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1. Introduction

Let σ(u) and ℘(u) be the usual functions in the theory of elliptic functions. In the paper
[12] the author gave a natural generalization to the case of genus two for the two formulae

(−1)(n−1)(n−2)/21!2! · · · (n− 1)!σ(u
(1) + u(2) + · · · + u(n))

∏
i<j σ (u

(i) − u(j))

σ (u(1))nσ (u(2))n · · · σ(u(n))n

=

∣∣∣∣∣∣∣∣∣

1 ℘(u(1)) ℘ ′(u(1)) ℘ ′′(u(1)) · · · ℘(n−2)(u(1))

1 ℘(u(2)) ℘ ′(u(2)) ℘ ′′(u(2)) · · · ℘(n−2)(u(2))
...

...
...

...
. . .

...

1 ℘(u(n)) ℘ ′(u(n)) ℘ ′′(u(n)) · · · ℘(n−2)(u(n))

∣∣∣∣∣∣∣∣∣

(1.1)

discovered by Frobenius and Stickelberger [8], and

(−1)n−1(1!2! · · · (n− 1)!)2 σ(nu)
σ(u)n

2 =

∣∣∣∣∣∣∣∣∣

℘ ′ ℘ ′′ · · · ℘(n−1)

℘ ′′ ℘ ′′′ · · · ℘(n)

...
...

. . .
...

℘(n−1) ℘(n) · · · ℘(2n−3)

∣∣∣∣∣∣∣∣∣
(u) (1.2)

found earlier than the first one in the paper of Kiepert [10].

If we set y(u) = 1
2℘

′(u) and x(u) = ℘(u), then we have an equation y(u)2 = x(u)3 +
· · · , that is a defining equation of the elliptic curve to which the functions ℘(u) and σ(u)
are attached. Here the complex number u and the coordinates (x(u), y(u)) correspond by the
equality

u =
∫ (x(u),y(u))

∞
dx

2y
.
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Then (1.1) and (1.2) are easily rewritten as

(−1)(n−1)(n−2)/2
σ(u(1) + u(2) + · · · + u(n))

∏
i<j σ (u

(i) − u(j))

σ (u(1))nσ (u(2))n · · ·σ(u(n))n

=

∣∣∣∣∣∣∣∣∣

1 x(u(1)) y(u(1)) x2(u(1)) yx(u(1)) x3(u(1)) · · ·
1 x(u(2)) y(u(2)) x2(u(2)) yx(u(2)) x3(u(2)) · · ·
...

...
...

...
...

...
. . .

1 x(u(n)) y(u(n)) x2(u(n)) yx(u(n)) x3(u(n)) · · ·

∣∣∣∣∣∣∣∣∣

(1.3)

and

(−1)n−11!2! · · · (n− 1)! σ(nu)
σ(u)n

2

=

∣∣∣∣∣∣∣∣∣

x ′ y ′ (x2)′ (yx)′ (x3)′ · · ·
x ′′ y ′′ (x2)′′ (yx)′′ (x3)′′ · · ·
...

...
...

...
...

. . .

x(n−1) y(n−1) (x2)(n−1) (yx)(n−1) (x3)(n−1) · · ·

∣∣∣∣∣∣∣∣∣
(u) ,

(1.4)

respectively. The results in [12] should be regarded as a generalization of the formulae (1.3)
and (1.4) rather than (1.1) and (1.2).

The aim of this paper is to give a quite natural generalization of (1.3) and (1.4) and
the results in [12] to the case of genus three (see Theorem 3.2 and Theorem 4.2). While
our formulae for the case of genus two is attributed in [6] to an addition formula known as
Schottky-Klein, it is not so easy to transform Fay’s famous generalization of Shottky-Klein,
namely (44) in p. 33 of [7], into our formulae presented in this paper. This paper was written
before the recent paper [13] which extends our line to all of hyperelliptic curves. Although
the results of this paper is completely contained in that paper, the author believes that this
paper has worthwhile because of its explicitness.

Now we prepare the minimal fundamentals to explain our results. Let f (x) be a monic
polynomial of x of degree 7 over the field of complex numbers C. Assume that f (x) = 0 has

no multiple roots. Let C be the hyperelliptic curve defined by y2 = f (x). Then C is of genus
3 and it is ramified over the x-line at infinity. We denote by ∞ the unique point at infinity on

C. We regard C3 as the space of all values of the integrals, with their initial points ∞, of the
first kind with respect to a chosen ordered basis dx/2y, xdx/2y, x2dx/2y for the differentials

of the first kind. Let Λ ⊂ C3 be the lattice of their periods. So C3/Λ is the Jacobian variety

of C. We have an embedding ι : C ↪→ C3/Λ defined by P �→ (
∫ P
∞

dx
2y ,

∫ P
∞

xdx
2y ,

∫ P
∞

x2dx
2y ).

