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1. Introduction and result

The name “Integral Geometry” was introduced by W. Blaschke in his book “Vorlesungen
über Integralgeometrie” and later elaborated by him and his colleagues in their subsequent
papers in the 30’s. Integral geometry treats integrations of geometric invariants of geometric
objects such as points, lines, submanifolds and elements of transformation groups.

Let G be a Lie group and K a closed subgroup of G. If M and N are submanifolds of
the Riemannian homogeneous space G/K . Then one of main topics in the present work will
compute the following integral

∫
G

vol(M ∩ gN)dµ(g) .

The Poincaré formula means equalities which represent the above integral by some geometric
invariants of submanifolds M and N of G/K . For example, in the case that G is the group
of isometries of Euclidean space Rn, and M and N are submanifolds of Rn; then the results
of above integral lead to remarkable integral formulas by Poincaré, Crofton and other integral
geometers. When G is the unitary group U(n+ 1) acting on complex projective space CPn,
M and N are complex submanifolds of CPn; then the evaluation of above integral leads to
the results obtained by L. A. Santaló [8] and R. Howard [4]. In the same case, if M is a
totally real submanifold and N a complex one, and M,N are totally real submanifolds, then
the evaluation of above integral gives the results of R. Howard [4]. The present author and
H. Tasaki [5], [6] gave the Poincaré formulas of real surfaces and complex hypersurfaces of
CPn, and of two real surfaces of CP 2 using the Kähler angle.

Recently, H. Tasaki [10] generalized the notion of the Kähler angle. Using this general-
ized Kähler angle, he obtained the Poincaré formula (see Section 3) of general submanifolds,
which are neither complex nor totally real submanifolds of CPn. Although this formula holds
under the general situation, it is difficult to give an explicit description through the concrete
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computation using the generalized Kähler angle of submanifolds, which is said to be multiple
Kähler angle. In the present paper, we attempt to explicitly describe this formula.

Most of the fundamental definitions, theorems and properties, which will be necessary
later, are listed in Sections 2 and 3. We shall review the multiple Kähler angle of a real vector
subspace of a complex vector space and its properties in Section 2, and the Poincaré formulas
obtained by R. Howard and H. Tasaki in Section 3.

In section 4 we give the Poincaré formula for any real 4-dimensional real submanifold
and any complex 2-dimensional complex submanifold of CP 4. More specifically,

THEOREM 1.1. LetM be a real 4-dimensional submanifold andN a complex 2-dimen-

sional submanifold of CP 4. Then we have∫
U(5)

�(M ∩ gN)dµ(g) = vol(U(5))vol(N)

vol(CP 2)2
·

∫
M

(
1

4
(1 + cos2(θ1)x)(1 + cos2(θ2)x)+ 1

8
sin2(θ1)x sin2(θ2)x

)
dµ(x) ,

where (θ1)x, (θ2)x is the multiple Kähler angle ofM at x.

On the other hand, Lê Hông Vân proved the following:

THEOREM 1.2 ([7]). For a real 4-dimensional submanifold M of CP 4, we have
∫
U(5)

�(M ∩ gCP 2)dµ(g) ≤ vol(U(5))

vol(CP 2)
vol(M) .

Moreover, the inequality becomes an equality if and only if M is a complex submanifold.

This inequality immediately follows from our theorem.

2. The multiple Kähler angle

In this section, we shall study the multiple Kähler angle generalized by H. Tasaki [10]
and its properties.

Let Cn be an n-dimensional complex vector space with the standard real inner product
〈·, ·〉 and almost complex structure J . The natural action of the unitary group U(n) on Cn

induces its action on the Grassmann manifold GR
2k(C

n) that consists of real 2k-dimensional
subspaces in Cn. We defined the multiple Kähler angle using the standard Kähler form ω on
Cn defined by ω(u, v) = 〈Ju, v〉 for u, v in Cn.

Let V be a real 2k-dimensional vector subspace in Cn with 2k ≤ n. Then we take a
canonical form of ω|V as an alternating 2-form, that is, we can take an orthonormal basis

α1, · · · , α2k of the dual space V ∗ which satisfies

ω|V =
k∑
i=1

cos θiα2i−1 ∧ α2i , 0 ≤ θ1 ≤ · · · ≤ θk ≤ π/2 .
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We set

θV = (θ1 · · · , θk) .
We call θV the multiple Kähler angle of V . We here remark that the action ofU(n) preserves
the multiple Kähler angle of V . If k = 1 then the multiple Kähler angle is nothing but the
Kähler angle (See [5] for definition). In the case where θ1 = · · · = θk = constant = θ , the
multiple Kähler angle was introduced as the slant angle by B.-Y. Chen and Y. Tazawa [1], [2].
In particular, V is a complex k-dimensional vector subspace if and only if θV = (0, · · · , 0),
that is, the slant angle θ = 0. And V is 2k-dimensional totally real vector subspace if and
only if the slant angle θ = π/2.

