(x) = o

where [y], =n if y € [n — 1+ «, n+ «). We note that 77 is the Gauss map. Forn > 1,
put

Ean = 8a,n(x) = sgn To:l_l(x) s
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1
T2 (x)

Can = Can(x) = [ H (or=o00 if T/ '(x)=0).

Then we have the a-continued fraction expansion of x € I:

Ea,l | a2 | a3 |

s Coc,n21~

| Ca,1 | Ca,2 | Ca,3

Next for n > 1, we define the nth «-principal convergents Do by

qa,n
Pa—-1=1, pao=0 and Pan = Can * Pan—1 + Ean * Pa,n—2
qo,—1 = 0, qo,0 = 1 da.n = Can * Gan—1 + Ean " Ga,n—2 -

We note that the {gq 5} is strictly increasing, see [5]. Also we define the o-mediant conver-

U, n,t

gents of level n > 0, { t1l<t< Coc,n—i—l}v by

Vo, n,t

Ui =1 Pan + Eantl * Pan—1
on an TS ntl T oo for 1<t < Canil. (1.2)

Va,n,t =1 Gan + Ean+l " dan—1
1
In §2, we define a new map G for each «, 3 < «a < 1 and show how G, induces the

sequence of the «-principal and the o-mediant convergents. We call G, the a-Farey map of
the first type. We note that G, is the same as F in the above if « = 1. Our idea for getting the
mediant convergents is slightly different from the one in [3]. In §3, we give some estimates on

Uan,t S .
the error term of the convergence of —2%% to x € L. The first assertion is its upper estimate:

Va,n,t
Ug,n,t 1
X — .
Va,n,t da,n " 9a,n—1
. Ug,n,t . .
This shows that ——— converges to x. The second assertion is
Va,n,t
. 2 Ugn|
limsup vy, ,|x — ——| =00 (ae),
1<t<cy pt1 Va,n,t
n—oo
though
L 2 Ug,n,t . . .
liminf v}, |x — <2 if c¢q,n > 2 occurinfinitely often.
Ist<cy pt1 T UO{,l’l,l‘
n—0oo

This means that we can not give any estimates after the normalization by the square of the
denominator. For the asymptotic behavior of the values

2 Ua,n,t

a,n,t

v , (1.3)

Va,n,t
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we give a 2-dimensional map G, which we call the “natural extension” of G in §4. By this
map, we can discuss the distribution of (1.3) for almost every x by using the ratio ergodic theo-
rem. In §5, we describe a relation between the «-mediant convergents and the regular mediant
convergents. Actually, we show that the set of the «-principal and the «-mediant convergents
coincides with the set of the regular’s. K. Dajani and C. Kraaikamp [1] showed that Lehner
fractions induce the set of the regular principal and the regular mediant convergents. They
also showed that this set includes all principal convergents arising from S-expansions, see
[4] for the definition of S-expansions. In this sense, they called this set “the mother of all
semi-regular continued fractions”. Our claim is that we can construct the “mother” from any

. . 1 . . . .
«-continued fractions, 3 < a < 1, by producing the ¢-mediant convergents. Incidentally, it
is easy to see that

ua,n,l ua,nflgca,nfl .
= if eqnt1=-1.
Va,n, 1 Va,n—1,c4.n—1

This means that one rational number appears twice when &4 ,+1 = —1 in the approximating

1
sequence. In the final part of this paper, we give a new map Fy, 2 < «a < 1, the a-Farey map

of the second type, which also induces the «-principal and the «-mediant convergents without

Ug,n—1,cqn—1 .
—— ifeg el = —1.
Va,n—1,c4n—1

2. The «-Farey maps and the «-mediant convergents

1

1
For a real number «, 3 <a<l,weput]y, = [a -1, —i|. Define a map G of J4 by
o

T if xela—1,0):=Ju1

X

. 1
Gy(x) = 1 —x if xe |:0, 1+_Oli| = Ja,2

1—x . 1 1
if xE( —} =Ju3-

X l+a o

We note that G is the Farey map for the regular continued fractions. In this sense, G is a
generalization of the Farey map. We call this map the «-Farey map of the first type, because
we give a map which will be called the a-Farey map of the second type in the final part of this
paper.

