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Abstract. For sphere bundles of the induced bundles of isometric immersions, harmonic sections which are
normal to submanifolds and their index are studied. The lower bounds of the index of these sections are given in
terms of intrinsic quantities of submanifolds.

1. Introduction

Let M be a Riemannian manifold and T M its tangent bundle with Sasaki metric. The
unit tangent sphere bundle is denoted by U(T M). A smooth unit vector field on M is a
smooth map from M into U(T M). Therefore, the energy of a unit vector field can be defined.
A smooth unit vector field is said to be a harmonic vector field if it is a stationary point of
the energy of vector fields with unit length. Note that the volume of a unit vector field and
a minimal vector field can be considered. We refer to [3], [5], [11], [12], [13], [15], for
example. For a harmonic vector field, its stability or instability is also studied. See [4], [5]
and [15], for example. These formulations can be generalized to the case of the sphere bundle
of a Riemannian vector bundle with metric connection. A section with unit length is called a
harmonic section if it is a stationary point of the energy of sections with unit length relative to
the canonical metric. We refer to [8] and [15].

Let E be a Riemannian vector bundle over a Riemannian manifold (M, g) with fiber
metric h. The space of smooth sections of a vector bundle E is denoted by Γ (E). Set UE(=
U(E)) := {η ∈ E|h(η, η) = 1}. The set of all sections ξ ∈ Γ (E) satisfying h(ξ(x), ξ(x)) =
1 for all x ∈ M is denoted by Γ (UE). Let f : (M, g) → (M̃, g̃) be an isometric immersion.

Set n := dim M and n + p := dim M̃ . We have f #(T M̃) = T M ⊕ T ⊥M , where f #(T M̃)

is the induced bundle of T M̃ by f and T ⊥M is the normal bundle. The inclusion map from

T ⊥M to f #(T M̃) is denoted by ι. Let S and ∇⊥ be the shape operator and the normal
connection of f , respectively.
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Let E be the energy functional for maps from M to U(f #(T M̃)) with canonical metric.
For a section ξ ∈ Γ (U(T ⊥M)), we have

E(ι ◦ ξ) = n

2
Vol(M) + 1

2

∫
M

(‖Sξ‖2 + ‖∇⊥ξ‖2)dvg .

The Hessian at a harmonic section η is denoted by Hη. Clearly, if p = 1 and f is totally

geodesic, then ι ◦ ξ attains a minimum, hence, it is a harmonic section of Γ (U(f #(T M̃)))

and Index(Hι◦ξ ) = 0, where ξ ∈ Γ (U(T ⊥M)). On the other hand, if the square of the norm
of shape operator Sξ is “large”, we deduced from the second variation formula that ι ◦ ξ is
unstable (Index(Hι◦ξ ) > 0) for the harmonic section ι ◦ ξ . For example, as we will prove in

Section 5 (Theorem 5.1), if M̃ = Sn+1(1) (the unit sphere with standard metric) and M is a

constant mean curvature hypersurface with ‖Sξ‖2 > n/(n−2) and n ≥ 3, then ι◦ξ is unstable.
Hence, the relations between the square of the norm of shape operator and Index(Hι◦ξ ) are

of interest. If ξ ∈ Γ (U(T ⊥M)), then variation vector fields of ι ◦ ξ in Γ (U(f #(T M̃))) can

be identified with sections of f #(T M̃) normal to ι ◦ ξ . Therefore it seems that the index
of the harmonic section ι ◦ ξ also depends on intrinsic quantities of a submanifold. The

purpose of this paper is to study harmonic sections of Γ (U(f #(T M̃))) which are normal to
submanifolds.

In Section 2, we will prepare the preliminaries. The harmonic sections normal to sub-
manifolds are studied and their examples are given in Section 3. The lower bounds of the
index for harmonic sections which are normal to submanifolds are given in terms of intrinsic
quantities of submanifolds in Section 4. Finally, in the last section, we study the stability of
harmonic sections for constant mean curvature hypersurfaces in the unit spheres.

The author would like to thank the referee for the comments and carefully readings of
this paper.