Therefore ι(∞) = (0, 0, 0) ∈ C3/Λ. We also have a canonical projection κ : C3 → C3/Λ.
An algebraic function on C, which we call a hyperelliptic function in this article, is regarded

as a function on a universal Abelian covering κ−1ι(C) (⊂ C3) of C. If u = (u1, u2, u3) is in
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κ−1ι(C), we denote by (x(u), y(u)) the coordinate of the corresponding point on C by

u1 =
∫ (x(u),y(u))

∞
dx

2y
, u2 =

∫ (x(u),y(u))

∞
xdx

2y
, u3 =

∫ (x(u),y(u))

∞
x2dx

2y

with appropriate choice of a path for the integrals.
The most important point of our approach is that we consider u = (u1, u2, u3) not

as a variable on C3 but as a set of dependent variables on κ−1ι(C). More concretely, our
generalization of (1.4) is obtained by replacing the sequence of functions in the right hand
side by the sequence

1 , x(u) , x2(u) , x3(u) , y(u) , x4(u) , yx(u) , · · · ,
consisting of the monomials of x(u) and y(u) displayed in ascending order according to the
order of their poles at u = (0, 0, 0), and by replacing the derivatives with respect to u ∈ C by

those with respect to u1 along κ−1ι(C); and then replacing the left hand side of (1.4) by

1!2! · · · (n− 1)!σ(nu)/σ2(u)
n2
,

where σ(u) = σ(u1, u2, u3) is an exponential function times a Riemann theta series and
σ2(u) = (∂σ/∂u2)(u). Therefore, the hyperelliptic function that is the right hand side of the

generalization of (1.4) can be naturally extended to a function on C3 via theta functions. We

should note that while the right hand side is no more than a function on κ−1ι(C), the left hand
side of this generalization of (1.4) is a function on the whole of C3. The main result of this
paper is to show that the left hand side of the expected generalization of (1.3) should be

σ(u(1) + u(2) + · · · + u(n))
∏
i<j σ3(u

(i) − u(j))

σ2(u(1))nσ2(u(2))n · · · σ2(u(n))n
,

where u(j) = (u
(j)

1 , u
(j)

2 , u
(j)

3 ) are variables on κ−1ι(C) and σ3(u) = (∂/∂u3)σ (u). We prove
the formula, roughly speaking, by comparing the divisors of the two sides of Theorem 3.2.
As the formula (1.4) is obtained by a limiting process from (1.3), our generalization of (1.4)
is obtained by similar limiting process from the generalization of (1.3).

Although this paper is almost entirely based on [12], several critical facts differ in the
genus three case. Sections 3 and 4 are devoted to generalizing (1.3) and (1.4), respectively.
We recall in Section 2 the necessary facts for Sections 3 and 4.

We use the following notations throughout the rest of the paper. We denote, as usual,
by Z and C the ring of rational integers and the field of complex numbers, respectively. In
an expression of the Laurent expansion of a function, the symbol (d◦(z1, z2, · · · , zm) ≥ n)

stands for the terms of total degree at least n with respect to the given variables z1, z2, · · · ,
zm. When the variables or the least total degree are clear from the context, we simply denote
them by (d◦ ≥ n) or by dots “· · · ”.

For cross references in this paper, we indicate a formula as (1.2), and each of Lemmas,
Propositions, Theorems and Remarks also as 3.4.
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2. The sigma function in genus three

In this Section we summarize the fundamental facts used in Sections 3 and 4. Detailed
treatment of these facts are given in [1], [2] and [3] (see also Section 1 of [11]).