If n < 2k < 2n−1 then we shall define the multiple Kähler angle of real 2k-dimensional
vector subspace in Cn as that of its orthogonal complement V ⊥. Namely θV = θV⊥ .

The linear isotropy action of the complex projective space

CPn = U(n+ 1)/(U(1)× U(n))

on the tangent space at the origin is equivalent to the action of U(1)×U(n) on Cn defined by

(z,A)v = zvA∗

for (z,A) ∈ U(1)× U(n) and v ∈ Cn.

LEMMA 2.1 ([10]). Let G2k,θ be the set of real 2k-dimensional vector subspaces with
multiple Kähler angle θ = (θ1, · · · , θk) of Cn. Then, U(n) acts transitively on G2k,θ . More-
over, we put

V 2k
θ =

k∑
i=1

spanR{e2i−1, cos θi
√−1e2i−1 + sin θie2i} ,

where e1, · · · , en is the standard unitary basis of Cn. Then, we haveG2k,θ = U(n) · V 2k
θ .

The assumption, even dimensional, of the definition of multiple Kähler angle in this
section is not necessary. However, in the general case the definition becomes cluttered with
factors involving the symbol [ ], where [x] means the greatest integer [x] not greater than x.
In fact, H. Tasaki [10] defined it without assuming the dimension.

3. The Poincaré formula

In this section, we shall review the Poincaré formula on Riemannian homogeneous
spaces given by R. Howard [4], and on complex projective spaces given by H. Tasaki [10].

Let E be a finite dimensional real vector space with an inner product. For two vector
subspaces V and W of dimension p and q in E, take orthonormal bases v1, · · · , vp and
w1, · · · , wq of V and W , respectively, and define

σ(V,W) = |v1 ∧ · · · ∧ vp ∧w1 ∧ · · · ∧ wq | .
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This definition is independent of the choice of orthonormal bases. Furthermore, if p + q =
dimE, then

σ(V,W) = σ(V⊥,W⊥) .

Let G be a Lie group and K a closed subgroup of G. We assume that G has a left
invariant Riemannian metric that is also invariant under the right actions of elements of K .
This metric induces a G-invariant Riemannian metric on G/K . We denote by o the origin of
G/K . For x and y in G/K and vector subspaces V and W in Tx(G/K) and Ty(G/K), we
define σK(V,W) by

σK(V,W) =
∫
K

σ((dgx)−1
o V, dk−1

o (dgy)−1
o W)dµ(k)

where gx and gy are elements of G such that gxo = x and gyo = y. This definition is
independent of the choice of gx and gy in G such that gxo = x and gyo = y. With these facts,
the Poincaré formula for homogeneous spaces can be stated.

THEOREM 3.1 ([4]). Let M and N be submanifolds of G/K . Assume that dimM +
dimN = dim(G/K) and that G is unimodular. Then∫

G

�(M ∩ gN)dµ(g) =
∫
M×N

σK(T
⊥
x M, T

⊥
y N)dµ(x, y) ,

where �(X) denotes the number of points in X.

In general the actions of K on the Grassmann manifolds are not transitive. The function
σK(·, ·) is defined on the product of the Grassmann manifolds consisting of subspaces in
the tangent space at the origin. By the invariance of σK(·, ·) under the action of K , we can
consider σK(·, ·) as a function defined on the product of the orbit spaces of the actions ofK on
the Grassmann manifolds. We can apply this and the argument on the multiple Kähler angle
to the complex projective spaces. The following theorem is a special case of the Poincaré
formula of Theorem 8 in [10].

THEOREM 3.2 ([10]). For two even numbers p, q with p + q = 2n, we define

σnp,q(θ, τ ) =
∫
U(1)×U(n)

σ (V
p
θ , k

−1 · V qτ )dµ(k) ,

where θ = (θ1, · · · , θp/2) and τ = (τ1, · · · , τq/2). Let M and N be any real p-dimensional
and real q-dimensional submanifolds of CPn. Then we have∫

U(n+1)
�(M ∩ gN)dµ(g) =

∫
M×N

σnp,q(θTxM, τTyN )dµ(x, y) .

