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Stable Rank of C∗-Algebras of Continuous Fields
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Abstract. The C∗-algebras of continuous fields are enlarged and embedded into the associated direct products,
and their stable rank and connected stable rank are estimated in terms of their base spaces and fibers. Using these
estimates, we compute these ranks of C∗-algebras of continuous fields of elementary C∗-algebras, and those of group
C∗-algebras of the discrete Heisenberg groups.

0. Introduction

The theory for the C∗-algebras of continuous fields over locally compact Hausdorff
spaces were studied and developed by Fell [F], Dixmier [Dx], [TT], [Le1, 2], [APT], etc.
in an early stage. In a recent stage, there are some remarkable researches about this topic by
[AP], [Rf3], [Wl], [LP1], etc. The C∗-algebras of continuous fields (or the section algebras
of C∗-bundles in the sense of [FD]) provide many kinds of examples in the theory of C∗-
algebras, for example, such as the group C∗-algebras of the (generalized) discrete Heisenberg
groups. On the other hand, the stable rank and connected stable rank of C∗-algebras were in-
troduced by Rieffel [Rf1] for study of the non-stable K-theory, and the stable rank is regarded
as a noncommutative counterpart to the covering dimension for spaces. So far some experts
have tried to compute these ranks for some concrete examples (cf. References). In particular,
these ranks for some group C∗-algebras were computed by [Sh], [ST] and [Sd1, 2] in the case
of some connected Lie groups including important examples, and by [DHR] and [DH] in the
case of some important discrete groups including the free groups.

Our first motivation is to determine the stable rank of the C∗-algebras of the discrete
Heisenberg groups, which has been unsettled so far. Since the algebras can be regarded as
the C∗-algebras of continuous fields (or sections), it is natural to seek the stable rank formula
for these C∗-algebras in general, but there has been no such formula till now. Under this
motivation, in this paper we first give an approach to enlarge and embed the C∗-algebras of
continuous fields over locally compact Hausdorff spaces into more tractable subalgebras of
direct products associated with their base spaces and fibers (Lemma 1.1). Using this lemma
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we give the stable rank and connected stable rank estimates for the C∗-algebras of continuous
fields in terms of their base spaces and fibers (Theorem 1.3), which is the main result in this
paper. We apply these estimates to some cases in the following sections. In Section 2, as an
easy consequence we consider the ranks of C∗-algebras of continuous fields of elementary
C∗-algebras. In Section 3, as a highly non-trivial consequence we compute the ranks of group
C∗-algebras of the (generalized) discrete Heisenberg groups in terms of groups. Moreover,
our method for the main result would be useful for computing the stable ranks of C∗-algebras
in similar or other situations, in particular, certain twisted group C∗-algebras (cf. [LP1, 2],
[PR]).

Notation and facts. Let A be a C∗-algebra. We denote by sr(A) and csr(A) the stable
rank and connected stable rank of A respectively ([Rf1]). By definition, sr(A), csr(A) ∈
{1, 2, · · · ,∞}, and sr(A) ≤ n if and only if Ln(A) is dense in An, and csr(A) ≤ n if and only

if Lm(A) is connected for any m ≥ n, where Ln(A) = {(aj ) ∈ An | ∑n
j=1 a∗

j aj ∈ A−1}. If A

is nonunital, we define its ranks by those of its unitization A+. If A is unital, we let A+ = A.
We give some formulas of the ranks used later as follows.

(F1): csr(A) ≤ sr(A) + 1 for any C∗-algebra A by [Rf1, Corollary 4.10]. For an exact
sequence of C∗-algebras: 0 → I → A → A/I → 0, we have that

(F2) :
{

sr(I) ∨ sr(A/I) ≤ sr(A) ≤ sr(I) ∨ sr(A/I) ∨ csr(A/I) ,

csr(A) ≤ csr(I) ∨ csr(A/I) ,

where ∨ means the maximum ([Rf1, Theorem 4.3, 4.4 and 4.11], [Sh, Theorem 3.9]). We
denote by C0(X) the C∗-algebra of all continuous functions vanishing at infinity on a locally
compact Hausdorff space X. If X is compact, we set C0(X) = C(X). By [Rf1, Proposition
1.7], [Ns1],

(F3) : sr(C(X)) = [dim X/2] + 1 ≡ dimC X , csr(C(X)) ≤ [(dim X + 1)/2] + 1 ,

where dim X is the covering dimension of X, and [x] means the maximal integer ≤ x. We
note that C0(X)+ ∼= C(X+) where X+ means the one-point compactification of X. For the
n × n matrix algebra Mn(A) over a C∗-algebra A, by [Rf1, Theorem 6.1], [Rf2],

(F4) : sr(Mn(A)) = {(sr(A) − 1)/n} + 1 , csr(Mn(A)) ≤ {(csr(A) − 1)/n} + 1 ,

where {x} means the least integer ≥ x. Let K be the C∗-algebra of all compact operators on
a countably infinite dimensional Hilbert space. Then

(F5) : sr(A ⊗ K) = sr(A) ∧ 2, csr(A ⊗ K) ≤ csr(A) ∧ 2 ,

where ∧ means the minimum. See [Rf1, Theorem 3.6 and 6.4] and ([Sh, Theorem 3.10],
[Ns1]) respectively.
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1. C∗-algebras of continuous fields