In order to get the a-principal and the «-mediant convergents of x € J, by the iterations
of G, it is convenient to use the following matrices:

~1 0 10 0 I
c= () () =)
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ax +b u . u a b\ (xz
= — with =
cx+d v v c d z

for any real numbers x and z # 0, we denote

Since

b
Alx) = ax —+
cx +d

and A(—oo):A(oo):% for A:(‘C’ b).

Hence, we can write
V') if x e Jo
Go(x)={ V') if x€lan
U l'(x) if xelus.
Next, we put
Vo if (Ga)" () € Ja
My(x) ==V, if (Go)" '(x) € Ju2
U if (Go)" () €Jas.
Then, we get a sequence of matrices
Mi(x), Mr(x), -

from the iterations of G, for each x € J,. Here, all matrices M,,’s are of determinants +1.
To investigate relationship between 7, and G, we need the following lemmas.

LEMMA 1.

t—2
t—2
for t>2
1 1
LEMMA 2. Suppose that x € J,. If x € — - , == U
j—l4+a jH+a

1 1 1 1
) , then G € , j > 2.
(j+a j—1+a} e Gu) <j—1+a j—2+a}f0”
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We put
ko(x) ;=0 and k,(x) :=min{k > k,—1(x) : (Ga)kfl(x) €lJos}l, n>1.

Next proposition shows that 7, is obtained as a jump transformation in the sense of F.
Schweiger, see [9].

PROPOSITION 1.
(G 1 (x) = Ty(x) for xely=la—1,al].
1
j4a j—1+a
Mi(X)Mp(x) - My, 0y (x) = Vi --- Vo U for j>1. 2.1)
—_———

PrROOF. Ifx e < i| N Iy, then by Lemma 2, we see

J=1

Hence, from Lemma 1, we have

1, _ —-j 1 —jx+1
(%Wmm=ulw*~wwm=(ﬁ()m=————=nm. 22)
— X
j—1
1 .
Ifx e [— - s = ) N I, then by Lemma 2 again, we see
j—1l4+a j+o
Mi(x)Ma(x) - My, (xy(x) = V_Vi--. VLU for j=>2. (2.3)
———
j-2
Thus, we also have
GOy =v vl vitviie = < / 1) (x) = Ty(x). 2.4)
_ -1 0

j—2
O

For any two numbers x and x” € I, their a-continued fraction expansions are different
from each other since the expansions converge to x and x’, respectively. Thus we have the
following.

COROLLARY 1.
(My(x), Ma(x), ---) # (M (x"), Ma(x), ---) whenever x * x'ely.

PROOF. Suppose that x # x" € J. If kj(x) # k1 (x") or M;(x) # M;(x") for some
1 < i < ki(x), then the assertion is clear. So we assume that k;(x) = k;(x’) and M;(x) =
M;(x") for 1 <i < kj(x). Then Lemma 2 implies that

1 1 1 1
xandx'e[— , — )U( , j|
kx) —1l4+a k() +a ki(x) +a ki(x) -1+«
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and
G]o(z](X)(x) # G]O((I(X)(x/)'

. ki(x) |: 1 1 ) ( 1
since Gg is a one-to-one map on | — , — ul——,

kkx)—1+a kkx)+a ki(x) + «a

1
—— |. Then we get sequences
kl(x)—1+a] we get seqd
My, o)1 (%), My (xy+2(x) , - -+

and

My o1, Mgy 2(x) -+
Here we note that
Gh®M(x)el, and GHW() =G ) el,.
By (2.1), (2.2), (2.3) and (2.4), the above sequences correspond to the a-continued fraction
expansions of G]é' (x)(x) and G]é' (X)(x/ ), which are not the same. O

Finally we have the following theorem, which connects the map G, to the a-mediant
convergents explicitly.

