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Abstract. We shall give a representation formula of super-minimal J-holomorphic curves of a nearly Kähler
6-dimensional sphere and construct a deformation of such J-holomorphic curves.

1. Introduction

In 1982, R. L. Bryant ([Br1]) obtained the construction of super-minimal J-holomorphic

curves in the nearly Kähler 6-dimensional sphere S6. We explain this method (so-called
twistor theory) as follows. The exceptional Lie group G2 coincides with the principal SU(3)-

bundle over S6 = G2/SU(3), we take the SU(3)-connection on this bundle. Let π : Q5 =
G2/U(2) → S6 = G2/SU(3) be the associated P 2(C) bundle of the principal SU(3)-bundle

over S6, where π denotes the projection. Then we can define the holomorphic horizontal

distribution H on Q5 with respect to the SU(3)-connection over S6. Next, we define the

exterior differential system L of the holomorphic cotangent bundle T ∗(1,0)Q5 (which is dual

to the subbundle L� of complex dimension 2 of H over S6 on which π∗ is complex linear with

respect to the canonical complex structure of Q5 and the almost complex structure of S6). If

we take a holomorphic map Ξ from a Riemann surface M2 to Q5 which is an integral curve
of L, then we can obtain a J-holomorphic curve π ◦ Ξ : M → S6. Such a J-holomorphic
curve is called super-minimal (or null torsion). In particular, R. L. Bryant proved that the
corresponding differential equation of the integral curve can be reduced to a 1st order linear
differential equation of one complex variable. The differential equation always has a solution
which can be represented by an arbitrary holomorphic function. Also, this equation relates to
the differential system of E. Cartan ([Ca]). R. L. Bryant gave a representation formula of the

integral curves of L in Q5 with respect to super-minimal J-holomorphic curves of S6 almost
explicitly, but, to calculate the Gauß curvature of such J-holomorphic curves, we need more
detailed information. In this paper, we write down the solution of the integral curves of L in
Q5, more explicitly, in order to calculate the 1st fundamental form and the Gauß curvature.
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In ([H3]), we proved that the 1st fundamental form of super-minimal J-holomorphic curves

(without branch points) of S6 is the only invariant under the left action of G2 on S6. As an

application, we obtain the 1-parameter family of super-minimal J-holomorphic curves of S6

which are not G2-congruent. The examples include a Boruvka sphere whose Gauß curvature
is identically 1/6. These examples will be useful to construct other invariant submanifolds,
for example, Lagrangian, CR 3-dimensional manifolds, and so on. (see [Ej], [HM], [DVV] ).

The author wishes to express his sincere thanks to Professors K. Sekigawa, K. Mashimo,
K. Tsukada for their many valuable suggestions, discussions and encouragement, and to the
refree for suggestions which improved the first version of the present paper.

2. Preliminaries

2.1. Notations. We denote by Mp×q (C) the set of p × q complex matrices and [a] ∈
M3×3(C) is given by

[a] =

 0 a3 −a2

−a3 0 a1

a2 −a1 0




where a =

a1

a2

a3


 ∈ M3×1(C). Then we have

[a]b + [b]a = 0

where a, b ∈ M3×1(C). Let 〈 , 〉 be the canonical inner product of O. For any x ∈ O, we
denote by x̄ the conjugate of x. We remark that the octonions may be regarded as the direct
sum Q ⊕ Q where Q is the quaternions.

2.2. Structure equation of G2. We recall the structure equations of (ImO, G2) which
were established by R. Bryant ([Br1]). The Lie group G2 is defined by

G2 = {g ∈ GL8(R) : g(uv) = g(u)g(v) for any u, v ∈ O} .

Now, we set a basis of C⊗R ImO by ε = (0, 1) ∈ Q ⊕ Q, E1 = iN , E2 = jN , E3 = −kN ,

E1 = iN̄ , E2 = jN̄ and E3 = −kN̄, where N = (1 − √−1ε)/2, N̄ = (1 + √−1ε)/2 ∈
C ⊗R O and {1, i, j, k} is the canonical basis of Q. A basis (u, f, f̄ ) of C⊗R ImO is said to
be admissible, if there exists g ∈ G2 ⊂ M7×7(C) such that

(u, f, f̄ ) = (g(ε), g(E), g(Ē)) = (ε, E, Ē)g .

