Braids and Nielsen-Thurston Types of Automorphisms of Punctured Surfaces

Kazuhiro ICHIHARA* and Kimihiko MOTEGI**

Osaka Sangyo University and Nihon University

(Communicated by K. Taniyama)

Abstract

Let F be a compact, orientable surface with negative Euler characteristic, and let x_{1}, \cdots, x_{n} be n fixed but arbitrarily chosen points on $\operatorname{int} F$, each of which has a (small) diskal neighborhood $D_{i} \subset F$. Denote by $\mathcal{S}_{n}(F)$ a subgroup of $\operatorname{Diff}(F)$ consisting of "sliding" maps f each of which satisfies (1) $f\left(\left\{x_{1}, \cdots, x_{n}\right\}\right)=\left\{x_{1}, \cdots, x_{n}\right\}, f\left(D_{1} \cup \cdots \cup D_{n}\right)=D_{1} \cup \cdots \cup D_{n}$ and (2) f is isotopic to the identity map on F.

Then by restricting such automorphisms to $\hat{F}=F-\operatorname{int}\left(D_{1} \cup \cdots \cup D_{n}\right)$, we have automorphisms $\hat{f}: \hat{F} \rightarrow \hat{F}$, which form a subgroup $\mathcal{S}_{n}(\hat{F})$ of $\operatorname{Diff}(\hat{F})$. We give a Nielsen-Thurston classification of elements of $\mathcal{S}_{n}(\hat{F})$ using braids in $F \times I$ which characterize the elements of $\mathcal{S}_{n}(\hat{F})$.

1. Introduction

An automorphism (i.e., orientation preserving self diffeomorphism) of a compact, orientable surface with possibly non-empty boundary is said to be periodic if its some power is equal to the identity map, and is said to be reducible if it leaves an essential 1 -submanifold (i.e., a union of pairwise disjoint simple closed curves such that each curve is homotopically non-trivial and not boundary-parallel, and that no two components are properly homotopic) of the surface invariant.

Suppose that the surface has negative Euler characteristic. It is known by [11], [6], [2] that if an automorphism is isotopic to neither a periodic automorphism nor a reducible automorphism, then it is isotopic to a pseudo-Anosov automorphism (i.e., an automorphism leaving singular foliations invariant) and vice versa; for the precise definition of a pseudoAnosov automorphism, see [11], [6, Exposé 11, see also p. 286], [2]. Thus each automorphism is isotopic to an automorphism with (at least) one of the above three types which we refer to as Nielsen-Thurston types.

Received May 10, 2004; revised September 18, 2004
2000 Mathematics Subject Classification. Primary 37E30, Secondary 57M50, 57N10
Key words and phrases. surface-automorphism, Nielsen-Thurston types, pseudo-Anosov automorphism, braid

* Supported in part by JSPS Research Fellowships for Young Scientists.
** Supported in part by Grant-in-Aid for Scientific Research (No. 15540095), The Ministry of Education, Culture, Sports, Science and Technology, Japan.

Let F be a compact orientable surface with negative Euler characteristic, and let x_{1}, \cdots, x_{n} be n fixed but arbitrarily chosen points on int F; each x_{i} has a (small) diskal neighborhood $D_{i} \subset F$. Let f be an automorphism of F which satisfies:
(1) $f\left(\left\{x_{1}, \cdots, x_{n}\right\}\right)=\left\{x_{1}, \cdots, x_{n}\right\}$ and $f\left(D_{1} \cup \cdots \cup D_{n}\right)=D_{1} \cup \cdots \cup D_{n}$, and
(2) f is isotopic to the identity map on F.

We denote $F-\operatorname{int}\left(D_{1} \cup \cdots \cup D_{n}\right)$ by \hat{F} and the restriction of f on \hat{F} by \hat{f}. Let $\operatorname{Diff}(F)$ be the group of all diffeomorphisms of F. Denote a subgroup of $\operatorname{Diff}(F)$ consisting of automorphisms each of which satisfies the above two conditions (1) and (2) by $\mathcal{S}_{n}(F)$. We denote by $\mathcal{S}_{n}(\hat{F})$ the subgroup of $\operatorname{Diff}(\hat{F})$ each of which is the restriction of $f \in \mathcal{S}_{n}(F)$.