2. The energy functionals for sections and splitting of vector bundle with connec-
tion

Let E be a Riemannian vector bundle over an n-dimensional Riemannian manifold
(M, g) with a fiber metric gE and a metric connection ∇E . The Levi-Civita connection of
g is denoted by ∇0. Let K : T E → E be the connection map with respect to ∇E . The space
of cross sections of E is denoted by Γ (E). The canonical metric G on E is defined by

G(ξ, ξ) = g(p∗(ξ), p∗(ξ)) + gE(K(ξ),K(ξ)) ,

where ξ ∈ T (T E) and p : E → M is the bundle projection. Set UE(= U(E)) := {η ∈ E |
gE(η, η) = 1}. The set of all sections ξ ∈ Γ (E) satisfying gE(ξ(x), ξ(x)) = 1 for all x ∈ M

is denoted by Γ (UE). The restriction of G to UE is also denoted by G. Hereafter we assume
that M is compact. Let E be the energy functional defined on the space of smooth maps from
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M to UE. For a smooth section ξ ∈ Γ (UE), the energy E(ξ) is given by

E(ξ) = n

2
Vol(M) + 1

2

∫
M

‖∇Eξ‖2dvg ,

where dvg denotes the volume element of (M, g). The second term of E(ξ) is called the
vertical energy of ξ . Note that the vertical energy is defined in more general setting (cf. [14]).
In the case where E = T M , this term is also called the total bending of the vector field up to
constant (cf. [13]). The variation vector field of ξ ∈ Γ (UE) can be identified with a smooth
section of E orthogonal to ξ . Set

Vξ := {η ∈ Γ (E) | gE(ξ, η) = 0}
for ξ ∈ Γ (UE). The rough Laplacian 
̄∇E

of ∇E is defined by


̄∇E

(ξ) = −
n∑

k=1

(∇E
ei

∇E
ei

ξ − ∇E
∇0

ei
ei
ξ) ,

for ξ ∈ Γ (E), where e1, · · · , en is an orthonormal frame of (M, g). We say that ξ ∈ Γ (UE)

is a harmonic section of UE if ξ is a stationary point of E |Γ (UE). The following Lemma is
proved in [8].

LEMMA 2.1. A section ξ ∈ Γ (UE) is a harmonic section if and only if the equation


̄∇E

(ξ) = ‖∇Eξ‖2ξ

holds.

For a harmonic section ξ ∈ Γ (UE), the Hessian at ξ , which is defined by the second
variation formula, is denoted by Hξ . The following Lemma is given in [15].

LEMMA 2.2. Let ξ ∈ Γ (UE) be a harmonic section. Then, for α, β ∈ Vξ , the equation

Hξ (α, β) =
∫

M

gE(
̄∇E

(α) − ‖∇Eξ‖2α, β)dvg

holds.

Next, we consider splitting of vector bundles with connection following the idea of Abe
used in [1]. Let E1 and E2 be subbundles of E with orthogonal direct sum E = E1 ⊕ E2.
For the rest of this section, we assume that i, j ∈ {1, 2} and i �= j and often omit the symbol
of the composition of maps, “◦”. Let ιi : Ei → E and πi : E → Ei be the inclusions and
projections, respectively. The following equations hold:

πiιi = idEi , πj ιi = 0 and ιjπj + ιiπi = idE .

For the connection ∇E , we set

∇i
X := πi∇E

X ιi and Bi
X := πj∇E

X ιi ,
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where X ∈ Γ (T M). We define (∇ i
XBi)Y by

(∇i
XBi)Y ξ = ∇j

X(Bi
Y ξ) − Bi

∇0
XY

ξ − Bi
Y (∇i

Xξ) ,

for ξ ∈ Γ (Ei) and X, Y ∈ Γ (T M). For the subbundle Ei , the induced fiber metric is denoted
by gE

i . Note that ∇ i is a metric connection with respect to gE
i . We have

LEMMA 2.3. For ξi ∈ Γ (Ei), the equation


̄∇E

(ιiξi ) = ιi
̄∇i

ξi − ιi

n∑
k=1

Bj
ek (B

i
ek ξi ) − ιj

n∑
k=1

{(∇i
ek

Bi)ek ξi + 2Bi
ek (∇i

ek
ξi )}

holds, where e1, · · · , en is an orthonormal frame of (M, g).