We identify the element of G2 with the corresponding admissible basis. Then we have

PROPOSITION 2.1. There exist left invariant 1-forms κ and θ on G2; θ = (θ i) with
values in M3×1(C) and κ = (κj

i ), 1 ≤ i, j ≤ 3, with values in the 3 × 3 skew Hermitian
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matrices which satisfy trκ = 0, and

d(u, f, f̄ ) = (u, f, f̄ )


 0 −√−1 t θ̄

√−1 t θ

−2
√−1 θ κ [θ̄ ]

2
√−1 θ̄ [θ ] κ̄




= (u, f, f̄ )Φ .(2.1)

Then Φ satisfies dΦ = −Φ ∧ Φ, or equivalently,

dθ = −κ ∧ θ + [θ̄] ∧ θ̄ .(2.2)

dκ = −κ ∧ κ + 3θ ∧ t θ̄ − (t θ ∧ θ̄ )I3 .(2.3)

3. The exterior differential system L of Q5

In this section, we shall define the exterior differential system L of Q5. To define the
L, we need the complexification G2(C) of the exceptional Lie group G2 which is defined as
follows

G2(C) = {h ∈ GL(8, C) | 〈h(ũ), h(ṽ)〉 = 〈ũ, ṽ〉 ,

h(ũ) h(ṽ) = h(ũṽ) for any ũ, ṽ ∈ O ⊗ C} ,

where 〈 , 〉 and the product are the complex linear extension of the canonical Euclidean metric
and the product of O, respectively. Since G2 acts transitively on the 5-dimensional complex

quadrics Q5 = G2/U(2) in P 6(C), so does G2(C). We use a moving frame method of G2(C).

We remark that, if g ∈ G2 then we have g(u + √−1v) = g(u − √−1v) for any u, v ∈ O.

However, if h ∈ G2(C), then h(u + √−1v) 
= h(u − √−1v) for any u, v ∈ O in general.
For any h ∈ G2(C), we set

(z, f, g) = (h(ε), h(E), h(Ē)) = (ε,E, Ē)ρ(h)

where ρ(h) is an element of GL(7, C). We call (z, f, g) a G2(C) admissible frame. If we
restrict the element h ∈ G2(C) to G2, we obtain the G2-admissible frame which is preserves
the exterior product and the complex conjugation. However, a G2(C)-admissible frame does
not preserve the complex conjugation, in general. We shall write ρ(h) to h for brevity. In this
case, we see that

〈f1, f1〉 = 〈h(E1), h(E1)〉 = 0 .

REMARK 3.1. We have

〈ũũ, ũũ〉 = 〈ũ, ũ〉〈ũ, ũ〉 ,
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but

〈ũṽ, ũṽ〉 
= 〈ũ, ũ〉〈ṽ, ṽ〉 ,

for ũ, ṽ ∈ ImO ⊗ C, in general.

Next, we write down the structure equations of G2(C) which were obtained by R. L.
Bryant ([Br1]). Each element (z, f, g) of a G2(C) admissible frame can be considered as a
Im O ⊗ C- valued function on G2(C). Then we have

d(z, f, g) = (ε,E, Ē)dh = (z, f, g)Φ ,

where Φ = h−1dh is a left invariant g2(C)-valued 1-form. Then we have the integrability
condition dΦ + Φ ∧ Φ = 0. Calculating the multiplication table of the complexified product
of ImO ⊗ C, we have

PROPOSITION 3.2 (cf. Bryant [Br1]). The left invariant g2(C)-valued 1-form is given
by the following form

Φ =

 0 −ıtη ıt θ

−2ıθ κ [η]
2ıη [θ ] − t κ




where θ, η are M3×1(C)-valued holomorphic 1-forms, κ is a sl(3, C)-valued holomorphic

1-form on G2(C) and ı = √−1. The integrability conditions can be rewritten as follows:
dθ + κ ∧ θ − [η] ∧ η = 0 ,

dη − [θ ] ∧ θ − t κ ∧ η = 0 ,

dκ + κ ∧ κ − 2θ ∧ t η + [η] ∧ [θ ] = 0 .