THEOREM 1. Forx €1, we have

) Ifl=kn(x), n=1,

My (x)Ma(x) - - Mj(x) = (”“*"‘1 ”) (2.5)

qa.n—1  Ya,n

) Ifl=ki(x)+1, 1 <t <cany1, n=20,

Mi(x)Ma(x) -+ Mj(x) = <Z“’"” pa’”) (2.6)

a.n,t  Ya,n

PROOF. First, we show (2.5) by induction on n.
M n=1
From (2.1), (2.2), (2.3) and (2.4), we have

Mi(x)Mo(x) -+ - My, (x)(x) = ((1) 8a,1> _ <poz,0 Pa,l) .

Ca,l1 qa,0 Yo,
[II] Suppose we have

Pa,m—1 pa,m)

Mi(x)M2(x) - - - My, (x)(x) = <
qa,m—1  YGa,m

and

(G ™ (x) = T (x) =: y.



94 RIE NATSUI

Then, we see

My, 0)+1(X) Mp,, 0y +2(X) -+ M, (0 () = My () Ma(y) -+ - My, (3)(Y)

since k1(y) = km+1(x) — kpy (x). Thus,

0 &q1() 0 egmt1(x)
Mkm(X)+1(x)”'Mkn1+l(x)(x) = (1 CZ l(y) = 1 CZ :J,_l(.x) .
Hence, we have

_ 0
My ()Mo (x) - - 'Mk,,H_](x)(X) _ (Pa,m 1 pa,nz) < 8a,m+]) — <poz,m Pa,m+]) )

da,m—1  YGoa,m 1 Ca,m+1 da,m  YGo,m+1
Moreover, we see that
(Ga)k”’+](x)(x) — (Ga)k’"""(x)_k’"(x)((Ga)k’"(x)(x)) — Ta(Tofn (x)) = Tofn+l(x) )

Consequently, we have

M](x)Mg(x)~~Mkn(x)(x)=<pa’n_l ”“’") forany n> 1. 2.7)
qa,n—1 YGa,n

Next, we prove (2.6). If (G @ (x) = T (x) > O, then &4,,41(x) = 1, otherwise
€a.nt+1(x) = —1. So by (2.7), we see that

—1
MM+ My sa) = (Pt P (Coet ) (1 O>t
n qan—1 Ya,n 1 1 I 1

_ (Pa,nl pa,n) <8a,n+l O)
dan—1 Ya,n t 1
_ (ua,n,t pa,n)
Va,n,t Ya,n
forl <t < conti- O

The following is a direct consequence of Theorem 1.

COROLLARY 2. We have

Panzl i I =ky()n = 1
qa,n—1
MM = MENE) =1
if
Va,n,t I <t<cygnt1, n=>0.

REMARK. In [3], the regular mediant convergents were obtained as

(M1 (x)Ma(x) - - - Mi—1(x))(1) .
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3. The convergence of the approximation
In this section, we discuss the convergence of the o-mediant convergents to x. We put
x1 = (Go)l(x) for [>0.
From the definitions of G, and M, in §2, we see that
x = Mi(x)Ma(x) - - - My(x)) (x1) - (3.1

First, we show the fundamental formulas concerning the error of the «-principal and the «-

mediant convergents to x.

PROPOSITION 2.
@) Ifl=ky(x), n>1,
1

< ’— )‘ |
] — _
qa,n—1

(i) Ifl=ko(x)+1t, 1 <t <cqgny1, 1 >0,

Pa,n—1
qo,n—1

X —

2
qa,n—l

vz _ Ugn|
amt Va,n,t ( qa,n )‘ ’
x—\| —
Va,n,t
REMARK. We note that
— Ao = k() 0>
qa,n—1
Mi(x)Ma(x)--- M;(x o) =
MM MO =Y m
Va,n,t I <t<cygps1, n=>0,

see Theorem 1.

PROOF. (i) Ifl =k,(x), n > 1, from (3.1) and (2.5), we see that

612 Y — Pan—1| CI2 Pa,n—1X1 + Pan _ Pan-1] 1
on-l Ga,n—1 on—1 Goa,n—1X1 + Ga.n Ga,n—1 X — (_ Ja.n )‘ '
Ja,n—1
(i) From (3.1) and (2.6), we conclude the assertion by the same calculation. ]

From this proposition, it is possible to show that the sequence of the o-mediant con-
vergents certainly converges to x. However, this convergence also follows from Theorem 2
below. To prove it, we need the following lemma.