Theorems 3.1 and 3.2 hold in a general situation. However, σK in Theorem 3.1 and σnp,q
in Theorem 3.2 are not in concrete enough forms to be easily used. Moreover, there are few
results of the concrete calculation for σK or σnp,q . We now list the examples on CP 4. We may

rewrite them in the sense of σnp,q .
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THEOREM 3.3 ([4], [8]). Let M and N be complex 2-dimensional submanifolds of

CP 4. Then we have

σ 4
4,4(0, 0, 0, 0) = vol(U(5))

vol(CP 2)2
.

THEOREM 3.4 ([4]). LetM andN be complex 2-dimensional and totally real 4-dimen-

sional submanifolds of CP 4. Then we have

σ 4
4,4

(
0, 0,

π

2
,
π

2

)
= vol(U(5))

vol(CP 2)vol(RP 4)
,

where RP 4 is the 4-dimensional real projective space.

For CP 2, we have the following:

THEOREM 3.5 ([6]). For any real surfacesM and N of CP 2, we have

σ 2
2,2(θ, τ ) = vol(U(3))

vol(RP 2)2
(2 + 2 cos2 θx cos2 τy + sin2 θx sin2 τy) .

Up to this point, we unrestrainedly used the notation vol (M), the volume of the manifold
M . These values are, for example,

vol(RPn) = 1

2
vol(Sn),

vol(CPn) = 1

2π
vol(S2n+1),

vol(U(n+ 1)) = 1√
2

vol(U(n)) · vol(S2n+1) .

4. Proof of the main theorem

Let CPn be an n-dimensional complex projective space with almost complex structure
J , and letM a real 4-dimensional submanifold of CPn. For x inM , let θx = ((θ1)x, (θ2)x) be
the multiple Kähler angle of TxM in TxCPn. We call θx = ((θ1)x, (θ2)x) the multiple Kähler
angle of M at x.

Take a complex submanifold N of complex dimension 2. By Theorem 3.2, we have

∫
U(5)

�(M ∩ gN)dµ(g) =
∫
M×N

σ 4
4,4(θTxM, τTyN) dµ(x, y) .

We can simply write

σ((θ1)x, (θ2)x) = σ 4
4,4(θTxM, τTyN )
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by Corollary 2.1. We shall identify the tangent space of CP 4 with C4 and that of N with C2.

By the action of U(1)× U(4), we can identify TxM with V 4
θ which is spanned by

e1 = (1, 0, 0, 0) , e1(θ1) = (
√−1 cos θ1, sin θ1, 0, 0) ,

e3 = (0, 0, 1, 0) , e3(θ2) = (0, 0,
√−1 cos θ2, sin θ2) .

Then, we have

σ((θ1)x, (θ2)x) =
∫
U(1)×U(4)

σ (V 4
θ , k

−1 · C2)dµ(k)

= vol(U(1))
∫
U(4)

σ (V 4
θ , k

−1 · C2)dµ(k) .

Let e1, · · · , e4 be the standard unitary basis of C4. Then, we have

σ(V 4
θ , k

−1 · C2) = |(e1 ∧ e1(θ1) ∧ e3 ∧ e3(θ2)) ∧ k−1 · (e1 ∧ √−1e1 ∧ e2 ∧ √−1e2)|
= |(E1(θ1) ∧E3(θ2)) ∧ k−1 · E12| ,

where, to simplify notation, we have set

E1(θ1) := e1 ∧ e1(θ1) ,

E3(θ2) := e3 ∧ e3(θ2) ,

E12 := e1 ∧ √−1e1 ∧ e2 ∧ √−1e2 .

In order to integrate this over U(4), we shall use the compact symmetric pair (U(4), U(2)×
U(2)). See Section 3 in [11] for the statement of this compact symmetric pair.

u(4) = (u(2)+ u(2))+ m , m =
{[

0 X

−X∗ 0

] ∣∣∣∣ X ∈ M2(C)
}

is the canonical orthogonal direct sum decomposition of u(4) associated with the compact
symmetric pair (U(4), U(2) × U(2)). We here define the maximal abelian subspace a of m

by

a =







0 0 φ1 0
0 0 0 φ2

−φ1 0 0 0
0 −φ2 0 0




∣∣∣∣∣∣∣∣
φ1, φ2 ∈ R



.