Let X be a locally compact Hausdorff space and {At }t∈X a family of C∗-algebras At

indexed by t ∈ X. Then we denote by Γ0(X, {At }t∈X,F) the C∗-algebra of a continuous field
on X, that is, the C∗-algebra of all continuous operator fields on X with respect to a family F

of continuous operator fields f vanishing at infinity on X such that{
f : t �→ f (t) ∈ At , {f (t) | f ∈ F} is dense in At ,

X 
 t �→ ‖f (t)‖ is continuous ,

and F (or the C∗-algebra) is closed under the local convergence at all t ∈ X, pointwise
algebraic operations and involution (cf. [F], [Dx, Chapter 10], [Wl]), and note that the C∗-
algebra associated to a maximal full algebra of operator fields is the section algebra of a
C∗-bundle (cf. [FD]). If X is compact, we let Γ (X, {At}t∈X,F) = Γ0(X, {At }t∈X,F). If
At = A for all t ∈ X, we put Γ0(X,A,F) = Γ0(X, {At }t∈X,F). We omit F in some cases in
what follows.

Recall that the direct product
∏

t∈X At of {At }t∈X is the C∗-algebra of all elements a =
(at )t∈X with the norm ‖a‖ = supt∈X ‖at‖ finite. For a C∗-algebra A, we denote by C0(X,A)

the C∗-algebra of all A-valued continuous functions on X vanishing at infinity. It is well
known that C0(X,A) is isomorphic to the C∗-tensor product C0(X) ⊗ A (cf. [Mp, Theorem
6.4.17]).

First of all, we give the following key definition in this paper:

DEFINITION. Let X be a locally compact Hausdorff space and {At }t∈X a family of C∗-
algebras At . For any Γ0(X, {At }t∈X,F), we define a C∗-subalgebra F′ of

∏
t∈X C0(X,At )

to be F′ = Γ0(X, {C0(X,At )}t∈X) such that the restriction of any f = {f (t, ·)}t∈X ∈ F′
with f (t, ·) = f (t) ∈ C0(X,At ) to the diagonal (t, t) ∈ X × X is in Γ0(X, {At }t∈X,F),
in particular, t �→ f (t, t) ∈ At for every t ∈ X. Moreover, we assume that every element
of Γ0(X, {At}t∈X,F) can be such a restriction from an element of F′ (However, it would be
enough to assume continuity along the diagonal of the direct product).

Then it is clear that

LEMMA 1.1. Let X be a locally compact Hausdorff space and {At}t∈X a family of C∗-
algebras At . Then the algebra Γ0(X, {At}t∈X,F) is a quotient of the C∗-subalgebra F′ of∏

t∈X C0(X,At ).

PROOF. Define the quotient map q from F′ to Γ0(X, {At }t∈X,F) by

q(f )(x) = qx({f (t, ·)}t∈X)(x) = f (x, x) , qx : ∏
t∈X C0(X,At ) → C0(X,Ax) . �

On the other hand, we need the following lemma for the proof of Theorem 1.3:

LEMMA 1.2. Let A be a C∗-algebra. Define the map Φ from An to the positive part
A+ of A by (aj ) �→ ∑n

j=1 a∗
j aj . Then Φ is continuous, and the quotient topology induced

by Φ on A+ is stronger than the relative topology of A+ in A.
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PROOF. It is clear that Φ is continuous. Also, the map Φ induces the quotient topology
in A+. Then Φ is open with respect to this topology. Moreover, it is easy to show that the
quotient topology is stronger than the relative topology of A+ in A, which is proved by using
a usual argument for inclusions of open neighborhoods in the theory of topological spaces. �

Recall that a topological space is paracompact if for any open covering of the space,
there exists a locally finite refinement of the covering (cf. [Pd, 1.7.10]). See also [En, Chapter
5] in which paracompactness of spaces implies Hausdorffness. By technical reasons, a space
will be assumed to be paracompact in what follows. Using the lemmas above, we have the
following main result, which is used frequently later.

THEOREM 1.3. Let X be a locally compact, paracompact Hausdorff space and
{At }t∈X a family of C∗-algebras At . Then we have

{
sr(Γ0(X, {At }t∈X,F)) ≤ supt∈X sr(C0(X,At )) ,

csr(Γ0(X, {At }t∈X,F)) ≤ supt∈X(csr(C0(X,At )) ∨ sr(C0(X,At ))) .

PROOF. By Lemma 1.1 and (F2), we have sr(Γ0(X, {At}t∈X,F)) ≤ sr(F′). We note
that

∏
t∈X C0(X,At ) is a closed ideal of

∏
t∈X(C0(X,At )

+). We define B to be the C∗-

subalgebra of all elements {(f (t, ·), λt )}t∈X of
∏

t∈X(C0(X,At )
+) such that f ∈ F′, λt ∈ C

as in the above definition. By (F2), we have that sr(F′) ≤ sr(B). Moreover, when X is
noncompact we may replace B with B′ = Γ (X+, {C0(X,At )

+}t∈X ∪ {C}) ⊃ B for X+ the
one-point compactification of X since B is a closed ideal of B′.