LEMMA 3. Forn > 0, we have

) Va,n,1 = qa,n—1,
(ii) Va,n,t > (e I)Qa,n for 2 <1t < Co,n+1-
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PROOF. If ¢t > 2, then
Vant =1 Gan £qan-1> = Dgan,
since g, p is strictly increasing.
Suppose that ¢ = 1. If g4, 541 = —1, theneither g, , = —1l and ¢y n > 3 0Or 8¢, = 1 and
Ca.n > 2 holds, see H. Nakada [5], p. 403. In the first case, we have
Van,t = Gan — Gan—1 = 3qan—1 — Gan—2 — Gan—1 > Ga,n—1 -
In the latter case,
Va,n,t = qan — Gan—1 = 2qa,n—1 + Gan—2 — Gan—1 > Gan—1 -
This completes the proof of this lemma. a
From Proposition 2 (ii) and Lemma 3, we have the following theorem which implies the

Ug,n,t
convergence of ———

Vo, n,t

tox

THEOREM 2. Forn >0and1 <t < cy nt1, we have

1

qa,n * a,n—1

Ug,n,t
X —

Vo, n,t

PROOF. Ifl # k,(x), we see x; > 0. From Proposition 2 (ii), we see

‘ Ua,n,t 1 1
X 2
Va,n,t Va.n.t X — <_ qa,n )‘
Vo, n,t
1 1
Va,n,t | Va,n,t Xl + qa,n
1 1
Vo,n,t (t- qan + Ean+l - Qa,nfl)xl + Ga.n
1 1
< .
Va,n,t Ya.n-
Then from Lemma 3, we have the assertion of the theorem. O
Ua,n,t | .
The above theorem shows that [x — ——" | is bounded by 5 . However, next theorem
Va,n.t Qon—1
2 Uan,t | .
shows that v; , ,|x — ——=| is not bounded by any absolute constant.
Y Va,n,t

THEOREM 3. We have the following:

Ug,n,t
X —
Va,n,t

2

an.t =00 (a.e.x),

(i) limsup v

l§t<ca,”+1
n—00
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.. . Uan,t
@il)  liminf v2 ot

o,n,t x =
I<t<cy p+1
n—>00

<2 if cant1 = 2 occur infinitely often.

Vo, n,t

PROOF. Suppose ¢y n+1 > 4M for any sufficiently large M. Letl = k,(x) +¢, ¢t =

[CO";H i| Since (Ge)* ™ (x) = T (x) and [

i| = Ca.n+1, We see that
o

T} (x)
L G < —
Can+l T+ Cant1 — 1 +a
Hence, from Lemma 2,
1 1
< x <
c c
Can+l — [ a);+]i| + Can+l1 — 1— [%H} +
Thus we have
2
X< —. 3.2)
Ca,n+1 — 4

By Lemma 3 (ii), we have

(55 o ([=5] J

2
Jon . (3.3)

Va,n,t Can+1 — 4

and so

From Proposition 2 (ii), (3.2) and (3.3), we have

2 Ua,n,t

o,n,t

1 _ Ica,n+] — 4 -
2 2 ‘ - 4

Ca,n+1 — 4 Can+1 — 4

v X — > M—1.

Va,n,t

By the ergodicity of T, there exist infinitely many such »’s for almost every x. On the other
hand, if we choose t = 1 with any n > 0 such that ¢4 ,+1 > 2, we have

2 Ug,n,1 1 1 qa,n + qa,n—1
Va,n, 1% — = = < <2,
" Va,n,1 qa,n qo,n qan
x—1 - X+ —
Va,n,1 qo,n + qa,n—1
since x; > 0 and qgo,n > ga,n—1. This completes the proof of the theorem. O

Recall x; = (M (x)Mz(x) - - - M;(x)) " (x). From the remark after Proposition 2, we see
Pa,n

qa.n

2 Ug,n,t

X = o,n,t

that the explicit value of qé)n orv X — is determined by the images of

Vo, n,t
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x and 0o by (M (x)M>(x) - -- M;(x))~!. This leads us to the notion of the natural extension
of G, which is defined in next section.