Let

f (x) = λ0x
7 + λ1x

6 + λ2x
5 + λ3x

4 + λ4x
3 + λ5x

2 + λ6x + λ7 ,

where λ0, · · · , λ7 are fixed complex numbers. Assume that the roots of f (x) = 0 are different
from each other. Let C be a smooth projective model of the hyperelliptic curve defined by

y2 = f (x). Then the genus of C is 3. We denote by ∞ the unique point at infinity on C. In
this paper we suppose that λ0 = 1. The set of forms

ω1 = dx

2y
, ω2 = xdx

2y
, ω3 = x2dx

2y

is a basis of the space of differential forms of the first kind. We fix generators α1, α2, α3,
β1, β2, and β3 of the fundamental group of C such that their intersections are αi · αj =
βi · βj = 0, αi · βj = δij for i, j = 1, 2, 3. If we set

ω′ =



∫
α1
ω1

∫
α2
ω1

∫
α3
ω1∫

α1
ω2

∫
α2
ω2

∫
α3
ω2∫

α1
ω3

∫
α2
ω3

∫
α3
ω3


 , ω′′ =




∫
β1
ω1

∫
β2
ω1

∫
β3
ω1∫

β1
ω2

∫
β2
ω2

∫
β3
ω2∫

β1
ω3

∫
β2
ω3

∫
β3
ω3


 ,

the lattice of periods of our Abelian functions appearing below is given by

Λ = ω′

Z

Z
Z


 + ω′′


Z

Z
Z


(⊂ C3) .

Let J be the Jacobian variety of the curve C. We identify J with the Picard group Pic◦(C)
of linear equivalence classes of the divisors of degree 0 of C. Let Sym3(C) be the symmetric
product of three copies of C. Then we have a birational map

Sym3(C) → Pic◦(C) = J

(P1, P2, P3) �→ the class of P1 + P2 + P3 − 3 · ∞ .
(2.1)

We may also identify (the C-rational points of) J with C3/Λ. We denote by κ the canonical

map C3 → C3/Λ and by ι the embedding of C into J given by mapping P to the class of P −
∞. The image of the triples of the form (P1, P2,∞), by the birational map (2.1), is a theta
divisor of J , and is denoted by Θ . The image ι(C) is obviously contained in Θ . We denote

by O the origin of J . Obviously Λ = κ−1(O) = κ−1ι(∞).

LEMMA 2.2. As a subvariety of J , the divisor Θ is singular only at the origin of J .

A proof of this fact is seen, for instance, in Lemma 1.7.2(2) of [12].
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Let

η1 = (λ4x + 2λ3x
2 + 3λ2x

3 + 4λ1x
4 + 5x5)dx

2y
,

η2 = (λ2x
2 + 2λ1x

3 + 3x4)dx

2y
,

η3 = x3dx

2y
.

Then η1, η2, and η3 are differential forms of the second kind without poles except at ∞ (see
[1, p. 195, Ex.i] or [2, p. 314]). We also introduce matrices

η′ =



∫
α1
η1

∫
α2
η1

∫
α3
η1∫

α1
η2

∫
α2
η2

∫
α3
η2∫

α1
η3

∫
α2
η3

∫
α3
η3


 , η′′ =




∫
β1
η1

∫
β2
η1

∫
β3
η1∫

β1
η2

∫
β2
η2

∫
β3
η2∫

β1
η3

∫
β2
η3

∫
β3
η3


 .

The modulus of C is Z := ω′−1
ω′′. If we set

δ′′ =
[

1

2

1

2

1

2

]
, δ′ =

[
3

2
1

1

2

]
,

then the sigma function attached to C is defined, as in [3], by

σ(u) = c exp

(
− 1

2
uη′ω′−1 tu

)

·
∑
n∈Z3

exp

[
2π

√−1

{
1

2
t (n+ δ′′)Z(n+ δ′′)+ t (n+ δ′′)(ω′−1 tu+ δ′)

}] (2.3)

with a constant c. This constant c is fixed by the following lemma. This function σ(u) is an
even function ([2], p. 359).

LEMMA 2.4. The Taylor expansion of σ(u) at u = (0, 0, 0) is, up to a multiplicative
constant, of the form

u1u3 − u2
2 − λ7

3
u1

4 − λ6

3
u1

3u2 − λ5

2
u1

2u2
2 − λ4

3
u1u2

3 − λ3

3
u2

4 + 2λ5

3
u1

3u3

− λ2

3
u2

3u3 − λ1

2
u2

2u3
2 + λ1

6
u1u3

3 − λ0

3
u2u3

3 + (d◦ ≥ 6) , (λ0 = 1) ,

with the coefficient of the term u3
6 being λ0

45 .

Lemma 2.4 is proved in Proposition 2.1.1(3) of [11] by the same argument of [1], p. 96.
We fix the constant c in (2.3) such that the expansion is exactly of the form in 2.4.