Now suppose that M = supt∈X sr(C0(X,At )
+) < ∞. Then for any ε > 0 and any

(bj )
M
j=1 ∈ BM with bj = (bj (t))t∈X and bj (t) ∈ C0(X,At )

+, we can find cj (t) ∈
C0(X,At )

+ for all t ∈ X such that ‖cj (t)−bj (t)‖ < εj (t) < ε, and e(t) ≡ ∑M
j=1 cj (t)

∗cj (t)

is invertible in C0(X,At )
+. For a large constant L > 0, we may assume that e(t) ≥ ε/L > 0

if necessary, by taking εj (t) small enough, and replacing εj (t) with εj (t)
′ < ε, and taking a

suitable perturbation of cj (t), when e(t) ≥ δ(t) > 0 and δ(t) < ε/L for some t ∈ X.
In fact, for a unital C∗-algebra A, by using Lemma 1.2 we have a continuous map

Φ from Ln(A) to the positive part A+ of A by (aj ) �→ ∑n
j=1 a∗

j aj . We let S = {b ∈
A+ | ‖∑n

j=1 a∗
j aj − b‖ < η, and b − (

∑n
j=1 a∗

j aj + η′1) is invertible} for some η, η′ > 0.

Then S is open in A+ since for b′ ∈ A+ with ‖b − b′‖ small, we can make the distance of
their spectrums small. Taking η, η′ suitably, we make the distance between

∑n
j=1 a∗

j aj and S
small enough. Then we can find a small open neighborhood of (aj ) such that its image under
Φ has the nonzero intersection with S.

Moreover, we can assume that the function t �→ cj (t, t) belongs to Γ0(X, {At }t∈X,F)

(or its unitization). Indeed, for given t ∈ X, there exists {cj (t)}Mj=1 satisfying the above

required conditions. By definition of B, we can find {hj }Mj=1 ∈ BM such that ‖hj (t)− cj (t)‖
(1 ≤ j ≤ M) are small enough so that

∑M
j=1 h∗

j (t)hj (t) is invertible, and ‖hj (s) − bj (s)‖
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(1 ≤ j ≤ M) are small enough for s in an open neighborhood Ut of t (cf. [Dx, Lemma 10.1.11

and Proposition 10.2.2]). Note that if
∑M

j=1 h∗
j (t)hj (t) is invertible, then

∑M
j=1 h∗

j (s)hj (s) is

also invertible in an open neighborhood Vt of t , which is deduced from a direct computation
using continuity of the norm on fibers. Set Wt = Ut ∩ Vt . Thus we continue this process
inductively for the open covering {Wt } of X for some t (or use compactness of X+) and
replace cj with hj . More precisely, since X is paracompact we may assume that the open
covering {Wt } is locally finite. Furthermore, let (pt ) be the partition of unity of continuous
functions associated with {Wt } such that 0 ≤ pt ≤ 1,

∑
t pt = 1 on X (or X+), and pt (s) = 0

for s �∈ Wt (cf. [Pd, Proposition 1.7.12]). Then set qt
j = pthj (1 ≤ j ≤ M) for the

elements hj chosen above for some t ∈ X, where we further need to manipulate choosing
hj by using locally finiteness of X and openness of Wt since it is not sure whether the sum∑M

j=1(
∑

t qt
j (s))

∗(
∑

t qt
j (s)) is invertible for s in finite intersections of {Wt }. However, if

necessary, we may assume that pt = 1 on a compact neighborhood Kt in Wt for those t such
that Kt for t are disjoint (cf. [Pd, Proposition 1.7.5], and X is normal by the assumption on
X [En, Theorem 5.1.5]), and enlarge Kt by adding inductively compact neighborhoods K ′

t

in Wt (or finite intersections of {Wt } with Wt ) such that pt = 1 on Kt ∪ K ′
t , where in this

process the relation
∑

t pt = 1 may break, and the required elements are given by the limits

of elements
∑

t qt
j associated with this adjustment (or by elements near the limits). Also, we

may adopt another argument as follows. We take compact neighborhoods Kt in Wt chosen

above. Since finite unions of {Kt } are closed in X, there exist {lpj }Mj=1 ∈ BM for p ≥ 1 such

that l
p
j = hj on finite unions

⋃p

j=1 Ktj of {Kt } ([Dx, Proposition 10.1.12]). By repeating

this process inductively and if necessary, by enlarging Kt as above, the required elements are
given by the limits of {lpj }∞p=1 (1 ≤ j ≤ M) as p → ∞ (or elements near the limits). Hence,

sr(B) ≤ supt∈X sr(C0(X,At )).

As for the connected stable rank estimate, we first suppose that X is compact and all
{At}t∈X are unital. We let D = Γ (X, {At }t∈X,F) and note that it is obtained from the
elements {(f (t, ·)}t∈X of B (defined as above) by evaluation to the diagonal components
{f (t, t)}t∈X. We now suppose that

N = sup
t∈X

(csr(C(X,At )) ∨ sr(C(X,At ))) < ∞ .