REMARK 3.3. If we restrict an element h ∈ G2(C) to G2, we have η = θ̄ , κ is a
su(3)-valued 1-form, z = z̄ and g = f̄ , but in this case, the forms are not holomorphic on
G2.

To derive the differential equation of the integral curves of L of Q5, we set

θ =

θ1

θ2

θ3


 , η =


η1

η2

η3


 and κ =


κ1

1 κ2
1 κ3

1

κ1
2 κ2

2 κ3
2

κ1
3 κ2

3 κ3
3


 .

From the above representation, we have [f1] ∈ Q5 ⊂ P 6(C). By the structure equation,

df1 = z(−ıη1) +
3∑

i=1

fiκ1
i + g2(−θ3) + g3(θ

2) .

From this, we may identify the holomorphic cotangent bundle T ∗(1,0)Q5 with

spanC{η1, κ1
2, κ1

3,−θ3, θ2} .
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Hence the distribution L� is given by

L� = {v ∈ T (1,0)Q5 | η1(v) = κ1
2(v) = κ1

3(v) = 0} .

We shall define the exterior differential system L as the dual bundle of L�, that is, L =
spanC{θ2, θ3}. Since G2(C) acts transitively on Q5, we can define the map µ : G2(C) → Q5

as µ(h) = [h(E1)] = [f1] ∈ Q5 ⊂ P 6(C). Then the pull back bundle µ∗T ∗(1,0)Q5 can be
considered as a subspace of g2(C)-valued 1-forms, as follows:

µ∗T ∗(1,0) Q5 =







0 −ıη1 0 0 0 ıθ2 ıθ3

0 0 0 0 0 0 0
−2ıθ2 κ1

2 0 0 0 0 η1

−2ıθ3 κ1
3 0 0 0 −η1 0

2ıη1 0 θ3 −θ2 0 −κ1
2 −κ1

3

0 −θ3 0 0 0 0 0
0 θ2 0 0 0 0 0







.

The integrability conditions imply that

dθ2 = 0 ,

dθ3 = 0 ,

dη1 + 2 θ2 ∧ θ3 = 0 ,

dκ1
2 − 3 θ2 ∧ η1 = 0 ,

dκ1
3 − 3 θ3 ∧ η1 = 0 .

From which, we see that (locally)

θ2 = dx2 ,

θ3 = dx3 ,

η1 = dy − x2dx3 + x3dx2 ,

κ1
2 = dz2 + 3x2dy − (3/2)(x2)

2dx3 ,

κ1
3 = dz3 + 3x3dy + (3/2)(x3)

2dx2 ,

where (x2, x3, y, z2, z3) can be considered as a local holomorphic coordinate system of

Q5 (see [Ca]). More precisely, by Frobenius theorem and the 3rd theorem of Lie,
(x2, x3, y, z2, z3) is the coordinate centered at the identity of the 5-dimensional Lie subgroup
H of G2(C). Let h be an element of H near the identity, then h is given by the following form
with respect to the coordinate;



290 HIDEYA HASHIMOTO

h =


1 −ıy 0 0 0 ıx2 ıx3

0 1 0 0 0 0 0
−2ıx2 α1 1 0 0 x2

2 y + x2x3

−2ıx3 α2 0 1 0 −(y − x2x3) x3
2

2ıy α3 x3 −x2 1 −(z2 + 2x2y − x2
2x3/2) −(z3 + 2x3y + x3

2x2/2)

0 −x3 0 0 0 1 0
0 x2 0 0 0 0 1




where α1 = z2 + x2y − x2
2x3/2, α2 = z3 + x3y + x3

2x2/2, α3 = y2 + x3z2 − x2z3 −
x2

2x3
2 . In order to write the above form, we need the complexification G2(C) of G2.

LEMMA 3.4. The differential system of the integral curves of L can be reduced the
following form:

η1 = dw1 − w2dζ = 0 ,

κ1
2 = dw − w1dζ = 0 ,

κ1
3 = (3/4)(dz − w2

2dζ ) = 0 ,

where w1 = y − x2 x3, w2 = − 2x3, w = (1/3)(z2 +3 x2y − (3/2) x2
2x3), z = (4/3)(z3 +

(3/2)x3
2x2) , and x2 = ζ.