LEMMA 2.5. Let � be an element of Λ. The function u �→ σ(u) on C3 satisfies the
translational formula

σ(u+ �) = χ(�)σ (u) expL(u+ �, �) ,
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where χ(�) = ±1 is independent of u, L(u, v) is a form which is bilinear over the real field

and C-linear with respect to the first variable u, and L(�(1), �(2)) is 2π
√−1 times an integer

if �(1) and �(2) are in Λ.

The detail of 2.5 is given in [11], p. 286 and Lemma 3.1.2 of [11].

We remark here that the mapping u �→ −u gives involutions of κ−1(Θ) and of κ−1ι(C).

LEMMA 2.6. Suppose u ∈ κ−1ι(C).

(1) The function σ(u) on C3 vanishes if and only if u ∈ κ−1(Θ).

(2) Suppose that v(1), v(2), v(3) are three points of κ−1ι(C). The function u �→ σ(u −
v(1) − v(2) − v(3)) is identically zero if and only if v(1) + v(2) + v(3) is contained in κ−1(C).

If the function is not identically zero, it vanishes only at u = v(j) moduloΛ for j = 1, 2, 3 of
order 1 or of multiple order according to the coincidence of some of the three points.

(3) Let v be a fixed point of κ−1ι(C). There exist two points v(1) and v(2) of κ−1ι(C)

such that the function u �→ σ(u − v − v(1) − v(2)) on κ−1ι(C) is not identically zero and
vanishes at u = v moduloΛ of order 1.

PROOF. The assertions 2.6(1) and (2) are proved in [1], pp. 252–258, for instance.
(This is essentially Riemann’s vanishing theorem.) The assertion (3) obviously follows from
(2). �

We introduce the functions

℘jk(u) = − ∂2

∂uj∂uk
log σ(u) , ℘jk···r (u) = ∂

∂uj
℘k···r (u)

which are defined by Baker. Lemma 2.5 shows that these functions are periodic with respect
to the lattice Λ. By 2.6(1) we know that the functions ℘jk(u) and ℘jk�(u) have their poles
alongΘ . We also use the notation

σj (u) = ∂

∂uj
σ (u) , σjk···r (u) = ∂

∂uj
σk···r (u) .

Let u = (u1, u2, u3) be an arbitrary point in C3. Then by the Abel-Jacobi theorem we
can find a set of three points (x1, y1), (x2, y2), and (x3, y3) on C such that

u1 =
∫ (x1,y1)

∞
ω1 +

∫ (x2,y2)

∞
ω1 +

∫ (x3,y3)

∞
ω1 ,

u2 =
∫ (x1,y1)

∞
ω2 +

∫ (x2,y2)

∞
ω2 +

∫ (x3,y3)

∞
ω2 ,

u3 =
∫ (x1,y1)

∞
ω3 +

∫ (x2,y2)

∞
ω3 +

∫ (x3,y3)

∞
ω3

(2.7)

with certain choices for the three paths in the integrals. If (u1, u2, u3) does not belongs to

κ−1(Θ), the set of the three points is uniquely determined. In this situation, one can show the
following.
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LEMMA 2.8. With the notation above, we have

℘13(u) = x1x2x3 , ℘23(u) = −x1x2 − x2x3 − x3x1 , ℘33(u) = x1 + x2 + x3 .

For a proof of this, see [2], p. 377. This fact depends essentially on the choices we made
for the forms ωj and ηj .

LEMMA 2.9. If u = (u1, u2, u3) is on κ−1ι(C), then we have

u1 = 1

5
u3

5 + (d◦(u3) ≥ 6) , u2 = 1

3
u3

3 + (d◦(u3) ≥ 4)

in a neighborhood of u3 = 0.

This is mentioned in [11], Lemma 2.3.2(2). If u is a point on κ−1ι(C), the x- and y-

coordinates of ι−1κ(u) will be denoted by x(u) and y(u), respectively. As is shown, for
instance, in Lemma 2.3.1 of [11], we see the following.

LEMMA 2.10. If u ∈ κ−1ι(C) then

x(u) = 1

u3
2 + (d◦ ≥ 0) , y(u) = − 1

u3
7 + (d◦ ≥ −5)

in a neighborhood of u3 = 0.

LEMMA 2.11. (1) Let u be an arbitrary point on κ−1ι(C). Then σ2(u) is 0 if and

only if u belongs to κ−1(O).
(2) The Taylor expansion of the function σ2(u) on κ−1ι(C) at u = (0, 0, 0) is of the

form

σ2(u) = −u3
3 + (d◦(u3) ≥ 5) .