By definition of the stable ranks (cf. [Rf2, Proposition 5.3]), any element (cj )
N
j=1 ∈ BN with

cj = (cj (t))t∈X and
∑N

j=1 cj (t)
∗cj (t) = It in C(X,At ) can be mapped to (I, 0′, · · · , 0′)

by an invertible matrix (dij )
N
i,j=1 over B with dij = (dij (t))t∈X and (dij (t))

N
i,j invertible

if necessary, perturbing the diagonal components dij (t, t) of each dij as above, where I =
(It )t∈X, 0′ = (0′

t )t∈X, and It , 0′
t are the unit and the zero of C(X,At ) respectively. In fact,

(dij )
N
i,j=1 can be taken in B as follows. For convenience, we may let N = 2. Then
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(
d11 d12

d21 d22

) (
c1

c2

)
=

(
I

0′
)

If we need to perturb dij by d ′
ij , then we consider the following operation:(

l 0
−(d ′

21c1 + d ′
22c2)l 1

) (
d11 + d ′

11 d12 + d ′
12

d21 + d ′
21 d22 + d ′

22

) (
c1

c2

)
=

(
I

0′
)

where l is the inverse of (d11 + d ′
11)c1 + (d12 + d ′

12)c2 ∈ B which is near I .
We obtain from the above argument that( N∑
j=1

d1j (t)cj (t)

)
t∈X

= (It )t∈X ,

( N∑
j=1

dij (t)cj (t)

)
t∈X

= (0′
t )t∈X , (2 ≤ i ≤ N) .

By taking evaluation,


( N∑
j=1

d1j (t, t)cj (t, t)

)
t∈X

= 1 = (1t )t∈X ,

( N∑
j=1

dij (t, t)cj (t, t)

)
t∈X

= 0 = (0t )t∈X , (2 ≤ i ≤ N)

where 1t , 0t are the unit and the zero of At respectively. Hence ({cj (t, t)}t∈X)Nj=1 is mapped

to (1, 0, · · · , 0) by an invertible matrix ({dij (t, t)}t∈X)Ni,j=1 over D. And we may assume

from the above argument for the stable rank estimate that any element (dj )
N
j=1 of DN with∑N

j=1 d∗
j dj invertible is extended to an element (cj )

N
j=1 of BN with

∑N
j=1 cj (t)

∗cj (t) invert-

ible. Therefore we obtain csr(Γ (X, {At}t∈X,F)) ≤ N .
Next, we consider the cases where X is compact and At for some t ∈ X is nonunital,

or X is noncompact. Then put E = Γ0(X, {At}t∈X,F)+. Let D be the C∗-subalgebra of∏
t∈X C0(X,At ) defined by replacing C0(X,At )

+ with C0(X,At ) in definition of B. Then E
is obtained from D+ by evaluation to the diagonal components. Thus E is a quotient of D+
by Lemma 1.1. By [Eh, Theorem 1.1], we have

csr(E) ≤ csr(D+) ∨ sr(D+) .

Note that D is a closed ideal of B, and D+ is identified with a C∗-subalgebra of B by the
inclusion: (x, λ) �→ ((x(t), λ))t∈X for x = (x(t))t∈X ∈ D. Then any element (x(t), λt )t∈X of
B is deformed to an element of D+ continuously with respect to λt . Hence we get sr(D+) ≤
sr(B) and csr(D+) = csr(B). Moreover, similarly as above we obtain

csr(B) ≤ sup
t∈X

(csr(C0(X,At )
+) ∨ sr(C0(X,At )

+)). �

REMARK. The rank estimates of Theorem 1.3 tell us that the ranks of C∗-algebras of
continuous fields are estimated in terms of their base spaces and fibers. The assumption on
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X being paracompact can be replaced with either σ -compactness or second countability of X

because if X is a locally compact, σ -compact Hausdorff space, it is paracompact and normal
(cf. [Pd, Propositions 1.7.8 and 1.7.11]), and if X is a second countable, locally compact
Hausdorff space, then it is metrizable (cf. [Pd, Corollary 1.7.9]). In fact, any locally compact,
paracompact Hausdorff space is a disjoint union of σ -compact spaces ([Pd, 1.7.10]). Also,
the rank estimates above would hold without the assumption on X being paracompact, but our
inductive argument would be more complicated or collapse since X could have the dimension
∞. In the case dim X = ∞, the right hand sides of the estimates can be infinite, but it is not
always. For instance see (F5).

We now denote by Prim(A) the space of all primitive ideals of a C∗-algebra A with the
hull-kernel topology. Then we have the following:

COROLLARY 1.4. Let A be a C∗-algebra. Suppose that there exists a continuous open
map from Prim(A) onto a locally compact, paracompact Hausdorff space X. Then

{
sr(A) ≤ sup�∈Prim(�) sr(C0(X,A/I)),

csr(A) ≤ sup�∈Prim(�)(csr(C0(X,A/I)) ∨ sr(C0(X,A/I))).

PROOF. By [Le1, Theorem 4], we see that A is regarded as the C∗-algebra of a contin-
uous field on X with fibers A/I for I ∈ Prim(A). Then we use Theorem 1.3. �

For a locally compact Hausdorff space X, we now denote by Γ b(X, {Bt }t∈X,F) the C∗-
algebra of a bounded continuous field on X with fibers {Bt }t∈X, that is, the C∗-algebra of
bounded continuous operator fields (with respect to) F. By following the similar procedure
with Theorem 1.3, we get

THEOREM 1.5. For Γ b(X, {At }t∈X,F) the C∗-algebra of a bounded continuous field
on a locally compact, paracompact Hausdorff space X,

{
sr(Γ b(X, {At}t∈X,F)) ≤ supt∈X sr(Cb(X) ⊗ At ) ,

csr(Γ b(X, {At}t∈X,F)) ≤ supt∈X(csr(Cb(X) ⊗ At ) ∨ sr(Cb(X) ⊗ At )) ,

where Cb(X) is the C∗-algebra of all bounded continuous functions on X.