PROOF. We have


̄∇E

(ιiξi ) = −
n∑

k=1

(∇E
ek

∇E
ek

ιiξi − ∇E
∇0

ek
ek

ιiξi )

= −
n∑

k=1

{∇E
ek

ιi(∇i
ek

ξi ) + ∇E
ek

ιj (B
i
ek

ξi ) − ιi∇i
∇0

ek
ek

ξi − ιjB
i
∇0

ek
ek

ξi}

= ιi
̄∇i

(ξi ) −
n∑

k=1

ιiB
j
ek

Bi
ek

ξi −
n∑

k=1

{ιj (∇i
ek

Bi)ek ξi + ιj 2Bi
ek

(∇i
ek

ξi )} .

�

By this lemma, we have

LEMMA 2.4. Let ξi ∈ Γ (U(Ei)). Then ιiξi ∈ Γ (UE) is a harmonic section if and
only if the equations


̄∇i

ξi −
n∑

k=1

Bj
ek (B

i
ek ξi ) = (‖∇ iξi‖2 + ‖Biξi‖2)ξi

and

n∑
k=1

{(∇ekB
i)ek ξi + 2Bi

ek (∇i
ek

ξi )} = 0

hold, where e1, · · · , en is an orthonormal frame of (M, g).

From Lemmas 2.2 and 2.3, we obtain

LEMMA 2.5. Let ξ ∈ Γ (U(E)) be a harmonic section. For αi ∈ Γ (Ei) ∩ Vξ , we have

Hξ (αi , αi) =
∫

M

{gE
i (
̄∇i

(αi), αi) −
n∑

k=1

gE
i (B

j
ek

Bi
ek

αi , αi) − ‖∇ξ‖2gE
i (αi , αi)}dvg
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and

Hξ (αi , αj ) = −
∫

M

n∑
k=1

{gE
j ((∇ekB

i)ekαi , αj ) + 2gE
j (Bi

ek
(∇i

ek
αi), αj )}dvg ,

where e1, · · · , en is an orthonormal frame of (M, g).

3. Harmonic sections normal to submanifolds

Let f : (M, g) → (M̃, g̃) be an isometric immersion. Set n := dim M and n + p :=
dim M̃ . We have f #(T M̃) = T M ⊕ T ⊥M , where f #(T M̃) is the induced bundle of T M̃ by

f and T ⊥M is the normal bundle. The inclusion map from T ⊥M to f #(T M̃) is denoted by ι.

Let ∇ and ∇̃ be the Levi-Civita connections of g and g̃ , respectively. The induced connection

of ∇̃ by f is denoted by f #∇̃. Let h, S and ∇⊥ be the second fundamental form, the shape
operator and the normal connection of f , respectively. The mean curvature vector is denoted
by H . We obtain

(f #∇̃)XY = f∗(∇XY ) + h(X, Y )

and

(f #∇̃)Xι ◦ ξ = −f∗(Sξ (Y )) + ∇⊥
Xξ ,

where X, Y ∈ Γ (T M) and ξ ∈ Γ (T ⊥M). In this section, we study harmonic sections relative

to the canonical metric on U(f #(T M̃)), which are normal to submanifolds. From Lemma 2.3,
we have

LEMMA 3.1. For ξ ∈ Γ (T ⊥M), the equation


̄(f #∇̃)(ι ◦ ξ) = 
̄∇⊥
(ξ) +

n∑
k=1

h(ek, Sξ (ek)) +
n∑

k=1

{(∇ekS)ξ (ek) + 2S∇⊥
ek

ξ (ek)}

holds, where we omit the inclusion maps from T M and T ⊥M to f #(T M̃) and e1, · · · , en is
an orthonormal frame of M .

The following proposition can be obtained immediately.

PROPOSITION 3.2. For ξ ∈ Γ (U(T ⊥M)), ι ◦ ξ ∈ Γ (U(f #(T M̃))) is a harmonic
section if and only if the equations


̄∇⊥
(ξ) +

n∑
k=1

h(ek, Sξ (ek)) = (‖Sξ‖2 + ‖∇⊥ξ‖2)ξ

and
n∑

k=1

{(∇ekS)ξ (ek) + 2S∇⊥
ek

ξ (ek)} = 0
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hold, where e1, · · · , en is an orthonormal frame of M .