Then we have the following set of positive restricted roots with respect to a

{φ1 − φ2, φ1 + φ2, 2φ1, 2φ2}
for a suitable ordering. Multiplicities of these roots are as follows:

φ1 − φ2 : 2 , φ1 + φ2 : 2 , 2φ1 : 1 , 2φ2 : 1 .
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Hence the fundamental cell in a is defined by π/2 ≥ φ1 ≥ φ2 ≥ 0. Let C be the image of the
fundamental cell by exponential mapping, and put B = U(2)× U(2). We define a mapping
ρ : B × C × B → U(4) by

ρ(s, a, t) = sat .

To apply the coarea formula to this mapping ρ, we give the following:

LEMMA 4.1 ([11]). Under the above situation, we have

vol(ρ−1(sat)) = 4vol(U(1))2 ,

J dρ(s,a,t) = 2 sin2(φ1 − φ2) sin2(φ1 + φ2) sin 2φ1 sin 2φ2 .

By Lemma 4.1 and the coarea formula we obtain∫
B×C×B

|E1(θ1) ∧ E3(θ2) ∧E12sat| Jdρdµ(s, a, t)

= 4vol(U(1))2
∫
U(4)

σ (V 4
θ , k

−1 · C2)dµ(k) .

We first integrate on B × B; then we get∫
B×B

|E1(θ1) ∧E3(θ2) ∧ (E12)sat|dµ(s, t)

= vol(U(2))2
∫
B

|(E1(θ1) ∧ E3(θ2))t
−1 ∧ (E12)a|dµ(t)

since (E12)s = E12 for all s ∈ U(2)× U(2). From t = (t1, t2) ∈ U(2)× U(2), it follows

|E1(θ1)t
−1 ∧ E3(θ2)t

−1 ∧ (E12)a| = |〈E1(θ1)t
−1
1 , ∗(E3(θ2)t

−1
2 ∧ (E12)a)| ,

where ∗ is Hodge star operator from ∧6
R(C

4) to ∧2
R(C

4). We here set

η := ∗(E3(θ2)(t2)
−1 ∧ (E12)a) .

Since the action of B is C2 invariant,∫
B

|(E1(θ1) ∧ E3(θ2))t
−1 ∧ (E12)a|dµ(t)

=
∫
U(2)×U(2)

|〈E1(θ1)t
−1
1 , P (η)〉|dµ(t1, t2) ,

where P : C4 → C2 is orthogonal projection. Let ψ be the Kähler angle of P(η). Needless
to say, ψ is a function with respect to θ2, t2 and a. By Theorem 3.5 we obtain

vol(U(1))
∫
U(2)×U(2)

|〈E1(θ1)t
−1
1 , P (η)〉|dµ(t1, t2)

= vol(U(3))

vol(RP 2)2

∫
U(2)

|P(η)|(2 + 2 cos2 θ1 cos2ψ + sin2 θ1 sin2 ψ)dµ(t2) .
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In the sequel, we have to compute the following:
∫
U(2)

|P(η)|(2 + 2 cos2 θ1 cos2ψ + sin2 θ1 sin2 ψ) dµ(t2)

Now in order to evaluate this we shall examine U(2) · (e1 ∧ e1(τ )) in some detail. We take
an orientation on C2 such that e1,

√−1e1, e2,
√−1e2 is a positive basis of C2 and the inner

product on ∧2
R(C

2) induced by that on C2. Let ∗ be the Hodge star operator on ∧2
R(C

2). Put

∧2+ = {ξ ∈ ∧2
R(C

2)| ∗ ξ = ξ} , ∧2− = {ξ ∈ ∧2
R(C

2)| ∗ ξ = −ξ} .
Then we have an orthogonal direct sum decomposition

∧2
R(C

2) = ∧2+ ⊕ ∧2− .

We define orthonormal bases Ai and Bi of ∧2+ and ∧2− by

A1 = 1√
2
(e1 ∧ √−1e1 + e2 ∧ √−1e2) ,

A2 = 1√
2
(e1 ∧ e2 − √−1e1 ∧ √−1e2) ,

A3 = 1√
2
(e1 ∧ √−1e2 + √−1e1 ∧ e2) ,

B1 = 1√
2
(e1 ∧ √−1e1 − e2 ∧ √−1e2) ,

B2 = 1√
2
(e1 ∧ e2 + √−1e1 ∧ √−1e2) ,

B3 = 1√
2
(e1 ∧ √−1e2 − √−1e1 ∧ e2) .