PROOF. For (1), assume that u ∈ κ−1ι(C) and u 
∈ κ−1(O). Then with the notation of
(2.7) we have

σ1(u)

σ2(u)
= ℘13(u)

℘23(u)
= x1x2x3

−x1x2 − x2x3 − x3x1

∣∣∣
x1=x2=∞ = −x(u), σ3(u)

σ2(u)
= ℘33(u)

℘23(u)
= 0

by using 2.6(1) and 2.8. Hence it must be σ3(u) = 0 by the second formula. If σ2(u) = 0
then the first formula yields σ1(u) = 0. This contradicts to 2.2, 2.6(1) and (2). So it must be
σ2(u) 
= 0. The assertion (2) follows from 2.4 and 2.9. �

LEMMA 2.12. Let u be a point on κ−1(Θ). The function σ3(u) vanishes if and only if

u ∈ κ−1ι(C).

PROOF. We have already proved in the proof of 2.10 that if u ∈ κ−1ι(C) then σ3(u) =
0. So we prove the converse. Assume that u ∈ κ−1(Θ), u 
∈ κ−1ι(C), and u corresponds to
the triplet of points (x1, y1), (x2, y2), and (x3, y3) = ∞ by (2.7). Then we have

σ1(u)

σ3(u)
= ℘13(u)

℘33(u)
= −x1x2 ,

σ2(u)

σ3(u)
= ℘23(u)

℘33(u)
= −x1 − x2
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by using 2.6(1) and 2.8. If σ3(u) = 0, then the second formula says that σ2(u) = 0, and
the first one says that σ1(u) = 0. This contradicts 2.2 by 2.6(1) and (2). So it must be that
σ3(u) 
= 0. �

LEMMA 2.13. Let v be a fixed point in κ−1ι(C) different from any point of κ−1(O).
Then the function

u �→ σ3(u− v)

defined on κ−1ι(C) vanishes to order 2 at u = (0, 0, 0). Precisely, one has

σ3(u− v) = σ2(v)u3
2 + (d◦(u3) ≥ 3)

in a neighborhood of u3 = 0.

PROOF. Since u − v is on Θ , we have σ(u − v) = 0. We assume that u corresponds
the triplet (x1, y1), ∞, and ∞; and that v corresponds to the triplet (x2, y2), ∞, and ∞. Then
2.6(1), 2.8 and 2.10 imply that

σ3(u− v)

σ2(u− v)
= σ3

2 − σ33σ

σ2σ3 − σ23σ
(u− v)

= ℘33

℘23
(u− v)

= − x1 + x2 + x3

x1x2 + x2x3 + x3x1

∣∣∣
x3=∞

= − 1

x1 + x2

= − 1(
1

u3
2 + · · ·

)
+ x2

= −u3
2 + · · · .

Since σ2(−v) = −σ2(v), the desired formula follows. �

LEMMA 2.14. Let v be a fixed point in κ−1ι(C) different from any points in κ−1(O).
Then the function

u �→ σ3(u− v)

on κ−1ι(C) has a zero of order 1 at u = v.

PROOF. We denote by
duj
dx

the derivative of the function u �→ uj on κ−1ι(C) by x(u).
Since

d(uj − vj )

d(u1 − v1)
= d(uj − vj )

duj

duj

du1

du1

d(u1 − v1)
= duj

du1
= duj

dx

dx

du1
= xj−1(u) (2.15)
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for j = 2 and 3, we see

uj − vj = xj−1(v)(u1 − v1)+ (d◦(u1 − v1) ≥ 2) .

There exist two points v(1) and v(2) in κ−1ι(C) such that the function u �→ σ(u− v − v(1) −
v(2)) on κ−1ι(C) is not identically zero and vanishes at u = v of order 1 by 2.6(3). Let m
be the vanishing order of the function u �→ u1 − v1. We show that m = 1 as follows. Then
the vanishing orders of u �→ uj − vj (j = 2, 3) are equal to or larger than m by (2.15).
Furthermore the expansion

σ(u− v − v(1) − v(2))

= σ1(−v(1) − v(2))(u1 − v1)+ σ2(−v(1) − v(2))(u2 − v2)

+ σ3(−v(1) − v(2))(u3 − v3)+ (d◦(u1 − v1, u2 − v2, u3 − v3) ≥ 2)

shows that the vanishing order of u �→ σ(u − v − v(1) − v(2)) is higher than or equal to m.
Hence m must be 1. On the other hand, 2.4 and (2.15) imply that

σ3(u− v) = (u1 − v1)+ (d◦(u1 − v1) ≥ 2) .