Note that the inclusion map ι and its restriction map to U(T ⊥M) are called the normal
map and the spherical Gauss map, respectively. The harmonicity of the spherical Gauss map
is studied in [7].

To the end of this section, we give some examples. Let R̃ be the curvature tensor of M̃ .

COROLLARY 3.3. Let M be a orientable immersed hypersurface in the space form of

a constant curvature, and ξ ∈ Γ (U(T ⊥M)). Then ι ◦ ξ ∈ Γ (U(f #(T M̃))) is a harmonic
section if and only if M has a constant mean curvature.

PROOF. Since p = 1 and ∇⊥ξ = 0, it it sufficient to prove that

n∑
k=1

(∇ekS)ξ (ek) = 0

if and only if ∇⊥H = 0. It is clear from the Codazzi equation. �

The following notion is defined in [9]. A section X ∈ Γ (f #(T M̃)) is called of 
̄(f #∇̃)-
type k if X admits a finite spectral decomposition

X =
k∑

i=1

Xi, 
̄(f #∇̃)Xi = λiXi (i = 1, · · · , k) .

We also refer to [2].

COROLLARY 3.4. Let M be a submanifold in M̃ with nonzero parallel mean curvature

H immersed by f . Then ι ◦ H is of 
̄(f #∇̃)-type 1 if and only if ι ◦ (1/‖H‖)H is a harmonic
section and ‖SH ‖ is constant. Especially, if M is an extrinsic sphere, then ι ◦ (1/‖H‖)H is a
harmonic section.

PROOF. Set H̄ := (1/‖H‖)H . At first, we assume that H is of 
̄(f #∇̃)-type 1. Then

we have 
̄(f #∇̃)H̄ = λH̄ . Hence ι ◦ H̄ is a harmonic section and ‖SH ‖2 equals to a constant

λ‖H‖2. Conversely, Since 
̄(f #∇̃)H̄ = ‖SH̄ ‖2H̄ , it follows that H is of 
̄(f #∇̃)-type 1. �

We recall the definition of Sasakian manifolds. Let M̃ be a (2n + 1)-dimensional man-

ifold and ϕ, V , η be a (1, 1)-tensor field, a vector field, 1-form on M̃ , respectively, such
that

ϕ2(X) = −X + η(X)V , ϕ(V ) = 0 , η(ϕ(X)) = 0 and η(V ) = 1

for any vector field X on M̃ . Then M̃ is said to have an almost contact structure (ϕ, V, η)

and is called an almost contact manifold. If a Riemannian metric tensor field g̃ is given on an

almost contact manifold M̃ and satisfies

g̃(ϕ(X), ϕ(Y )) = g̃(X, Y ) − η(X)η(Y ) and η(X) = g(V ,X)
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for any vector fields X and Y on M̃ , then (ϕ, V, η, g̃) is called an almost contact metric

structure and M̃ is called an almost contact metric manifold. If dη(X, Y ) = g̃(X, ϕ(Y )) for

any vector fields X and Y on M̃ , then an almost contact metric structure is called a contact
metric structure. If moreover the structure is normal, that is, N + dη ⊗ V = 0, then a contact

metric structure is called Sasakian structure and M̃ is called a Sasakian manifold, where N
is the Nijenhuis torsion for ϕ. An n-dimensional Riemannian submanifold M in a Sasakian

manifold M̃ is called Legendrian if f ∗η = 0.

COROLLARY 3.5. Let M be a Legendrian submanifold in a (2n + 1)-dimensional

Sasakian manifold (M̃, η, V, ϕ, g̃) immersed by f . Then f #(V ) is a harmonic section if
and only if M is minimal, where f #(V ) is the pull back section of V by f .

PROOF. For simplicity, we use V instead of f #(V ). We have


̄∇⊥
(V ) = nV .

Since SV = 0, it follows that

n∑
k=1

h(ek, SV (ek)) = 0 .