Then we obtain

∧2+ = SpanR{A1, A2, A3} , ∧2− = SpanR{B1, B2, B3} .
By a simple calculation we have

U(2) · (e1 ∧ e1(τ )) =
(

cos τ√
2
A1 + S1

(
sin τ√

2

))
× S2

(
1√
2

)
,

where S1(sin τ/
√

2) is the circle of radius sin τ/
√

2 in SpanR{A2, A3} and S2(1/
√

2) is the

2-dimensional sphere of radius 1/
√

2 in ∧2−.
Now we define a mapping p : U(2) → (e3 ∧ e3(θ2))U(2) by

p(k) = (e3 ∧ e3(θ2))k .
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As shown in [6], we have Jdp = 2
√

2 sin θ2. By the coarea formula we have

2
√

2 sin θ2

vol(SO(2))

∫
U(2)

|P(η)|(2 + 2 cos2 θ1 cos2ψ + sin2 θ1 sin2 ψ)dµ(t2)

=
∫
(E3(θ2))U(2)

|P(∗(ξ ∧E12a))| (2 + 2 cos2 θ1 cos2 ψ + sin2 θ1 sin2ψ)dµ(ξ) .

The variable ξ ∈ (E3(θ2))U(2) of above integral is represented by

ξ = cos θ2√
2
A′

1 + x2A
′
2 + x3A

′
3 + y1B

′
1 + y2B

′
2 + y3B

′
3

(
(x2)

2 + (x3)
2 = sin2 θ2

2
, (y1)

2 + (y2)
2 + (y3)

2 = 1

2

)
.

Here A′
i and B ′

i take ej+2,
√−1ej+2 instead of ej ,

√−1ej in above notation Ai and Bi . We
set

a :=




cosφ1 0 sin φ1 0
0 cosφ2 0 sin φ2

− sin φ1 0 cosφ1 0
0 − sin φ2 0 cosφ2


 ∈ C .

Then we obtain

P(∗(A′
1 ∧ (E12)a)) = cos2 φ1 sin2 φ2 · A1 − B1

2
+ sin2 φ1 cos2 φ2 · A1 + B1

2

= 1

2
(cos2 φ1 sin2 φ2 + sin2 φ1 cos2 φ2)A1 + 1

2
(cos2 φ2 − cos2 φ1)B1

P(∗(B ′
1 ∧ (E12)a)) = cos2 φ1 sin2 φ2 · A1 − B1

2
− sin2 φ1 cos2 φ2 · A1 + B1

2

= 1

2
(cos2 φ1 − cos2 φ2)A1 − 1

2
(cos2 φ1 sin2 φ2 + sin2 φ1 cos2 φ2)B1

Similarly we get

P(∗(A′
2 ∧ (E12)a)) = − cosφ1 cosφ2 sin φ1 sinφ2A2 ,

P (∗(A′
3 ∧ (E12)a)) = cosφ1 cosφ2 sin φ1 sin φ2A3 ,

P (∗(B ′
2 ∧ (E12)a)) = cosφ1 cosφ2 sin φ1 sin φ2B2 ,

P (∗(B ′
3 ∧ (E12)a)) = − cosφ1 cosφ2 sin φ1 sinφ2B3 .

Hence we have

2P(∗(ξ∧(E12)a))

=
(

cos θ2√
2
(cos2 φ1 sin2 φ2 + sin2 φ1 cos2 φ2)+ (cos2 φ1 − cos2 φ2)y1

)
A1
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− 2 cosφ1 cosφ2 sinφ1 sinφ2x2A2 + 2 cosφ1 cosφ2 sin φ1 sinφ2x3A3

+
(

cos θ2√
2
(cos2 φ2 − cos2 φ1)− (cos2 φ1 sin2 φ2 + sin2 φ1 cos2 φ2)y1

)
B1

+ 2 cosφ1 cosφ2 sinφ1 sinφ2y2B2 − 2 cosφ1 cosφ2 sin φ1 sinφ2y3B3 .

To simplify notation, we put

f (y1) := cos θ2

2
(cos2 φ1 sin2 φ2 + sin2 φ1 cos2 φ2)+ 1√

2
(cos2 φ1 − cos2 φ2)y1

then

|P(∗(ξ ∧ (E12)a))|2 = f (y1)
2 + cos2 φ1 cos2 φ2 sin2 φ1 sin2 φ2 sin2 θ2 .