4. Integral curves of L of Q5

We shall give the explicit (local) solution of integral curves of L of Q5 associated to the

super-minimal J-holomorphic curves of S6.

PROPOSITION 4.1. Let Ξ : U → Q5 be the integral curve of L with Ξ(0) = E1.

Then Ξ : U → Q5 can be represented as follows, where U is a simply connected open set of
C which contains the origin 0 ∈ C.

Ξ(ζ ) = εα1(ζ ) + E1 · 1 + E2α2(ζ ) + E3α3(ζ ) + Ē1α4(ζ ) + Ē2α5(ζ ) + Ē3ζ

where

α1(ζ ) = (
√−1/2)[ζ(f "(ζ ) + f "(0)) − 2(f ′(ζ ) − f ′(0))] ,

α2(ζ ) = (1/2)ζ 2f "(ζ ) − ζ(2f ′(ζ ) + f ′(0)) + 3(f (ζ ) − f (0)) ,

α3(ζ ) = (1/2)f "(ζ )(f ′(0) − f ′(ζ ))

+ f "(0)[(1/2)(ζf "(ζ )) − f ′(ζ ) + f ′(0) + (1/4)(f "(0)ζ )] + (3/4)

∫ ζ

0
(f "(z))2dz ,

α4(ζ ) = f "(ζ )[−(3/2)f (ζ ) + (1/2)ζf ′(ζ ) + f ′(0)ζ + (1/4)(f "(0)ζ 2) + (3/2)f (0)]
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+ f ′(ζ )(f ′(ζ ) − f "(0)ζ − 2f ′(0)) + (3/2)f "(0)f (ζ ) − (3/4) ζ

∫ ζ

0
(f "(z))2dz

− (1/2)(f ′(0)f "(0)ζ ) − (3/2)f (0)f "(0) + (f ′(0))2,

α5(ζ ) = (1/2)(f "(ζ ) − f "(0)),

for an arbitrary holomorphic function f (ζ ) on U .

REMARK 4.2. We note that the quadric Q5 ⊂ P 6(C) is defined as follows

Q5 = {[w0 : w1 : · · · : w6] ∈ P 6(C)|(w0)
2 + w1 w4 + w2w5 + w3w6 = 0}

where [ ] denotes the homogeneous coordinate system of P 6(C).

From Theorem 4.1, we can easily prove the following

PROPOSITION 4.3. If the function f (ζ ) is a polynomial of the degree not greater than
3, then the corresponding immersions are totally geodesic.

PROOF. If we put f (ζ ) = a0 + a1ζ + a2ζ
2 + a3ζ

3, then we have α1 = α2 = α3 =
α4 = 0, and α5 = 3a3ζ, then the map

ıΞ × Ξ̄

〈Ξ, Ξ̄〉 = 1

1 + (9 |a3|2 + 1) |ζ |2 (ε ,E , Ē )




(1/2) {1 − (9 |a3|2 + 1) |ζ |2)}
0

−ıζ

ı(3a3ζ )

0
ıζ̄

−ı(3a3ζ )




is the corresponding J-holomorphic curve of S6. If we put v = E2 (−ı) + E3ı(3a3)√
(9 |a3|2 + 1)

, the

above J-holomorphic curve is contained in R3 ∩ S6 where R3 = Re(spanC(ε , v , v̄)). Hence
we get the desired result. �

5. Proof of Proposition 4.1

By Lemma 3.4, we obtain the solution of the integral curve of L in Q5 as follows:

(w1, w2, w, z, ζ ) =
(

f ′(ζ ), f ′′(ζ ), f (ζ ),

∫ ζ

f ′′(w)
2
dw, ζ

)
.