4. Natural extension of G,

In this section, we discuss the distribution of vZ , ,

Uq,n,t
x —
Va,n,t

using a 2-dimensional

map (/};, which is called the natural extension of G.

We define the map C/}; of j; as follows:

[a—l,l_za)x[—m,—ﬁ+3i|u|:1_2a,0)x[—oo,—Z]U[O,oz)
o 2 o

x[-oo,O]u[a,l_“)x[—*/gﬂ,o}u[l_“, * >x[—1,0]

o 2 o l—«
j;= U|: « ,li|x|:—ﬁ_l,01| if lfafﬁ_l

l—o o 2 2 2
[a —1,0) x [—00, —=2] U [0, @) x [—00, 0] U [a, l} % [—1,0]
o

if ‘/52_150451

and
X y .
- , fxe
< 14+x 1+y) it x € Ja
o~ X .
Gatr,yy =4 (22—, 2 if x € Jun
1—x 1—y
1— 1—
< x,—y> if x € Jas.
x y

From Proposition 2 (ii), we see that the deviation of the o-mediant convergent S from x
Va,n,t

with (17, y1) = Gg (x, 00), 1 = Y7 ki(x) + ¢

. 2 .
normalized by vy , , 1s equal to

forx € Ju,1 <t < can+1.- A number of properties associated to the approximation by «-
mediant convergents are obtained by dynamical behaviors of this map. One of the important
applications which are obtained from the construction of G is the derivation of the density
function of the absolutely continuous invariant measure for G. In the rest of this section, the

most of proofs can be completed by routine calculation, and therefore, we will only sketch the
ideas involved.
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PROPOSITION 3. é; is a one-to-one onto map of J,, modulo a set of Lebesgue measure

PROOF. We put
Joi={, el xelui}, i=123

and
Koi=GCoalJai. i=1273.

It is easy to see the following:

1 V51
case (i) —<a <
2 2
_ [ 20 —1 20—1 1-— 541
KO{1: 01 * X[_zv_l]u ¢ ) a X _\/_+ 1_1 )
| -« l—«a o 2
_ i 1 5—-1
KO{2: 01 X[_I,O]U a , — | X _\/_ 70 )
L -« l—a « 2
_ i 1-2 543 1 —20 2a-—1
Kos=|a—1, %1 x —oo,—“/—Jr U i x [—00, —2]
' L o 2 o -«
20— 1 V541
U ,o| x| —o0, — .
l—«o 2
5—-1
case (ii) \/_2 <a<l
_ l —«
KO{,] = 01 X [_27_1]7
L o
_— o1
K2 =10, —| x[-1,0],
| o
_— i 1l —«a l —«
Koz =|a—1, X [—o0, —2] U ,o| x[—o0, —1].
o
Then we see
° f}; maps .i; to IZ:, one-to-one and onto fashion,
o U?=1 Ko:,i =Ju,
o the interiors of K ;, i = 1, 2, 3, are disjoint from each other.
Hence, we have the assertion of this proposition. O

PROPOSITION 4. The measure fig given by the density function he(x, y) = e
X =y
is an invariant measure for é;
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PROOF. It is easy to check that
o~ e~ —_ ~ —1
ha(Ga(x,y)) - [det(DGo(x, )| - he (x,y) =1 (ae.),

which implies the assertion of this proposition, where det(D(/};(x, y)) denotes the determi-
nant of the Jacobian matrix Dé; (x, y). O

//A /;;(x, y)dxdy = 0.
Jo

THEOREM 4. The dynamical system (j;, é;, Ila) is ergodic.

REMARK.

PROOF. We put

1 -2« V543 1 —2a 2a—1
o —1, X | — o0, — U , X | —o0,—2
o 2 o l —«
_ 200 — 1 V541 1 V5-1
I = U ,a| X | —o0, — if —<ac< ,
o l -« 2 2 2
1— 1— 5—1
|:a_1’_a>x[—oo,—2]u[ a,a:|x[—oo,—l] if V5 <ac<l.
o o 2
It is not so hard to see that f; is invariant under the map (x, y) C/};kl (x)(x, y) and this

map is the induced transformation (é:‘)fa of C/}; It is also possible to show that (/?;k‘(') is

P 1
isomorphic to the map 7, of H. Nakada [5], via the isomorphism (x, w) +— (x, ——). Since
w

e y) e I, for any (x, y) € Jo. Then we have the

T; is ergodic, so are (C/};)f‘y and C/?;
ergodicity of C/?; from the ergodicity of (é;)f;' O

REMARK. For the notion of the induced transformation and its ergodicity, we refer to
K. Petersen [8].