Thus the statement follows. �

LEMMA 2.16. If u is a point of κ−1ι(C), then

σ3(2u)

σ2(u)4
= −2y(u) .

PROOF. We first prove that the left hand side is a function on ι(C). The function
σ(2u)/σ(u)4 is a function on J by 2.5 and Liouville’s theorem for functions of several vari-

ables (see for example [12], Prop. 3.2.2 or Lemma 4.4.1). For u /∈ κ−1ι(C), after multiplying

℘333(2u)

℘33(2u)℘22(u)2
= −2σ3

3 + 3σ3σ33σ − σ333σ
2

σ3
2 − σ33σ

(2u) ·
(

σ 2

σ2
2 − σ22σ

)2

(u)

by the function σ(2u)/σ(u)4, bringing u first onto κ−1(Θ) and then close to any point of

κ−1ι(C), we obtain the left hand side of the desired formula. Here we have used the fact
that u �→ σ3(2u) does not vanish for generic u, which follows from 2.9. Thus the function

σ3(2u)/σ2(u)
4 is a function on ι(C), that is

σ3(2(u+ �))

σ2(u+ �)4
= σ3(2u)

σ2(u)4

for u ∈ κ−1(C) and � ∈ Λ. Lemma 2.11(1) states this function has its only pole at u =
(0, 0, 0)moduloΛ. Lemma 2.4 and 2.11(2) give that its Laurent expansion at u = (0, 0, 0) is

2
(

1
5u3

5
)

− λ0 · 2
(

1
3u3

3
)
(2u3)

2 + 6λ0
45 (2u3)

5 + · · ·
(−u3

3 + · · · )4 = 2

u3
7 + · · · .
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Here we have used the assumption λ0 = 1. Because this is an odd function, it must be −2y(u)
by 2.10 �

DEFINITION-PROPOSITION 2.17. Let n be a positive integer. If u ∈ κ−1ι(C), then

ψn(u) := σ(nu)

σ2(u)n
2

is periodic with respect to Λ. In other words it is a function on ι(C).

This is proved by a similar argument of 2.16. For details, see Proposition 3.2.2 in [12],
p. 396. By 2.11(2) the function ψn(u) has its only pole at u = (0, 0, 0) modulo Λ. Hence it
is a polynomial in x(u) and y(u).

3. A generalization of the formula of Frobenius and Stickelberger

The following formula is a natural generalization of the corresponding formula for
Weierstrass’ functions σ(u) and ℘(u), that is (1.3) for n = 1.

PROPOSITION 3.1. If u and v are two points in κ−1ι(C), then

σ3(u+ v)σ3(u− v)

σ2(u)
2σ2(v)

2
=

∣∣∣∣ 1 x(u)

1 x(v)

∣∣∣∣ .
PROOF. If we regard u to be a variable on C3, we see that the function

u �→ σ(u+ v)σ (u− v)

σ (u)2σ(v)2

is a periodic function with respect to Λ as in the proof of 2.16. After multiplying

−1

2

℘333

℘33
(u+ v)

℘333

℘33
(u− v)

℘22(u)℘22(v)

to the function above, bringing u and v close to points on κ−1ι(C), we have the left hand side
of the claimed formula because of σ(u ± v) = σ(u) = σ(v) = 0 by 2.6(1) (or (2)) and also
σ3(u) = σ3(v) = 0. So the left hand side as a function of u is periodic with respect to Λ.
Now we compare divisors modulo Λ of the two sides. The left hand side has its only pole
at u = (0, 0, 0) modulo Λ by 2.11(1). The two zeroes modulo Λ of the two sides coincide
by 2.12 (or 2.14). Lemmas 2.11(2) and 2.13 give its Laurent expansion at u = (0, 0, 0) as
follows:

−σ2(v)(u3
2 + · · · )σ2(v)(u3

2 + · · · )
(−u3

3 + · · · )2σ2(v)2
= − 1

u3
2

+ · · · .

The leading term of this coincides with that of the right hand side by 2.10. Hence the desired
formula holds for all v. �
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Our generalization of the formula (1.3) in the Introduction is the following.