Since ∇⊥
XV = −ϕ(X) holds for all X ∈ Γ (T M), we obtain

n∑
k=1

(∇ekS)V (ek) + 2S∇⊥
ek

V ek = −
n∑

k=1

Sϕ(ek)ek .

Moreover, we get

g
( n∑

k=1

Sϕ(ek)ek,X

)
= g̃(h(ek,X), ϕ(ek)) = g̃(h(ek, ek), ϕ(X)) = ng̃(H, ϕ(X))

for all tangent vectors X on M , and which implies the conclusion. �

4. The index of harmonic sections normal to submanifolds

In this section, we study the index of harmonic sections normal to submanifolds. Let

f : (M, g) → (M̃, g̃) be an isometric immersion with dim M = n and dim M̃ = n + p.

Set rx(X,X) = ∑n
i=1 g̃(R̃(f∗(ei), f∗(X))f∗(X), f∗(ei)) for x ∈ M and X ∈ TxM , where

e1, · · · , en is an orthonormal basis of TxM . The Ricci tensor of M is denoted by RicM . We
start with a second variation formula.

LEMMA 4.1. Let ξ ∈ Γ (U(T ⊥M)) and assume that M is compact. If ι ◦ ξ ∈
Γ (U(f #(T M̃))) is a harmonic section, then we have

Hι◦ξ (X,X) =
∫

M

{g(∇X,∇X) − RicM(X,X) + r(X,X)
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+ ng(SH X,X) − ‖Sξ‖2g(X,X) − ‖∇⊥ξ‖2g(X,X)}dvg

and

Hι◦ξ (η, η) =
∫

M

{‖Sη‖2 + g̃(∇⊥η,∇⊥η) − ‖Sξ‖2g̃(η, η) − ‖∇⊥ξ‖2g̃(η, η)}dvg

for X ∈ Γ (T M) and η ∈ Γ (T ⊥M) ∩ Vι◦ξ .

PROOF. By Lemma 2.5 and the Gauss equation, we have

Hξ (X,X) =
∫

M

{g(∇X,∇X) +
n∑

i=1

g̃(R̃(ei,X)X, ei)

−
n∑

i=1

g(R(ei ,X)X, ei) + ng̃(H, h(X,X))

− g(Sξ , Sξ )g(X,X) − g̃(∇⊥ξ,∇⊥ξ)g(X,X)}dvg

=
∫

M

{g(∇X,∇X) − RicM(X,X) + r(X,X) + ng̃(H, h(X,X))

− g(Sξ , Sξ )g(X,X) − g̃(∇⊥ξ,∇⊥ξ)g(X,X)}dvg .

The second equation can also be obtained immediately from Lemma 2.5. �

It is well-known that the identity map of a Riemannian manifold M is a harmonic map.
The index and nullity of idM are denoted by Index(idM) and Null(idM) as a harmonic map.
The Hessian HidM at the identity map idM is given by

HidM
(X,X) =

∫
M

(g(∇X,∇X) − RicM(X,X))dvg

for X ∈ Γ (T M) (cf. [10]).
By Lemma 4.1, we have

PROPOSITION 4.2. Let ξ ∈ Γ (U(T ⊥M)). Assume that M is compact and ι◦
ξ ∈ Γ (U(f #(T M̃))) is a harmonic section. If (‖Sξ‖2 + ‖∇⊥ξ‖2)g(X,X) ≥ r(X,X)+
ng(SH (X),X) for all X ∈ T M , then we have

Index(Hι◦ξ ) ≥ Index(idM) .

If (‖Sξ‖2 + ‖∇⊥ξ‖2)g(X,X) > r(X,X) + ng(SH (X),X) for all non zero X ∈ T M , then

Index(Hι◦ξ ) ≥ Index(idM) + Null(idM) .

Note that the term ‖Sξ‖2 + ‖∇⊥ξ‖2 is the integrand of a part of the energy functional E .
Proposition 4.2 implies that the index of Hι◦ξ depends on the intrinsic quantities Index(idM)

and Null(idM) and the extrinsic quantities ‖Sξ‖2 + ‖∇⊥ξ‖2.
From Proposition 4.2, we can obtain the following corollaries.