Furthermore, from the expression of P(∗(ξ ∧ (E12)a)), we have

cosψ = f (y1)

|P(∗(ξ ∧ (E12)a))| .

Hence the integrand of the above integral over (e3 ∧ e3(θ2))U(2) is

|P(∗(ξ ∧ (E12)a))|(2 + 2 cos2 θ1 cos2 ψ + sin2 θ1 sin2ψ)

= 2(1 + cos2 θ1)|P(∗(ξ ∧ (E12)a))|

− (3 cos2 θ1 − 1)
cos2 φ1 cos2 φ2 sin2 φ1 sin2 φ2 sin2 θ2

|P(∗(ξ ∧ (E12)a))| .

Therefore it is sufficient to compute the following:∫
S1(sin θ2/

√
2)×S2(1/

√
2)
α(f (y1), a)dµ(x, y) = 2π · sin θ2√

2

∫
S2(1/

√
2)
α(f (y1), a)dµ(y)

= 2π2 sin θ2

∫ 1/
√

2

−1/
√

2
α(f (t), a)dt ,

where

α(f (y1), a) = 2(1 + cos2 θ1) |P(∗(ξ ∧ (E12)a))|

− (3 cos2 θ1 − 1)
cos2 φ1 cos2 φ2 sin2 φ1 sin2 φ2 sin2 θ2

|P(∗(ξ ∧ (E12)a))| .

Then, long but simple calculation with some elementary integrals yields

∫ 1/
√

2

−1/
√

2
α(f (t), a)dt

=
√

2

2
· (1 + cos2 θ1)(1 + cos2 θ2)

cos4 φ1 sin4 φ2 − sin4 φ1 cos4 φ2

cos2 φ1 − cos2 φ2
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+ 2
√

2 sin2 θ1 sin2 θ2
sin2 φ1 sin2 φ2 cos2 φ1 cos2 φ2

cos2 φ1 − cos2 φ2
· log

cos2 φ1 sin2 φ2

sin2 φ1 cos2 φ2
.

It is known that

Jdρ = 2 sin2(φ1 − φ2) sin2(φ1 + φ2) sin 2φ1 sin 2φ2

= 2(cos2 φ1 − cos2 φ2)
2 sin 2φ1 sin 2φ2 .

Hence by routine computations we have
∫
C

cos4 φ1 sin4 φ2 − sin4 φ1 cos4 φ2

cos2 φ1 − cos2 φ2
Jdρdφ1dφ2 = 1

9

and ∫
C

sin2 φ1 sin2 φ2 cos2 φ1 cos2 φ2

cos2 φ1 − cos2 φ2
· log

cos2 φ1 sin2 φ2

sin2 φ1 cos2 φ2
Jdρdφ1dφ2 = 1

72
.

Summarizing, we obtain

σ((θ1), (θ2)) = π2vol(U(2))2vol(U(3))vol(SO(2))

4
√

2vol(U(1))2vol(RP 2)2

×
[
(1 + cos2 θ1)(1 + cos2 θ2)

2
· 1

9
+ 2 sin2 θ1 sin2 θ2 · 1

72

]
.

Here

π2vol(U(2))2vol(U(3))vol(SO(2))

4vol(U(1))2vol(RP 2)2
= 9

2
· vol(U(5))

vol(CP 2)2
,

so we have

σ((θ1), (θ2)) = vol(U(5))

vol(CP 2)2

[
1

4
(1 + cos2 θ1)(1 + cos2 θ2)+ 1

8
sin2 θ1 sin2 θ2

]
.

This completes the proof.

COROLLARY 4.2. Under the hypothesis of our Theorem, if M is a slant submanifold

of CP 4 then ∫
U(5)

�(M ∩ gN)dµ(g)

= vol(U(5))

vol(CP 2)2

(
1

4
(1 + cos2 θ)2 + 1

8
sin4 θ

)
vol(M)vol(N) ,

where θ is the slant angle of M .

REMARK 4.3. Complex and totally real submanifolds have constant multiple Kähler
angles 0 and π/2, respectively. Thus the formulas in Theorems 3.3 and 3.4 are special cases
of our theorem.
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REMARK 4.4. By the transfer principle in integral geometry (see [4] paragraph 3.5 on
pages 14–15), it is clear that our theorem holds for all complex space forms with isotropy
subgroup U(1)× U(4).
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