THEOREM 3.2. Let n ≥ 3 be an integer. Assume that u(1), u(2), · · · , u(n) belong to

κ−1ι(C). Then

(−1)(n−2)(n−3)/2
σ(u(1) + u(2) + · · · + u(n))

∏
i<j σ3(u

(i) − u(j))

σ2(u(1))nσ2(u(2))n · · ·σ2(u(n))n

is equal to
∣∣∣∣∣∣∣∣

1 x(u(1)) x2(u(1)) x3(u(1)) y(u(1)) x4(u(1)) yx(u(1)) · · · x(n+1)/2(u(1)) yx(n−5)/2(u(1))

1 x(u(2)) x2(u(2)) x3(u(2)) y(u(2)) x4(u(2)) yx(u(2)) · · · x(n+1)/2(u(2)) yx(n−5)/2(u(2))

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

1 x(u(n)) x2(u(n)) x3(u(n)) y(u(n)) x4(u(n)) yx(u(n)) · · · x(n+1)/2(u(n)) yx(n−5)/2(u(n))

∣∣∣∣∣∣∣∣
or∣∣∣∣∣∣∣∣

1 x(u(1)) x2(u(1)) x3(u(1)) y(u(1)) x4(u(1)) yx(u(1)) · · · yx(n−6)/2(u(1)) x(n+2)/2(u(1))

1 x(u(2)) x2(u(2)) x3(u(2)) y(u(2)) x4(u(2)) yx(u(2)) · · · yx(n−6)/2(u(2)) x(n+2)/2(u(2))

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

1 x(u(n)) x2(u(n)) x3(u(n)) y(u(n)) x4(u(n)) yx(u(n)) · · · yx(n−6)/2(u(n)) x(n+2)/2(u(n))

∣∣∣∣∣∣∣∣
according as n is odd or even. Here both of the matrices are of size n× n.

PROOF. We prove this Theorem by induction on n. By the continuity, we may assume

that u(1), · · · , u(n) are distinct and not negative of each other modulo Λ. First of all we prove

the case of n = 3, namely, by denoting u(3) = u, the formula

σ(u(1) + u(2) + u)σ3(u
(1) − u(2))σ3(u

(1) − u)σ3(u
(2) − u)

σ2(u)3σ2(u(1))3σ2(u(2))3
=

∣∣∣∣∣∣
1 x(u) x2(u)

1 x(u(1)) x2(u(1))

1 x(u(2)) x2(u(2))

∣∣∣∣∣∣
for u(1), u(2), and u in κ−1ι(C). To prove this, we consider the function

u �→ σ(u(1) + u(2) + u)σ(u(1) − u(2))σ (u(1) − u)σ(u(2) − u)

σ(u(1))3σ(u(2))3σ(u)3

on C3, where u(1) and u(2) are any points not on κ−1ι(C). We see that this function of u
is a periodic function with respect to the lattice Λ as in the proof of 2.16 and 3.1. After
multiplying

℘333

℘33
(u(1) − u)

℘333

℘33
(u(2) − u)

℘333

℘33
(u(1) − u(2))

℘222

℘22
(u)

℘222

℘22
(u(1))

℘222

℘22
(u(2))

by the function above, by bringing u(1), u(2), and u close to points on κ−1ι(C), we have the

left hand side of the claimed formula. Here we have used the fact that σ(u−u(1)), σ(u−u(2)),
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and σ(u(1) − u(2)) vanish for u, u(1), and u(2) on κ−1ι(C) by Lemma 2.6(2). So the left hand

side as a function of u on κ−1ι(C) is periodic with respect to Λ. Now we regard both sides

to be functions of u on κ−1ι(C). We see the left hand side has its only pole at u = (0, 0, 0)

modulo Λ by 2.11(1), and has its zeroes at u = ±u(1) and u = ±u(2) modulo Λ by 2.6(2),
2.12. All these zeroes are of order 1 by 2.6(2) and 2.14. Its Laurent expansion at u = (0, 0, 0)
is given by 2.11(2) and 2.13 and is as follows:

σ3(u
(1) + u(2))σ2(u

(1))σ2(u
(2))σ3(u

(1) − u(2))

σ2(u(1))3σ2(u(2))3

(
1

u3
4 + · · ·

)
.

The right hand side has a leading term∣∣∣∣1 x(u(1))

1 x(u(2))

∣∣∣∣
(

1

u3
4 + · · ·

)
.

Hence the leading terms of these expansions coincide by 3.1, and the sides must be equal.
This completes the proof of the case n = 3.