HARMONIC SECTIONS NORMAL TO SUBMANIFOLDS 465

COROLLARY 4.3. Let M be an n-dimensional compact orientable constant mean
curvature immersed hypersurface in the space form of a constant curvature c, and ξ ∈
Γ (U(T ⊥M)). If ‖Sξ‖2g(X,X) ≥ c(n−1)g(X,X)+ng(SH (X),X) for all X ∈ T M , then we
have

Index(Hι◦ξ ) ≥ Index(idM) .

If ‖Sξ‖2g(X,X) > c(n − 1)g(X,X) + ng(SH (X),X) for all non zero X ∈ T M , then

Index(Hι◦ξ ) ≥ Index(idM) + Null(idM) .

PROOF. It is clear from ∇⊥ξ = 0. �

COROLLARY 4.4. Let M be a compact extrinsic sphere in M̃ . If 0 ≥ r(X,X) for all
X ∈ T M , then we have

Index(Hι◦H̄ ) ≥ Index(idM) .

If 0 > r(X,X) for all non zero X ∈ T M , then

Index(Hι◦H̄ ) ≥ Index(idM) + Null(idM) ,

where H̄ = (1/‖H‖)H .

PROOF. From ∇⊥H = 0, SH = ‖H‖2idT M and ‖SH̄ ‖2 = n‖H‖2, we have the desired
conclusion. �

COROLLARY 4.5. Let M be a compact Legendrian minimal submanifold in a (2n+1)-

dimensional Sasakian manifold (M̃, η, V, ϕ, g̃). If n ≥ r(X,X) for all X ∈ T M , then we
have

Index(Hf #(V )) ≥ Index(idM) .

If n > r(X,X) for all non zero X ∈ T M , then

Index(Hf #(V )) ≥ Index(idM) + Null(idM) .

PROOF. It is clear from SV = 0 and ∇⊥
XV = −ϕ(X) for all X ∈ Γ (T M), where we

used V instead of f #(V ). �

A harmonic section ξ ∈ Γ (UE) is called weakly stable if Index(Hξ ) = 0. In the case

where M is a hypersurface in M̃ , since Vι◦ξ = Γ (T M), we obtain a stability theorem.

THEOREM 4.6. Let p = 1 and ξ ∈ Γ (U(T ⊥M)). Assume that M is compact and ι ◦ ξ

is a harmonic section. If idM is weakly stable as a harmonic map and

r(X,X) + ng(SH (X),X) ≥ ‖Sξ‖2g(X,X)

for all X ∈ T M , then ι ◦ ξ is weakly stable, that is, Index(Hι◦ξ ) = 0.
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5. Stability for constant mean curvature hypersurfaces of the unit spheres

Let f : (M, g) → (M̃, g̃) be an isometric immersion with dim M = n and dim M̃ =
n + 1. Let ξ ∈ Γ (U(T ⊥M)). Clearly, if f is totally geodesic, then ι ◦ ξ attains a mini-

mum, hence, it is a harmonic section of Γ (U(f #(T M̃))) and Index(Hι◦ξ ) = 0. But, there
exist non-totally geodesic hypersurfaces with weakly stable harmonic sections ι ◦ ξ . For

example, the n-dimensional unit sphere Sn(1) ⊂ Rn+1 has the harmonic section ι ◦ ξ , and

Index(Hι◦ξ ) = Index(idSn(1)) holds by Lemma 4.1. Therefore S1(1) and S2(1) are non-totally
geodesic hypersurfaces in the Euclidean spaces with weakly stable harmonic sections ι◦ξ . It is

important to study hypersurfaces with weakly stable harmonic section ι◦ξ ∈ Γ (U(f #(T M̃))).

In this section, we study hypersurfaces of constant mean curvature in Sn+1(1) such that
Index(Hι◦ξ ) = 0.

THEOREM 5.1. Let M be a compact orientable connected Riemannian manifold of

dim M = n and f : M → Sn+1(1) an isometric immersion with constant mean curvature. If

n ≥ 3 and ‖Sξ‖2 > n/(n−2) at each point of M , then ι◦ξ is unstable, that is, Index(Hι◦ξ ) >

0, where ξ ∈ Γ (U(T ⊥M)).