We put
e (2) =/ )y,
{y:(x,y)elal
Then, we have the following corollaries:

COROLLARY 3. The measure |y, which is defined by djy(x) = hy(x)dx, is infinite
and G y-invariant.

COROLLARY 4. The dynamical system (Jo, Gy, o) is ergodic.

Next proposition shows that a number of “Iig-a.e. (x, y)” properties induce “uq-a.e.x”.
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PROPOSITION 5. Forany (x,z) € j;, we put (x1, 1) = (/?;l(x, z). Then we see

lim |z; — 1| =0,
[— 00

where (x, y) = @l(x, 00).
PROOF. For (x, z) € f; it is possible to show that
m 12k, 0 = Yk, 0l = 0.
Then the rest of the proof is easy. |

By this proposition and the ratio ergodic theorem, we can get some metric properties of
the «-mediant convergents, which were given by Sh. Ito for the regular case, see [3]. However
we do not discuss them in detail. For basic facts on ergodic theory, we refer to K. Petersen
[8].

For example, we can get the following:

Put

g:mmmmm~Mmmw.

Then, for almost every x € I, we have

fin:1<n<N, 2x - ) <y
! §
! =2 forany 0 <t,1' <cg,
uhzlfan’ﬁx—ﬂ'<4

where

e =131—« if a*<a< >
o . «/5—1

if <a <1
1+« 2
if a=1

and o* is the unique positive root of a2 + +/5a —

V5 -1
2

5. Some properties of the «-mediant convergents

The aim of this section is to describe relations between the «-mediant convergents and
the regular mediant convergents. At first, we give a coding method which translates the «-
continued fraction expansion of x to the regular continued fraction expansion of x (if 0 <
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x<a)orl+x(ifa—1<x <0).

We suppose that
x=8a,l| 8(1,2| 8(1,3| - for xel,
| Ca,1 | Ca,2 | Ca,3
and
1)1 1 ,
xX=—+—+—+--- if 0<x<a
|a1 |612 |613
or
1)1 1 ,
l4x=—+ —+—+ - if a—1=<x<0.

jar [az a3

Weputl, =1,(x) :=8{1 <k <n:eui(x) =—1}. Notethat/;y = landa; =1ifx <O
(equivalently g4,1 = —1).

LEMMA 4.
) an+l, = Ca,n and ln—i—l =1, if (Sa,na 8a,n+l) =(,1
(i) an+l, = Can — 1, an+l,+1 = 1 and ln+l =L +1if (Sa,na 8a,n+l) =(1,-1
(i)  apy1, = con — land lyyy =1, if (ean, €ant1) = (=1, 1)
(iv) an+l, = Can — 2, An+l,+1 = 1 and ln+l =L+ 1if (Sa,na 8a,n+l) =(=1,-1

PROOF. The assertions follow from a discussion in §3, [6]. O
This lemma implies that we can determine aj,:--,an4;, when (€q.1,¢Ca.1), ",
(€a.n» Ca,n) are given and, moreover, a,4y,+1 = 1 if e n41 = —1. Now we see that the

following repetition of a rational number occurs in the sequence of the a-mediant convergents
and such a rational number is a regular principal convergent.