PROOF. We consider the quotient as in Lemma 1.1 as follows:

∏
t∈X(Cb(X) ⊗ At ) ⊃ F′ = Γ b(X, {Cb(X) ⊗ At }t∈X) → Γ b(X, {At }t∈X,F) → 0 . �

REMARK. Note that it is not true in general that Cb(X,At ) = Cb(X) ⊗ At even if At

is unital (and commutative) (cf. [APT, Theorem 3.8]). We have Cb(X,At ) ⊃ Cb(X) ⊗ At in
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general. Also, we have Cb(X) ∼= C(βX) where βX means the Stone-Čech compactification
(cf. [Ng, 6-2. Definition], [APT]).

REMARK. The algebras Γ b(X, {At }t∈X,F) as well as Γ0(X, {At }t∈X,F) are em-
beddable in

∏
t∈X(Cb(X) ⊗ At ) by the identification: f ↔ {1 ⊗ f (t)}t∈X for f ∈

Γ b(X, {At }t∈X,F).
For a C∗-algebra A, we denote by M(A) its multiplier (cf. [Bl, Section 12], [Mp, 2.1]).

We say that an operator field on a space is the unit (operator) field if it takes the unit in each
fiber when all fibers are unital.

COROLLARY 1.6. For Γ0(X, {At },F) with X a locally compact, paracompact Haus-
dorff space and the fibers {At }t∈X unital, we suppose that the unit field is continuous, that is,
belongs to the C∗-algebra (in particular, F contains the unit field). Then we have{

sr(M(Γ0(X, {At }t∈X,F))) ≤ supt∈X sr(Cb(X) ⊗ At ) ,

csr(M(Γ0(X, {At }t∈X,F))) ≤ supt∈X(csr(Cb(X) ⊗ At ) ∨ sr(Cb(X) ⊗ At )) .

PROOF. By assumption and [APT, Theorem 3.3 and a remark after Corollary 3.4], we
obtain M(Γ0(X, {At }t∈X,F)) ∼= Γ b(X, {At}t∈X,F). �

REMARK. In the above isomorphism, if At is nonunital, we must treat the strict topol-
ogy on M(At ) (cf. [APT]). See [Rf1, Proposition 6.5], [Eh, Proposition 1.4].

2. Continuous fields of elementary C∗-algebras

We first define that an elementary C∗-algebra is a matrix algebra Mn(C) over C (n ≥ 1)

or K (cf. [Dx, 4.1.1]). For a C∗-algebra A, we denote by Â its spectrum, that is, the space of all

its irreducible representations up to unitary equivalence. For π ∈ Â, we denote by dim π the

dimension of its representation space. We have that Â is locally compact, but not necessarily a
Hausdorff space (cf. [Dx, Chapter 3]). Recall that for n a natural number, an n-homogeneous

C∗-algebra A is a C∗-algebra with dim π = n for any π ∈ Â. Then A has continuous trace,

in particular, Â is a Hausdorff space. Thus A is isomorphic to Γ0(Â, {Mn(C)}
t∈�̂) with the

local triviality (cf. [F], [TT], [Dx, Chapter 10]). Then

PROPOSITION 2.1. Let A be an n-homogeneous C∗-algebra. Then we have{
sr(A) ≤ sr(C0(Â) ⊗ Mn(C)) = {[dim Â+/2]/n} + 1 ,

csr(A) ≤ csr(C0(Â) ⊗ Mn(C)) ≤ {[(dim Â+ + 1)/2]/n} + 1 .

PROOF. By replacing csr(C0(Â) ⊗ Mn(C)) with csr(C0(Â) ⊗ Mn(C)) ∨ sr(C0(Â) ⊗
Mn(C)), for the first and second formulas we can use Theorem 1.3, (F3) and (F4) if Â is
paracompact. Moreover, for the both formulas, we can use the local triviality of A inductively,
and use (F3) and (F4). �
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REMARK. The algebra A is not always splitting into the tensor product C0(Â)⊗Mn(C)

in general. When dim Â+ = ∞, the estimates hold trivially.

Next, we say that a C∗-algebra A with its spectrum Â a Hausdorff space is ∞-

homogeneous if it is isomorphic to Γ0(Â, {K}
π∈�̂) (cf. [Dx, Theorem 10.5.4]). Then

PROPOSITION 2.2. Let A be an ∞-homogeneous C∗-algebra. Then

sr(A) ≤ 2 ∧ dimC Â+ ≤ 2 , csr(A) ≤ 2 ∧ ([(dim Â+ + 1)/2] + 1) ≤ 2 .

PROOF. If Â is paracompact, by using Theorem 1.3 and (F5) we have

sr(A) ≤ sr(C0(Â) ⊗ K) = 2 ∧ dimC Â+ ,

csr(A) ≤ csr(C0(Â) ⊗ K) ∨ sr(C0(Â) ⊗ K) ≤ 2 ∧ csr(C0(Â)) .

