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Abstract. In this paper we prove that the Landau-Kolmogorov inequality for functions on the half line holds
for Lorentz spaces with the constants, which are best possible for L∞-space.

1. Introduction

The Landau-Kolmogorov inequality

‖f (k)‖n∞ ≤ K(k, n)‖f ‖n−k∞ ‖f (n)‖k∞ , (1)

where 0 < k < n, is well known and has many interesting applications and generalizations
(see [1–7, 13, 16, 17, 20–21]). Its study was initiated by Landau [11] and Hadamard [8]
(the case n = 2). For functions on the whole real line R, Kolmogorov [10] succeeded in
finding in explicit form the best possible constants K(k, n) = Ck,n in (1), and Stein proved
in [20] that inequality (1) still holds for Lp-norm, 1 ≤ p < ∞, with these constants (the

same situation also happens for an arbitrary Orlicz norm [1]). The best constants C+
k,n for the

half line R+ = [0,∞) are not known in explicit form except for n = 2, 3, 4 (see [11, 12]),
but an algorithm exists for their computation (Schoenberg and Cavaretta [15]). In this paper,
essentially developing the Stein method [20], we prove that, for the half line, inequality (1)
still holds for Lorentz spaces with the constants C+

k,n. Note that a similar result for Orlicz

spaces was proved in [2] by the techniques which cannot be used for Lorentz spaces.

2. Results

Let Φ : [0,∞) → [0,∞) be a non-zero concave function, which is non-decreasing and
Φ(0+) = Φ(0) = 0. We put Φ(∞) = limt→∞Φ(t). Let S be an interval of R. For an
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arbitrary measurable function f we define

‖f ‖NΦ(S) =
∫ ∞

0
Φ(λf (y))dy ,

where λf (y) = mes{x ∈ S : |f (x)| > y} , (y ≥ 0). If the space NΦ(S) consists of
measurable functions f such that ‖f ‖NΦ(S) < ∞ then NΦ(S) is a Banach space. Denote by
MΦ(S), the space of measurable functions g such that

‖g‖MΦ(S) = sup
{ 1

Φ(mes ∆)

∫
∆

|g(x)|dx : ∆ ⊂ S, 0 < mes∆ < ∞
}
< ∞ .

Then MΦ(S) is a Banach space, too [19], [18], [14]. The NΦ(S) and MΦ(S) are called
Lorentz spaces.

We have the following results [19], [18], [6]:

LEMMA 1. If f ∈ NΦ(S), g ∈ MΦ(S) then f g ∈ L1(S) and∫
S

|f (x)g(x)|dx ≤ ‖f ‖NΦ(S)‖g‖MΦ(S) .

LEMMA 2. If f ∈ NΦ(S) then

‖f ‖NΦ(S) = sup
‖g‖MΦ(S)≤1

∣∣∣ ∫
S

f (x)g(x)dx
∣∣∣ .

LEMMA 3. Let n ≥ 1. If f ∈ L1,loc(R+) has a generalized n-th derivative g ∈
L1,loc(R+), then f can be redefined on a set of measure zero so that f (n−1) is absolutely

continuous and f (n) = g a.e. on R+.

THEOREM 1. Let f and its generalized derivative f (n) be in NΦ(R+). Then f (k) ∈
NΦ(R+) for all 0 < k < n and

‖f (k)‖nNΦ(R+) ≤ C+
k,n‖f ‖n−k

NΦ(R+)‖f (n)‖kNΦ(R+) . (1)

PROOF. We begin to prove (1) with the assumption that f (k) ∈ NΦ(R+), 0 ≤ k ≤ n.
Fixed 0 < k < n. By Lemma 2 we see that for any ε > 0 there exists a function vε ∈ MΦ(R+)
such that ‖vε‖MΦ(R+) ≤ 1 and∣∣∣ ∫ ∞

0
f (k)(x)vε(x)dx

∣∣∣ ≥ ‖f (k)‖NΦ(R+) − ε/2 .

By Lemma 1, there is an interval H := [c, d], c, d ∈ (0,∞) such that∣∣∣ ∫ ∞

0
f (k)(x)v(x)dx

∣∣∣ ≥ ‖f (k)‖NΦ(R+) − ε , (2)

where v = v(H, ε) := χHvε . Put

Fε(x) =
∫ ∞

0
f (x + y)v(y)dy .
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Then Fε ∈ L∞(R+) by virtue of Lemma 1, and it is easy to check that

F (r)ε (x) =
∫ ∞

0
f (r)(x + y)v(y)dy, 0 ≤ r ≤ n (3)

in the distribution sense.
For all x ∈ R+, clearly,

|F (r)ε (x)| ≤ ‖f (r)(x + ·)‖NΦ(R+)‖v‖MΦ(R+) ≤ ‖f (r)‖NΦ(R+) .

Now we prove the continuity of F (r)ε on R+ (0 ≤ r ≤ n). We show this for r = 0. Clearly, it
suffices to prove that for any x ∈ R+,

lim
t→0

‖χH(·)
(
f (x + t + ·)− f (x + ·))‖NΦ(R+) = 0 .