PROOF. For W ∈ Rn+2, the parallel vector field induced from W is denoted by W̄ .

Using the inclusion i : Sn+1(1) → Rn+2, we consider that M is a submanifold in Rn+2. Let

W̄T (resp. W̄N ) be the tangential (resp. normal) part of W̄ . We define a quadratic form Q on

Rn+2 by Q(W,W) := Hι◦ξ (W̄
T , W̄T ). Let v1, · · · , vn+2 be an orthonormal basis of Rn+2.

Let S̄ be the shape operator of M in Rn+2. Since ∇XW̄T = S̄W̄N X, we have

TrQ =
n+2∑
i=1

Q(v̄i , v̄i )

=
∫

M

{‖Sξ‖2 + n − ρM + n2‖H‖2 − n‖Sξ‖2 + n(n − 1)}dvg

=
∫

M

{‖Sξ‖2 + n − (n2‖H‖2 − ‖Sξ‖2 + n(n − 1))

+ n2‖H‖2 − n‖Sξ‖2 + n(n − 1)}dvg

=
∫

M

{(2 − n)‖Sξ‖2 + n}dvg ,

where ρM is the scalar curvature of (M, g). From n ≥ 3 and ‖Sξ‖2 > n/(n − 2), it follows
that TrQ < 0. Therefore ι ◦ ξ is unstable. �

For any unit vector a ∈ Rn+2 and for any s, 0 ≤ s < 1, let

Σn(s) = {x ∈ Sn+1(1)|〈x, a〉 = s} ,
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where < · , · > is the standard inner product of Rn+2. Then Σn(s) are constant mean

curvature hypersurfaces in Sn+1(1).

LEMMA 5.2. Let ξ be the unit normal vector field on Σn(s) in Sn+1(1). Then

Index(Hι◦ξ ) = 0 if and only if (n − 1)s2 ≤ 1. Especially, in the case where n ≥ 3, ι ◦ ξ is

weakly stable if and only if ‖Sξ‖2 ≤ n/(n − 2).

PROOF. It holds that

Hι◦ξ (X,X) = HidΣn(s)
(X,X) + (n − 1)

∫
Σn(s)

g(X,X)dvg .

Then Hι◦ξ (X,X) ≥ 0 for all vector field X on Σn(s) if and only if

λ1 ≥ 2(n − 1)

1 − s2 − (n − 1) = (n − 1)(1 + s2)

1 − s2 ,

where λ1 is the first eigenvalue of the Laplacian acting on functions. Since Σn(s) is of con-

stant curvature of 1/(1 − s2), we have λ1 = n/(1 − s2), which implies the conclusion. From

s2 = ‖Sξ‖2/(n + ‖Sξ‖2), it follows that ι ◦ ξ is stable if and only if ‖Sξ‖2 ≤ n/(n − 2) in the
case where n ≥ 3. �

In this paper, we say that Σn(s) is a stable small sphere if (n − 1)s2 ≤ 1, that is,
Index(Hι◦ξ ) = 0. In [6], the following theorem is proved.

THEOREM 5.3. Let M be a constant mean curvature hypersurface with constant length

of the second fundamental form in Sn+1(1). If ‖h‖2 < 2
√

n − 1, then M is locally a piece of

small sphere Σn(s), where s = √‖h‖2/(n + ‖h‖2).

Finally, we have the following theorem.

THEOREM 5.4. Let M be a compact orientable connected constant mean curvature

hypersurface with constant length of the second fundamental form in Sn+1(1) and ξ ∈
Γ (U(T ⊥M)). If Index(Hι◦ξ ) = 0 and n ≥ 4, then M is a stable small sphere Σn(s),

where s =
√

‖Sξ‖2/(n + ‖Sξ‖2).

PROOF. From Theorem 5.1, we obtain ‖Sξ‖2 ≤ n/(n − 2), and n/(n − 2) < 2
√

n − 1
holds if n ≥ 4. By Lemma 5.2 and Theorem 5.3, M is a stable small sphere Σn(s) with

s =
√

‖Sξ‖2/(n + ‖Sξ‖2). �
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