Even if Â is not paracompact, note that Γ0(Â, {K}
π∈�̂) has the local triviality when A is of

continuous trace ([Dx, Chapter 10]). Also, note that A is liminal (or CCR), and that a C∗-
algebra of type I has a composition series with its subquotients of continuous trace (cf. [Dx,
Theorem 4.5.5]). Then use (F2) and (F5) inductively. �

REMARK. Note that csr(C0(Rn) ⊗ K) = 1 if n even, and = 2 if n odd ([Sh, p. 386]).
The above stable rank estimate was also obtained by [ST] using [Ns2, Lemma 2] inductively.

Recall that an n-subhomogeneous C∗-algebra A is a C∗-algebra with dim π ≤ n for any

π ∈ Â. Denote by Âk the subspace of all elements π of Â with dim π = k. Then

PROPOSITION 2.3. Let A be an n-subhomogeneous C∗-algebra. Then

{
sr(A) ≤ ({[dim Â+

n /2]/n} + 1) ∨ max1≤k<n({[(dim Â+
k + 1)/2]/k} + 1) ,

csr(A) ≤ max1≤k≤n({[(dim Â+
k + 1)/2]/k} + 1) .

PROOF. We may assume that the set of all dimensions of Â is equal to a finite set

{nj }lj=1 with nj > nj+1 and n1 = n. Then by [Dx, Proposition 3.6.3], A has a finite compo-

sition series {Ij }lj=1 with Il = A such that Ij /Ij−1 is nj -homogeneous. Applying (F2) and

Proposition 2.1 to {Ij }lj=1 inductively, we obtain the formulas in the statement. �

REMARK. In general, subhomogeneous C∗-algebras are not of continuous trace. In
particular, their spectrums are not Hausdorff spaces (cf. [Dx, Addenda 10.10.4]). As an ex-
ample, we let A = Γ ([0, 1], {At}t∈[0,1],F) with A0 = Cn = A1 and At = Mn(C) for
0 < t < 1. Then using Theorem 1.3 we obtain sr(A) = csr(A) = 1.

For a C∗-algebra A, we respectively denote by Âf and Â∞ the subspaces of Â of all

elements π of Â with dim π finite and infinite.
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THEOREM 2.4. Let A be a C∗-algebra with Â a paracompact Hausdorff space. Then


sr(A) ≤ (2 ∧ dimC Â+) ∨ sup
π∈�̂f

({[dim Â+/2]/ dim π} + 1) ,

csr(A) ≤ (2 ∧ [csr(C(Â+)) ∨ sr(C(Â+))])
∨ sup

π∈�̂f
({[(dim Â+ + 1)/2]/ dim π} + 1) .

Moreover, these estimates imply that

sr(A) ≤ dimC Â+ , csr(A) ≤ [(dim Â+ + 1)/2] + 1 .

PROOF. Since Â is a Hausdorff space, A is liminal, that is, for any π ∈ Â, π(A) is

isomorphic to K or Mn(C) for n ≥ 1. Then A is isomorphic to Γ0(Â, {π(A)}
π∈�̂) (cf. [Dx,

Theorem 10.5.4]). Therefore, we obtain by Theorem 1.3 that{
sr(Γ0(Â, {π(A)}

π∈�̂)) ≤ sup
π∈�̂ sr(C0(Â, π(A))) ,

csr(Γ0(Â, {π(A)}
π∈�̂)) ≤ sup

π∈�̂(csr(C0(Â, π(A))) ∨ sr(C0(Â, π(A)))) .

Then we apply Propositions 2.1 and 2.2 to imply the conclusion. In particular, by (F5)

csr(C0(Â, K)) ∨ sr(C0(Â, K)) ≤ 2 ∧ (csr(C0(Â)) ∨ sr(C0(Â))) . �

REMARK. The implied estimates are noncommutative versions of (F3) for commuta-
tive C∗-algebras, and they are the best possibles. The theorem above also suggests that the
stable ranks of C∗-algebras (in more general) can be controlled by the dimension of their

spectrums. Also, if dim Â+ = ∞ and Âf is non-empty, then the first two estimates hold

trivially, and the implied estimates also do when dim Â+ = ∞.

3. Group C∗-algebras of the discrete Heisenberg groups

The discrete Heisenberg groups. Let H Z
2n+1 be the discrete Heisenberg group of rank

2n + 1 consisting of the following (n + 2) × (n + 2) matrices:

(c, b, a) =

1 a c

1n bt

0 1


 , a = (ai) , b = (bi) ∈ Zn , c ∈ Z

where 1n is the n×n identity matrix and bt is the transpose of b. Then H Z
2n+1 is isomorphic to

the semi-direct product Zn+1
�α Zn with the action α given by αa(c, b) = (c+∑n

i=1 aibi, b).

Note that H Z
2n+1 is a two-step nilpotent discrete group obtained by the following central ex-

tension: 1 → Z → H2n+1 → Z2n → 1. Then the group C∗-algebra C∗(H Z
2n+1) of H Z

2n+1

is isomorphic to the crossed product C∗(Zn+1) �α Zn (cf. [Pd], [Tm] for crossed products).
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Moreover, it is isomorphic to C(Tn+1) �α̂ Zn, where α̂ is the action induced from α by the

Fourier transform from C∗(Zn+1) to C(Tn+1), and given by

α̂a(w, z) = (w,wa1z1, · · · , wanzn) , z = (zi) ∈ Tn , w ∈ T .