PROPOSITION 6. Suppose that x € 1, and €4 y41(x) = —1, then we have

Uan,1(X) Ua,n—1,cqn—1(X) _ Pl (%)
Uoz,n,l(x) Ua,n—l,cav,,—l(x) qn-+l, (x)

PROOF. We note that if ¢y, = 1, then g4,+1 = 1. In other words, g4 41 = —1
implies ¢y, > 2. From the definition (1.2), we see

Ugn,1 l- Pa,n — Pa,n—1
Va,n,1 1 “Joan — Ga,n—1
CanPan—1 + ExnPan—2 — Pan—1
Ca.nqan—1t+ Eanda,n—2 — Ga,n—1
_ (can — D Ppan—1 + €anPan—2
B (can — DGan—1 + €a.nqa.n—2
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Ua,n—1,cqn—1

Va,n—1,c4.n—1

Hence, we have the first equality of the assertion.
Next, we consider the second equality. We only show it in the case of 0 < x < «. For
pnl+x)  palx)

a — 1 < x < 0, the proof is essentially the same since = + 1. By using
gn(1+x)  gn(x)
Lemma 4, we have
Pty if eynt1 =1
In
Da,n _ Zn+l l .1)
qa,n Frtlatl L sl = —1.
qn+l,+1
In particular, if &4 ,4+1 = —1, then a,4;,+1 = 1 and
pn+ln+1 = pn+ln + pn+ln*] (52)
qn+iy+1 = qn+l, + qn+1,—1 -
On the other hand, by (5.1),
Po,n—1 _ Pn—1+1, ’ (5.3)
qo,n—1 qn—1+1,
since l, = l,—1 ifegn = 1andl, = 1,1 + 1 if ¢4, = —1, respectively. Hence, from (5.1),
(5.3) and (5.2), we have
Uan,] _ Pan — Pan—1 _ Pntly+1 — Pn+ly—1 _ Pn+l,
Va,n,1 Jon — Ga,n—1 qn+l,+1 — 9n+l,—1 qn+l,
O

Next theorem explains how the o-mediant convergents of level n correspond to the reg-
ular mediant and the regular principal convergents.

THEOREM 5. Suppose that x € 1. The set of the a-mediant convergents of level n
coincides with the following:

(1) the set of the regular mediant convergents of level n+1, (x)+1 and the (n+1,,(x))th
regular principal convergents if (€q,n+1, Ean+2) = (=1, 1)

(i) the set of the regular mediant convergents of level n + I, (x) + 1, the (n + [,,(x) —
1)th regular principal convergents and the (n + 1, (x) + 2)th regular principal convergents if
(Sa,n-i-l’ 80{,11—}-2) =(=1,-1)

(iii) the set of the regular mediant convergents of level n + 1,,(x) if (€q.n+1, €a.n+2) =
(1,1

(iv) the set of the regular mediant convergents of level n+1,,(x) and the (n+1,(x)+1)th

regular principal convergents if (€q.n+1, €a.nt2) = (1, —1)
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PROOF. (i) Weassumex > 0. If 4 n4+1 = —1 and &4 442 = 1, then from (5.1), (5.3)
and (5.2), we have
Ug,n,t =1+ Pan — Pon—1
=1 Pntly+1 — Pntiy—1
= t(Pn+l, + Pntly—1) = Pnti,—1
= Un+l,+1,1—1

and

Va,n,t = Un4l,+1,t—1

Pm(1+x) N Pm(x)

= + 1 and
gm(1 +x) qm(x)

for2 <t < cqnt1 = anti,+2 + 1. In the case x < 0, we use

get the same conclusion. Thus

Ug,n,t Un+tl,+1,t—1
ot _ It t for 2<t<aptr+2+1.

Va,n,t Un+l,+1,t—1

For t = 1, by Proposition 6,

Up,n,1 _ Pn+ly,

Va,n,1 qn+l,

Consequently, we have

Ua,n,t l Up4l,+1,0—1
{ﬁ: 1§t<ca,n+1}={pn+"}u{ ot t :2§t<an+1,,+2+1}.
Va,n,t qn+l, Un+l,+1,t—1

This completes the proof of the assertion (i). (ii), (iii) and (iv) follow in the same way. O

As a corollary of Theorem 5, we claim that the set of the a-principal and the «-mediant
convergents coincides with the set of the regular principal and the regular mediant conver-
gents.