Assume the contrary that for some δ > 0, point x0 and sequence {tm} with tm → 0,

‖χH(·)
(
f (x0 + tm + ·)− f (x0 + ·))‖NΦ(R+) ≥ δ , m ≥ 1 . (4)

For simplicity of notation we suppose x0 = 0. Since f ∈ NΦ(R+), f ∈ L1
�oc(R+). So, it is

known that ∫ d

c

|f (x + tm)− f (x)|dx → 0 as m → ∞ .

Therefore, there exists a subsequence {tmj }, we still denote by {tm} such that f (· + tm) → f

a.e. on H. Define

gn(x) = inf
m≥n|f (x + tm)| , x ∈ H ,

then {gn} is a non-decreasing sequence and gn → |f | a.e. on H. It is easy to see that

λχHgn(t) → λχH|f |(t) as n → ∞ , for every t > 0 .

We have

Φ(λχH|f |(t)) = lim
m→∞Φ(λχHgm(t)) ≤ lim

m→∞
Φ(λχH|f (·+tm)|(t)), t > 0 . (5)

It follows from the definition of Φ that Φ(a + b) ≤ Φ(a) + Φ(b) for a, b ≥ 0. Observing
that, for any f, g ∈ NΦ(R+) and t > 0 we have λχH(f+g)(2t) ≤ λχHf (t)+ λχHg (t), then

Φ(λχH|f (·+tm)−f |(2t)) ≤ Φ(λχH|f (·+tm)|(t))+ Φ(λχH|f |(t)),m ≥ 1 .

It is easy to check that

lim
m→∞ ‖χHf (· + tm)‖NΦ(R+) = ‖χHf ‖NΦ(R+) .

Applying Fatou’s lemma, we obtain
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∫ ∞

0
lim
m→∞

[Φ(λχH|f (·+tm)|(t))+ Φ(λχH|f |(t))−Φ(λχH|f (·+tm)−f |(2t))]dt

≤ lim
m→∞

∫ ∞

0
[Φ(λχH|f (·+tm)|(t))+Φ(λχH|f |(t))−Φ(λχH|f (·+tm)−f |(2t)]dt

= 2
∫ ∞

0
Φ(λχH|f |(t))dt − 1

2
lim
m→∞

∫ ∞

0
Φ(λχH|f (·+tm)−f |(t))dt . (6)

On the other hand,

λχH|f (·+tm)−f |(t) = mes{x ∈ H : |f (x + tm)− f (x)| > t}.
Therefore, taking account of f (· + tm) → f a.e. on H, we have

lim
m→∞ λχH|f (·+tm)−f |(t) = 0

and then

lim
m→∞Φ(λχH|f (·+tm)−f |(t)) = 0 .

So, by (5) we get for any t > 0

2Φ(λχH|f |(t)) = lim
m→∞Φ(λχHgm(t))+Φ(λχH|f |(t))− lim

m→∞Φ(λχH|f (·+tm)−f |(2t))

≤ lim
m→∞

[Φ(λχH|f (·+tm)|(t))+Φ(λχH|f |(t))−Φ(λχH|f (·+tm)−f |(2t))] .

So, since (6), we have

2
∫ ∞

0
Φ(λχH|f |(t))dt ≤ 2

∫ ∞

0
Φ(λχH|f |(t))dt − 1

2
lim
m→∞

∫ ∞

0
Φ(λχH|f (·+tm)−f |(t))dt .

Hence ∫ ∞

0
Φ(λχH|f (·+tm)−f |(t))dt → 0 as m → ∞ ,

i.e., limm→∞ ‖χH
(
f (· + tm)− f

)‖NΦ(R+) = 0, which contradicts (4).

The cases 1 ≤ r ≤ n are proved similarly. The continuity of F (r)ε has been proved.
Thus by the classical Landau-Kolmogorov inequality we have

|F (k)ε (0)|n ≤ C+
k,n‖Fε‖n−k∞ ‖F (n)ε ‖k∞ ,

which shows, with the help of (2) and the fact that |F (r)ε (x)| ≤ ‖f (r)‖NΦ(R+) (0 ≤ r ≤ n),
the inequality

{‖f (k)‖NΦ(R+) − ε}n ≤ C+
k,n‖f ‖n−k

NΦ(R+)‖f (n)‖kNΦ(R+) .
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Therefore, by letting ε → 0 we have (1) under the additional assumption that f (r) ∈ NΦ(R+)
for r = 1, 2, · · · , n− 1.

To complete the proof, it remains to show that f (k) ∈ NΦ(R+),∀k = 1, · · · , n − 1 if

f, f (n) ∈ NΦ(R+). By Lemma 3 we can assume that f, f ′, · · · , f (n−1) are continuous on

[0,∞) and f (n−1) is absolutely continuous on [0,∞).
We put for k = 0, · · · , n,

f(k)(x) =
{
f (k)(x), x ∈ [0,∞)

0, x ∈ (−∞, 0) .

Let ψ ∈ C∞
0 (0,∞), ψ ≥ 0, ψ(x) = 0 for x ≥ 1 and

∫
R+ ψ(x)dx = 1. We put ψλ(x) =

1
λ
ψ(x

λ
), λ > 0 and fλ = f(0) ∗ ψλ.