From this representation, we can get the integral curves of L. However, if we want to calculate

the J-holomorphic curves from M2 to S6 more explicitly, we need to solve the following 1st
order linear differential equation of one complex variable. (The reason for the ambiguity is
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the choice of the local coordinate system of Q5 and the G2(C)-frame on M2). We may put

(z, f, g) = (ε,E, Ē)h

where h = (hij )1≤i,j≤7 = (h1, h2, · · · , h7) is a G2(C)-valued function and each hi

is a M7×1(C)-valued function for 1 ≤ i ≤ 7, respectively. By Lemma 3.4, we have
x3 = −(1/2)f ′′. From this, in order to obtain the holomorphic horizontal curves, we may
solve the following:

dh

dζ
= h




0 0 0 0 0 ı −(ı/2)f ′′′
0 0 0 0 0 0 0

−2ı 0 0 0 0 0 0
ıf ′′′ 0 0 0 0 0 0

0 0 −(1/2)f ′′′ −1 0 0 0
0 (1/2)f ′′′ 0 0 0 0 0
0 1 0 0 0 0 0




.

We can solve the above differential equation with the initial condition h(0) = I7×7, and from

the relation Ξ = (ε ,E , Ē ) h2, we get the desired result. �

REMARK 5.1. (1) We note that Ξ coincide with f1. f1 is one element of the G2(C)-
admissible frame but not G2-frame, we need the normalization of the length of f1, to construct
a J-holomorphic curve.

(2) We shall write down the above differential equation more precisely, as follows:

dh1

dζ
= ı(−2h3 + f ′′′ h4) ,(5.1)

dh2

dζ
= (1/2)f ′′′h6 + h7 ,(5.2)

dh3

dζ
= −(1/2)f ′′′h5 ,(5.3)

dh4

dζ
= − h5 ,(5.4)

dh5

dζ
= 0 ,(5.5)

dh6

dζ
= ıh1 ,(5.6)

dh7

dζ
= −(ı/2)f ′′′ h1 .(5.7)

We can solve these equations in the following order, (5.5), (5.3), (5.4), (5.1), (5.6), (5.7) and
(5.2).
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If the map Ξ : M → Q5 is given as above, then the map

ıΞ × Ξ̄

〈Ξ, Ξ̄ 〉 : M → S6(5.8)

is a super-minimal J-holomorphic curve of S6. For later use, we represent (5.8) more explic-
itly. We put Ξ = (ε,E, Ē) t (α1, 1, α2, α3, α4, α5, ζ ). Then

ıΞ × Ξ̄

〈Ξ, Ξ̄ 〉 = 1

A
(ε,E, Ē)




(1/2){(1 + |α2|2 + |α3|2) − (|α4|2 + |α5|2 + |ζ |2)}
(α1 α4 − α1) − ı(α5 α3 − ζ α2)

(α1 α5 − α2 α1) − ı(ζ − α4 α3)

(α1 ζ̄ − α3 α1) − ı(α4 α2 − α5)

(α1 α4 − α1) − ı(α5 α3 − ζ α2)

(α1 α5 − α2 α1) − ı(ζ − α4 α3)

(α1 ζ̄ − α3 α1) − ı(α4 α2 − α5)




(5.9)

where A = |α1|2 + (1/2) {1 + |α2|2 + |α3|2 + |α4|2 + |α5|2 + |ζ |2}.

6. The case of monomial of degree 4

We apply the function f (ζ ) = (
√

15t/36)eıθζ 4 to Proposition 4.1, and, after that we

change the parameter ζ to
√

6z. Then the corresponding integral curve Ξt : P 1(C) → Q5 of
L is given by

Ξt(z) = (ε,E, Ē)




ı
√

10teıθ z3

1√
15teıθ z4

−√
6t e2ıθ z5

te2ıθ z6√
15teıθ z2√

6z




where z ∈ C, θ, t ∈ R and t ≥ 0. From this and (5.9), we obtain super-minimal J-holomorphic

curves of S6 as follows (also see [H2]):

xt (z) = ıΞt (z) × Ξt(z)

〈Ξt(z),Ξt (z)〉
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= 1

〈Ξt (z),Ξt (z)〉
(
ε,E, Ē

)




(1/2)(1 − 6p − 15tp2 + 15tp4 + 6t2p5 − t2p6)

ıe−ıθ
√

10tz̄3(1 + 3p + 3tp2 + tp3)

−ı
√

6z(1 − 5tp2 − 5tp3 + t2p5)

ı
√

15teıθ z2(1 + 2p − 2tp3 − tp4)

−ıeıθ
√

10tz3(1 + 3p + 3tp2 + tp3)

ı
√

6z̄(1 − 5tp2 − 5tp3 + t2p5)

−ı
√

15te−ıθ z̄2(1 + 2p − 2tp3 − tp4)




where p = zz̄ = |z|2 and

〈Ξt(z),Ξt (z)〉
= (1/2)(1 + 6p + 15tp2 + 20tp3 + 15tp4 + 6t2p5 + t2p6) = (1/2)τt(p) ≥ 1/2 .