Then the crossed product C(T × Tn) �α̂ Zn is regarded as the C∗-algebra of a continuous
field over T with fibers Aw = C({w} × Tn) �α̂ Zn for w ∈ T, that is,

C∗(H Z
2n+1)

∼= Γ (T, {Aw}w∈T,F)

for a family F of continuous operator fields on T (cf. [AP]). Note that F contains the unit

field since C∗(H Z
2n+1) is unital. Since α̂ is trivial on {1} × Tn, and it is the multi-rotation on

{w} × Tn, we have that

Aw
∼=

{⊗n T2
1

∼= C(T2n) w = 1 ,⊗n T2
w otherwise

where
⊗n T2

w means the n-times tensor product of the rotation algebra (= noncommutative

2-torus) T2
w = C({w} × T) �α̂ Z associated with the rotation on T by w.

By (F2), (F3), [Sh, p. 381] and [Eh, Theorem 2.2], we have

sr(C∗(H Z
2n+1)) ≥ sr(C(T2n)) = n + 1 , csr(C∗(H Z

2n+1)) ≥ 2 .

By Theorem 1.3, it is obtained that{
sr(C∗(H Z

2n+1)) ≤ supw∈T sr(C(T,Aw)) ,

csr(C∗(H Z
2n+1)) ≤ supw∈T(csr(C(T,Aw)) ∨ sr(C(T,Aw))) .

If w = 1, by (F3) and [Sh, p. 381] we have{
sr(C(T, C(T2n))) = sr(C(T2n+1)) = n + 1 ,

csr(C(T, C(T2n))) = csr(C(T2n+1)) = n + 2 .

To make the above connected stable rank estimate sharper, we consider the following exact
sequence:

0 → I → C∗(H Z
2n+1) → C(T2n) → 0 , I = C0((T \ {1}) × Tn) � Zn .

Then, by (F2) and Theorem 1.3,

csr(C∗(H Z
2n+1)) ≤ csr(C(T2n)) ∨ csr(I)

≤ (n + 1) ∨ sup
w∈T\{1}

(csr(C0(T \ {1}) ⊗ Aw) ∨ sr(C0(T \ {1}) ⊗ Aw)) .

Hence we estimate the stable rank of C(T) ⊗ Aw and the connected stable rank of C0(T \
{1}) ⊗ Aw in the following.
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Now we assume that T2
w is irrational. It is known by [EE] that the irrational rotation

algebras are inductive limits of 2-direct sums of matrix algebras over C(T) with their matrix

sizes going to infinity. It follows that Aw = ⊗n T2
w , C(T) ⊗ Aw and C0(T \ {1}) ⊗ Aw

are inductive limits of 2n-direct sums of matrix algebras over C(Tn), C(Tn+1) and C0((T \
{1}) × Tn) respectively, with their matrix sizes going to infinity. By [DNNP] and (F4), [Rf1,
Theorem 5.1], we have that{

sr(Aw) = 1 , sr(C(T) ⊗ Aw) ≤ 2 ,

csr(Aw) ≤ 2 , csr(C0(T \ {1}) ⊗ Aw) ≤ 2 .

Note that Aw
∼= B � Z where B = (

⊗n−1 T2
w) ⊗ C(T) with the unit.

If we assume sr(C(T) ⊗ Aw) = 1, then it follows from taking its suitable quotient that
sr(C([0, 1])⊗Aw) = 1. By [NOP, Proposition 5.2], we have the K1-group of Aw trivial. It is

the contradiction since the K0,K1-groups of T2
w are Z2 (cf. [Wo, 12.3]) so that the K1-group

of Aw is also nontrivial by the Künneth formula (cf. [Wo, 9.3.3]).
Next we assume that the period of w ∈ T is q ≥ 2. Then we have the following exact

sequence (cf. [Bl, 10.3]):

0 → C0(R) ⊗ (C(T) �β Zq) → T2
w → C(T) �β Zq → 0

and C(T) �β Zq
∼= Mq(C(T)) (cf. [EL1, Lemma 3], [Dv, VIII.9]). Hence T2

w is q-

homogeneous. Thus Aw = ⊗n T2
w is qn-homogeneous. Moreover, Aw has a composition

series {Jk}2n

k=1 such that Ik/Ik−1 ∼= Mqn(C0(Rtk × Tn)) for some 0 ≤ tk ≤ tk−1 ≤ n, and
I1 = Mqn(C0(Rn ×Tn)) and I2n/I2n−1 ∼= Mqn(C(Tn)). Then by tensoring this composition

series with C(T), we have a composition series {Sk}2n

k=1 of C(T,Aw) such that Sk/Sk−1 ∼=
Mqn(C0(Rtk × Tn+1)) with S1 = Mqn(C0(Rn × Tn+1)) and S2n/S2n−1 ∼= Mqn(C(Tn+1)).
Therefore, by (F2), (F3) and (F4), we obtain that

sr(C(T,Aw)) ≥ sr(Mqn(C0(Rn × Tn+1))) = {[(2n + 1)/2]/qn} + 1 = 2 ,

sr(C(T,Aw)) ≤ sr(Mqn(C0(Rn × Tn+1))) ∨ csr(Mqn(C0(Rn−1 × Tn+1))) = 2 .