Fix b > 0. Then ∀ϕ ∈ C∞
0 (b,∞) we have for 0 < λ < b, k = 1, · · · , n :

〈f (k)λ , ϕ > = (−1)k < fλ, ϕ
(k)〉

= (−1)k
∫ ∞

0

( ∫ ∞

0
f(0)(x − y)ψλ(y)dy

)
ϕ(k)(x)dx

=
∫ λ

0

(
(−1)k

∫ ∞

b

f(0)(x − y)ϕ(k)(x)dx
)
ψλ(y)dy

=
∫ λ

0

( ∫ ∞

b

f (k)(x − y)ϕ(x)dx
)
ψλ(y)dy

=
∫ ∞

b

( ∫ λ

0
f (k)(x − y)ψλ(y)dy

)
ϕ(x)dx

=
∫ ∞

b

(f(k) ∗ ψλ)(x)ϕ(x)dx
= 〈f(k) ∗ ψλ, ϕ〉 .

So, we have proved for 0 < λ < b,

f
(k)
λ = (f(0) ∗ ψλ)(k) = f(k) ∗ ψλ (7)

in the D′(b,∞) sense. Therefore, for 0 < λ < b we have

‖(f(0) ∗ ψλ)(n)‖NΦ [b,∞) = ‖f(n) ∗ ψλ‖NΦ [b,∞)

≤ ‖f(n) ∗ ψλ‖NΦ(R) ≤ ‖f(n)‖NΦ(R) (8)

= ‖f(n)‖NΦ(R+) = ‖f (n)‖NΦ(R+) .
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On the other hand, using (f(0)∗ψλ)(k) = f(0)∗ψ(k)λ ∈ NΦ(R),∀k = 0, 1, · · · , n and the above
proved Landau-Kolmogorov inequality for functions on [b,∞), we get for k = 1, · · · , n− 1,

‖f (k)λ ‖nNΦ [b,∞) ≤ C+
k,n‖fλ‖n−kNΦ [b,∞)‖f (n)λ ‖kNΦ [b,∞) .

Hence, combining (7), (8) we get for all 0 < λ < b, k = 1, · · · , n− 1,

‖f(k) ∗ ψλ‖nNΦ [b,∞) ≤ C+
k,n‖f(0) ∗ ψλ‖n−kNΦ [b,∞)‖f(n) ∗ ψλ‖kNΦ [b,∞)

≤ C+
k,n‖f ‖n−kNΦ [0,∞)‖f (n)‖kNΦ [0,∞) . (9)

On the other hand, because f(k) is continuous on R+, we get easily

lim
λ→0

f(k) ∗ ψλ(x) = f(k)(x) = f (k)(x),∀x > 0 . (10)

For each function v ∈ MΦ [b,∞), ‖v‖MΦ [b,∞) ≤ 1 and 0 < λ < b, by (9) and the
definition of the NΦ [b,∞)-norm we get∫ ∞

b

|(f(k) ∗ ψλ)(x)v(x)|dx ≤ {C+
k,n‖f ‖n−kNΦ [0,∞)‖f (n)‖kNΦ [0,∞)}1/n .

Therefore, using the Fatou lemma, (9) and (10) we have∣∣∣ ∫ ∞

b

(f (k)(x)v(x)dx

∣∣∣ =
∣∣∣ ∫ ∞

b

lim
λ→0

(f(k) ∗ ψλ)(x)v(x)dx
∣∣∣

≤
∫ ∞

b

( lim
λ→0

|(f(k) ∗ ψλ)(x)v(x)|)dx

≤ lim
λ→0

∫ ∞

b

|(f(k) ∗ ψλ)(x)v(x)|dx

≤ lim
λ→0

‖f(k) ∗ ψλ‖NΦ [b,∞)

≤ {
C+
k,n‖f ‖(n−k)NΦ [0,∞)‖f (n)‖kNΦ [0,∞)

}1/n
.

So, by the definition,

‖f (k)‖nNΦ [b,∞) ≤ C+
k,n‖f ‖(n−k)NΦ [0,∞)‖f (n)‖kNΦ [0,∞) < ∞ .

On the other hand, it follows from the continuity of f (k) on [0,∞] that f (k) ∈ NΦ [0, b) for
any b > 0. Therefore,

‖f (k)‖NΦ(R+) ≤ ‖f (k)‖NΦ [0,b] + ‖f (k)‖NΦ [b,∞) < ∞ .

The proof is complete.

Finally, it is known that there is a smallest constant C+ depending only on n such that

δk||f (k)||∞ ≤ C+(||f ||∞ + δn||f (n)||∞) , (11)

where δ > 0 is arbitrary (see [6]). Modifying the above proof, we can get the following result.
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THEOREM 2. Let f and its generalized derivative f (n) be in NΦ(R+). Then f (k) ∈
NΦ(R+) for all 0 < k < n and

δk||f (k)||NΦ(R+) ≤ C+(||f ||NΦ(R+) + δn||f (n)||NΦ(R+)) ,

where δ > 0 is arbitrary and C+ is defined in (11).
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