We shall show that these maps are immersions. To prove this we shall prepare the following:

LEMMA 6.1. Let Ξ : M → Q5 be a integral curve of L. The map

x(ζ ) = ıΞ(ζ ) × Ξ(ζ )

〈Ξ(ζ ),Ξ(ζ )〉
is an immersion x from M to S6 if and only if

〈ıΞ ′(ζ ) × Ξ(ζ ), ıΞ ′(ζ ) × Ξ(ζ )〉 − |〈Ξ ′(ζ ),Ξ(ζ )〉|2
〈Ξ(ζ ),Ξ(ζ )〉2

> 0 ,

where Ξ ′(ζ ) = dΞ

(
∂

∂ζ

)
(ζ ).

PROOF. Since 〈x, x〉 = 1, we have

〈ıΞ ′(ζ ) × Ξ(ζ ), x〉 = 〈Ξ ′(ζ ) ,Ξ(ζ )〉 .

From this, and calculate the metric 〈dx( ∂
∂ζ

) , dx( ∂
∂ζ

)〉, we get the desired result. �

By direct calculation, we get

LEMMA 6.2.

〈ıΞt
′(z) × Ξt(z), ıΞt

′(z) × Ξt(z)〉 − |〈Ξt
′(z),Ξt (z)〉|2

= 3(1 + 10tp + 45tp2 + 120tp3 + 15t (5t + 9)p4 + 252t2p5

+ 15t (5t + 9)p6 + 120t3p7 + 45t3p8 + 10t3p9 + t4p10) = 3ft (p) > 0 .

REMARK 6.3. (1) If t = 0 and t = 1, then we have f0(p) = 1 and f1(p) = (1 +
p)10, respectively.
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(2) Since

lim
z→∞ |z|4 24(1 + 10tp + · · · + t4p10)

(1 + 6p + · · · + t2p6)2 =
{

2/3 if t = 0
24 if t > 0 ,

then the map xt (z) is an immersion at ∞ for any t ≥ 0.

By Lemma 6.1, 6.2 and (2) of Remark 6.3, we obtain

PROPOSITION 6.4. The 1-parameter family xt (z) of super-minimal J-holomorphic
curves does not have any branch point, for any t ≥ 0.

Next, to prove the 1-parameter family xt is a deformation of the super-minimal J-
holomorphic curves up to the action of G2, we calculate the Gauß curvature of the xt . We
may put the 1st fundamental form as follows:

ρ2(dx2 + dy2)

where z = x + ıy is a conformal coordinate of C. Then we have

ρ2 = 2

〈
dx

(
∂

∂z

)
, dx

(
∂

∂z

)〉
.(6.1)

The Gauß curvature K is given by

K = − 2

ρ2

{
∂

∂z

(
∂ log ρ2

∂z̄

)}
.(6.2)

By Lemmas 6.1 and 6.2, we have

ρt
2 = 24(1 + 10tp + · · · + t4p10)

(1 + 6p + · · · + t2p6)2 .(6.3)

REMARK 6.5. If t = 0 and t = 1, then we have ρ2 = 24

(1 + 6p)2 , K = 1 and

ρ2 = 24

(1 + p)2 , K = 1/6 respectively.