The proof of the general step of induction is as follows. Assume that u(1), u(2), · · · , u(n)

and u = u(n+1) belong to ι(C). Then we want to prove the equality

− σ(u(1) + u(2) + · · · + u(n) + u)
∏n
j=1 σ3(u

(j) − u)
∏
i<j σ3(u

(i) − u(j))

σ2(u(1))n+1σ2(u(2))n+1 · · · σ2(u(n))n+1σ2(u)n+1

=

∣∣∣∣∣∣∣∣∣∣∣

1 x(u(1)) x2(u(1)) x3(u(1)) y(u(1)) · · ·
1 x(u(2)) x2(u(2)) x3(u(2)) y(u(2)) · · ·
...

...
...

...
...

. . .

1 x(u(n)) x2(u(n)) x3(u(n)) y(u(n)) · · ·
1 x(u) x2(u) x3(u) y(u) · · ·

∣∣∣∣∣∣∣∣∣∣∣
.

We obviously see that the left hand side of the formula above, as a function of u, is periodic
with respect to Λ by similar argument as in the case of n = 3, and that it has its only pole at

u = (0, 0, 0) modulo Λ. The order of the pole is (n + 1) × 3 coming from σ2(u)
n+1 minus

n× 2 coming from σ3(u
(j) − u) for j = 1, 2, · · · , n; and that is equal to n+ 3. We know, by

2.14 that there are n obvious zeroes at u = u(j) moduloΛ of order 1 coming from σ(u(j)−u).
These are also zeroes of the right hand side. Since the right hand side is a polynomial of x(u)
and y(u), it has its only pole at u = (0, 0, 0) modulo Λ. Its order is n + 3 coming from the
(n+1, n+1)-entry. So we denote the rest of the zeroes moduloΛ of the right hand side by α,
β, and γ . Then the theorem of Abel-Jacobi implies that u(1)+u(2)+· · ·+u(n)+α+β+γ =
(0, 0, 0)moduloΛ. This means σ(u(1) + u(2) + · · · + u(n) + u) is equal to σ(u− α− β − γ )
times a trivial theta function. Hence these two sigma functions have the same zeroes. Since
the latter function has obviously zeroes at u = α, β, and γ modulo Λ by 2.6(2), the divisors
modulo Λ of two sides coincide. We can show, as in the proof of the case n = 3, that the
coefficients of the leading terms of the two sides in their Laurent expansions also coincide by
using the inductive hypothesis. Now the proof is completed. �
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4. Determinantal expression of generalized psi-functions

In this section we mention a generalization of the formula of (0.2) displayed in Intro-
duction. Our formula is a natural generalization of the formula given in Section 3 of [13].
Although we can extend this generalization further to all hyperelliptic curves as in [11], we
give here the case of genus three by a limiting process from 3.2.

The following formula is analogous to 3.1 in [13].

LEMMA 4.1. Let j be 1, 2, or 3. We have

lim
u→v

σ3(u− v)

uj − vj
= 1

xj−1(v)
.

PROOF. Because of 3.1 we have

x(u)− x(v)

uj − vj
= −σ3(u+ v)

σ2(u)2σ2(v)2
· σ3(u− v)

uj − vj
.

Now we bring uj close to vj . Then the limit of the left hand side is

lim
u→v

x(u)− x(v)

uj − vj
= dx

duj
(v) .

This is equal to 2y
xj−1 (v) by (2.7). The assertion follows from 2.16. �

Since our proof of the following Theorem is obtained by a quite similar argument (by
using 4.1) as in the case of genus two (see [13]), we leave the proof to the reader.

THEOREM 4.2. Let n ≥ 3 be an integer and j ∈ {1, 2, 3}. Assume that u belongs to

κ−1ι(C). Then the following formula for the function ψn(u) of 2.17 holds :

−(1!2! · · · (n− 1)!)ψn(u) = x(j−1)n(n−1)/2(u)

×

∣∣∣∣∣∣∣∣∣∣∣

x ′ (x2)′ (x3)′ y ′ (x4)′ (yx)′ (x5)′ · · ·
x ′′ (x2)′′ (x3)′′ y ′′ (x4)′′ (yx)′′ (x5)′′ · · ·
x ′′′ (x2)′′′ (x3)′′′ y ′′′ (x4)′′′ (yx)′′′ (x5)′′′ · · ·
...

...
...

...
...

...
...

. . .

x(n−1) (x2)(n−1) (x3)(n−1) y(n−1) (x4)(n−1) (yx)(n−1) (x5)(n−1) · · ·

∣∣∣∣∣∣∣∣∣∣∣
(u) .

Here the size of the matrix is n− 1 by n− 1. The symbols ′, ′′, · · · , (n−1) denote d
duj

,
(
d
duj

)2
,

· · · ,
(
d
duj

)n−1
, respectively.
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