COROLLARY 5. Forany «, <a<landx el,,

N =

{M'nzl}U{M:1§t<ca,n+1,n20}

Qa,n(x) ’ Uot,n,t(x)
X Up,t (X
:{p"( ) : nzl}U{L():lft<an+1,n20}.
qn(x) Up,r (X)
PROOF. The only regular principal convergents which are not «-principal convergents
are Pty with ¢, ,+1 = —1. However, these are a-mediant convergents, see Proposition 6.
qn'Hn

Since a,41,+1 = 1, there is no regular mediant convergent of level n + [, when g4 n+1 = —1.



ON THE INTERVAL MAPS 105

Other mediant convergents are o-mediant convergents because of Theorem 5. Indeed, the
a-mediant convergents of level n include the regular mediant convergents of level n + /,, + 1

if ég.n+1 = —1. In this case, [,4+1 = [, + 1. Then the next mediant convergent level is
(n + 1) + l,+1. The same holds for the case €4 ,4+1 = 1 (then [,41 = ;). This completes the
proof of this corollary. O

Finally we construct a map F, which we call the a-Farey map of the second type. By

. . . Ua,n—1,cqn—1
this map Fy,, we can also get the sequence of the «-mediant convergents without i

Va,n—1,c4.n—1
associated to €4, ,+1 = —1, that is, without the repetition which was stated in Proposition 6.

1
Weput 7y = [o — 1, l]forE < « < 1 and define a new map F, of J, by

-1 .
V- (x)=—1+x if xela—1,0)=:Tu1
—1 X . 1
Vi(x) = - if xe |:0, 5) = Ja2
Fo(x) = » 1—2x 1o
(V4U) (X)=T if xE[i,H_a} = Ju,3
Uy = L% if xe< : ,1}::@4.
X 1+ ’

Similarly as in §2, we put

Ve it (F)" ') € Jaa

Vi o if (F)"'(x) € Jan

M, (x) ==
ViU if (F)" ' (%) € Ju3
U it (Fo)" '(x) € Jua
and
ki(x) =0,
kx(x) := min{k > ky—1(x) : (F)* "1 (x) € Ta3U Toea}, n > 1.

This means that we abbreviate V,UV_ to (V;U)V_ and get a new sequence M(x),
Ma(x), -+ from M{(x), Ma(x), ---. Then it is easy to see the following.

THEOREM 6. Forx €1,

M) Ma(x) - - M;(x)
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Poa,n—1  Pa,n
dan—1 Yo,n

if 1=k, n>1

l=ki(x)+t, n=>=0

Uan,t Pa,n . .
if . 1 <1t <can+tt if eunt1 =1
Va,n,t  YGa,n with .
I1<t<cont1—1 if egnt1=-1.
Uan—1,cqn—1 . . .
Thus we see that =" is removed whenever ¢4 ,41 = —1 by this abbreviation.

Va,n—1,c4.n—1

The author will discuss the «-Farey map of the second type from the ergodic theoretic

point of view in [7].

[1]
[2]
[3]
[4]
[5]
[6]

[7]
[8]

[91]

References

K. DAJANI and C. KRAAIKAMP, The mother of all continued fractions, Colloq. Math. 84/85 (2000), part 1,
109-123.

S. ISOLA, On the spectrum of Farey and Gauss maps, Nonlinearity 15 (2002), 1521-1539.

SH. ITO, Algorithms with mediant convergents and their metrical theory, Osaka J. Math. 26 (1989), 557-578.

C. KRAAIKAMP, A new class of continued fraction expansions, Acta Arith. 57 (1991), 1-39.

H. NAKADA, Metrical theory for a class of continued fraction transformations and their natural extension,
Tokyo J. Math. 4 (1981), 399-426.

H. NAKADA and R. NATSUI, Some metric properties of a-continued fractions, J. Number Theory. 97 (2002),
287-300.

R. NATSUI, On the isomorphism problem of «-Farey maps, preprint.

K. PETERSEN, Ergodic theory, Cambridge Studies in Advanced Mathematics, 2. Cambridge University Press
(1983).

F. SCHWEIGER, Ergodic theory of fibred systems and metric number theory, Oxford Science Publications. The
Clarendon Press, Oxford University Press (1995).

Present Address:
DEPARTMENT OF MATHEMATICS, KEIO UNIVERSITY,
HiyosHI, KOHOKU-KU, YOKOHAMA 223-8522, JAPAN.