Next we shall give the representation of the Gauß curvature Kt(z) of xt (z). We set

10∑
k=0

bkp
k = ft (p) = 1 + 10tp + · · · + t4p10 ,(6.4)

6∑
k=0

akp
k = τt (p) = 1 + 6p + · · · + t2p6 .(6.5)
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Then we have

ρt
2 =

24
10∑

k=0

bkp
k

( 6∑
k=0

akp
k

)2
.(6.6)

By (6.2) and (6.6), we have

Kt(z) = −

( 6∑
k=0

akp
k

)2

12

( 10∑
k=0

bkp
k

)




( 10∑
k=1

k2bkp
k−1

)( 10∑
l=0

blp
l

)
−

( 10∑
k=1

kbkp
k−1

)2

p

( 10∑
k=0

bkp
k

)2

− 2

( 6∑
k=1

k2akp
k−1

)( 6∑
l=0

blp
l

)
−

( 6∑
k=1

kakp
k−1

)2

p

( 6∑
k=0

akp
k

)2




.

REMARK 6.6. (1) The metric ρt
2 and the Gauß curvature Kt(z) have a S1-symmetry

centered at the origin 0 ∈ C.
(2) From above, we have the following

Kt(0) = 1 − 5t

6
and Kt(∞) = 1 − 5

6t
(6.7)

for t > 0. It is known that if the Gauß curvature K is constant, then K = 1, 1/6 or 0 (see
[Se]). Therefore, if t 
= 0 or 
= 1, Kt is not a constant function. By (6.7), we have

lim
t→0

Kt(∞) = −∞ .

The 1-parameter family of the J-holomorphic curves ft : M → S6 is called a deforma-
tion up to the action of G2 if they are not G2-congruent. More precisely, two J-holomorphic

curves f1 : M → S6 and f2 : N → S6 are G2-congruent if there exist a g ∈ G2 and a
diffeomorphism ϕ : M → N such that

g ◦ f1 ≡ f2 ◦ ϕ .

Then ϕ is an isometry, since G2 ⊂ SO(7).

LEMMA 6.7. There exists a g ∈ G2 such that g ◦ xt (z) = x1/t (1/z).



DEFORMATIONS OF SUPER-MINIMAL J-HOLOMORPHIC CURVES 297

PROOF. The corresponding holomorphic horizontal curve with respect to x1/t (1/z) is
given by

Ξ1/t (1/z) = (ε,E, Ē)




ı
√

10/teıθ z3

z6√
15/teıθ z2

−√
6 (1/t)e2ıθ z

(1/t)e2ıθ√
15/teıθ z4√

6z5




∈ Q5 ⊂ P 6(C) .

We see that the 1st fundamental forms of π ◦ Ξ1/t (1/z) = x1/t (1/z) and of xt (z) coincide.
By (2) of Theorem 6.5 in ([H3]), we get the desired result. �

By Lemma 6.7, we may take the parameter 0 ≤ t ≤ 1.

THEOREM 6.8. Let xt : P 1(C) → S6 be a 1-parameter family of super-minimal J-
holomorphic curves of a 6-dimensional sphere defined as above. Then xt is a deformation up
to the action of G2, for 0 ≤ t ≤ 1.

PROOF. We may show that g ◦xt 
= xs ◦ϕ if t 
= s and t, s ∈ [0, 1]. If Kt(0) = Ks(∞),
we have ts = 1. Therefore t = s = 1, this case does not occur. By Lemma 6.7, we may
assume 0 < ts < 1. We suppose the contrary, and deduce the contradiction. We identify

C ∪ {∞} with P 1(C).
We may assume that the Gauß curvature Kt is not constant on C ∪ {∞} = M , and

g ◦ xt ≡ xs ◦ ϕ for t 
= s, 0 < ts < 1, where ϕ : M → N be an isometry from M to
N = C ∪ {∞}. By (6.7), we see that ϕ(0) 
= 0 ∈ N and ϕ(0) 
= ∞ ∈ N , since ts 
= 1. Then

there exist a circle S1 ⊂ N which includes ϕ(0). We can take another point w 
= ϕ(0) and

w ∈ S1. Then ϕ−1(w) ∈ M is different from 0 ∈ M , so the Gauß curvature is not a constant
function (more precisely, the Gauß curvature is a rational function with respect to p = zz̄),

and (1) of Remark 6.6, Kt(ϕ
−1(w)) 
= Kt(0).

On the other hand, since ϕ is an isometry, which preserve the Gauß curvature,

Kt(ϕ
−1(w)) = Ks(w) = Ks(ϕ(0)) = Kt(0), which is a contradiction. �
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