Similarly, we get that

csr(C0(T \ {1},Aw)) ≤ csr(Mqn(C0(Rn × Tn × (T \ {1})))) ≤ 2 .

Partly summing up, we obtain

PROPOSITION 3.1. Let T2
w be a noncommutative rotation algebra. Then

sr(C(T,

n⊗
T2

w)) = 2 , csr(C0(T \ {1},
n⊗

T2
w)) ≤ 2 ,

for any w ∈ T \ {1} and n ≥ 1.
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REMARK. The same estimates for Cb(T\{1})⊗ (
⊗n T2

w) and C0(T\{1})⊗ (
⊗n T2

w)

hold on the same way as above.

From the above reasoning, we conclude the following:

THEOREM 3.2. Let H Z
2n+1 be the discrete Heisenberg group of rank 2n + 1. Then

{
sr(C∗(H Z

2n+1)) = n + 1 = dimC(Ĥ Z
2n+1)1 ,

2 ≤ csr(C∗(H Z
2n+1)) ≤ n + 1 .

REMARK. Note that the quotient of H Z
2n+1 by its commutator is isomorphic to Z2n.

Therefore, (Ĥ Z
2n+1)1 is isomorphic to the dual group T2n of Z2n. It has been known that the

stable rank of C∗(H Z
2n+1) is estimated as follows:

n + 1 ≤ sr(C∗(H Z
2n+1)) ≤ sr(C∗(Zn+1)) + n = [(n + 1)/2] + n + 1 .

by [Rf1, Theorem 7.1] and some part of the above argument. In particular, sr(C∗(H Z
3 )) is 2 or

3. However, it has been unsettled to determine this alternative. As observed above, C∗(H Z
2n+1)

as the algebras of continuous fields on T have no local triviality at all since their fibers vary
continuously, which was a big obstruction to compute their ranks. Also, this theorem suggests

that the stable ranks of C∗(H Z
2n+1) can be estimated by the dimension of the spaces of their

1-dimensional representations (which are subspaces of their spectrums) (cf. [Sd1, 2], [ST]).

The generalized discrete Heisenberg groups. Let H Z
2n+1(d) be the generalized dis-

crete Heisenberg group of rank 2n + 1 consisting of the (n + 2) × (n + 2) matrices (cf. [LP1,
LP2]):

(c, b, a) =

1 da c

1n bt

0 1


 , a = (ai) , b = (bi) ∈ Zn , c ∈ Z

with da = (diai) for given positive integers {di} with di+1 divisible by di (1 ≤ i ≤ n − 1).
Then it is known that any 2-step nilpotent group Γ obtained by a central extension of Zk by

Z: 1 → Z → Γ → Zk → 1, is isomorphic to the direct product H Z
2n+1(d) × Zk−2n for some

n and d [BPc, Corollary 3.4]. Note that if k = 1, then Γ ∼= Z2. Hence C∗(Γ ) ∼= C(T2).

Then by (F3) and [Sh, p. 381], sr(C∗(Γ )) = csr(C∗(Γ )) = 2 = dim Γ̂ .

By the similar argument as given before Theorem 3.2, we obtain

THEOREM 3.3. Let Γ be a 2-step nilpotent group obtained by a central extension of
Zk by Z (k ≥ 2). Then {

sr(C∗(Γ )) = [k/2] + 1 = dimC(Γ̂ )1 ,

2 ≤ csr(C∗(Γ )) ≤ [(k + 1)/2] + 1 .
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PROOF. Note that C∗(Γ ) ∼= C∗(H Z
2n+1(d)) ⊗ C(Tk−2n) for k ≥ 2, n ≥ 1 and some d ,

and C∗(H Z
2n+1(d)) is regarded as the C∗-algebra of a continuous field over T with fibers:

Aw = C({w} × Tn) � Zn ∼=
{

C(T2n) w = 1 ,⊗n
i=1 T2

wi
otherwise

where T2
wi

is the rotation algebra associated with the rotation on T by wdi . And T2
wi

is irra-
tional or rational according to w, and nontrivial or trivial according to di in the rational cases.
Next we apply some methods for the rank estimates in the case of the discrete Heisenberg
groups to this generalized case similarly. �

As a remark, more generally, using a result of [LP1] about describing the twisted group
C∗-algebras C∗(H2n+1(d), σ ) with σ multipliers on H2n+1(d) (n ≥ 2) as the C∗-algebras of
continuous fields over T with fibers isomorphic to matrix algebras over higher-dimensional
rotation algebras, we would obtain their stable rank and connected stable rank estimates on
the similar way. In fact, by [EL1, 2] some of simple noncommutative tori are isomorphic to
inductive limits of finite direct sums of matrix algebras over C(T). For rational noncommu-
tative tori, it would be possible to follow the similar procedure as the rational rotation cases
(before Proposition 3.1). See [Rf3], [PR] and [LP2] for more general cases of C∗-algebras of
continuous fields.

As a note this paper is revised and reduced from the original manuscript [Sd3].
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