In [10] Kra gave a classification of $\mathcal{S}_{1}(\hat{F})$ from a viewpoint of Teichmüller space theory. Recently Imayoshi, Ito and Yamamoto gave a classification for the subgroup of $\mathcal{S}_{2}(\hat{F})$ consisting of automorphisms leaving each $\partial D_{i}(i=1,2)$ invariant [8]. Very recently, in [9], they announce a classification for the subgroup of $\mathcal{S}_{n}(\hat{F})$ consisting of automorphisms leaving ∂D_{i} invariant for each $i(i=1, \cdots, n)$.

The purpose of this paper is to give a Nielsen-Thurston classification for $\mathcal{S}_{n}(\hat{F})$ (Theorem 1.2) using purely topological methods. To state the result we need some terminologies.

DEFINITION 1 (braids associated to f). Let f be an automorphism in $\mathcal{S}_{n}(F)$ and Φ an isotopy from f to the identity map: $\Phi: F \times I \rightarrow F \times I, \Phi(x, 0)=(f(x), 0)$ and $\Phi(x, 1)=(x, 1)$. Suppose that $x_{i}=f\left(x_{j}\right)$. Define $t_{i}^{f}: I \rightarrow F \times I$ as $t_{i}^{f}(t)=\Phi\left(x_{j}, t\right)$. We call $t_{i}^{f}(I)$ an i-th string, which is a monotone arc connecting $\left(f\left(x_{j}\right), 0\right)=\left(x_{i}, 0\right)$ and $\left(x_{j}, 1\right)$. Then $t_{1}^{f}, \cdots, t_{n}^{f}$ define a braid $b^{f}=\left(t_{1}^{f}(I), \cdots, t_{n}^{f}(I) ; F \times I\right)$ in $F \times I$, which we call a braid associated to f. In the following, by abuse of notation, we also use the same symbol to denote a map and its image; for instance t_{i}^{f} denotes also the image of t_{i}^{f}. We orient each string t_{i}^{f} from $t_{i}^{f}(0)=\left(x_{i}, 0\right)$ to $t_{i}^{f}(1)=\left(x_{j}, 1\right)$.

Denote by $\operatorname{Br}_{n}(F)$ the set of braids in $F \times I$ such that the i-th string is a monotone arc with endpoints $\left(x_{i}, 0\right),\left(x_{j}, 1\right)$. We say that two braids b and b^{\prime} in $\operatorname{Br}_{n}(F)$ are equivalent if there is a diffeomorphism G of $F \times I$ level preservingly isotopic to the identity map which is the identity on $F \times\{0,1\}$ and $G(b)=b^{\prime}$.

For each automorphism $\hat{f} \in \mathcal{S}_{n}(\hat{F})$, we have an automorphism $f \in \mathcal{S}_{n}(F)$, which defines a braid $b^{f} \in \operatorname{Br}_{n}(F)$ as in Definition 1. Conversely each braid $b \in \operatorname{Br}_{n}(F)$ gives an automorphism $f \in \mathcal{S}_{n}(F)$ such that $b^{f}=b$, whose restriction \hat{f} belongs to $\mathcal{S}_{n}(\hat{F})$. Then we establish the following one to one correspondence, which is certainly well-known to specialists and can be found in the literature [1] (when F is closed), see also [10], [9]. For convenience of readers, we will give a sketch of a proof in Appendix.

Proposition 1.1. The map $\Psi: \mathcal{S}_{n}(\hat{F}) \rightarrow \operatorname{Br}_{n}(F)$ sending \hat{f} to b^{f} induces a natural isomorphism $\bar{\Psi}: \mathcal{S}_{n}(\hat{F}) /$ isotopy $\rightarrow \operatorname{Br}_{n}(F) /$ equivalence. In particular, the equivalence
class of the braid b^{f} does not depend on the choice of an isotopy Φ from f to the identity map.

DEFINITION 2. Let $b=\left(t_{1}, \cdots, t_{n} ; F \times I\right)$ be a braid in $\operatorname{Br}_{n}(F)$. Assume that each t_{i} is oriented from $t_{i} \cap F \times\{0\}$ to $t_{i} \cap F \times\{1\}$.
(1) b is trivial if it is equivalent to the braid $\left(\left\{x_{1}\right\} \times I, \cdots,\left\{x_{n}\right\} \times I ; F \times I\right)$.
(2) A subfamily $\left\{t_{i_{1}}, \cdots, t_{i_{k}}\right\}$ is cyclic if $p\left(\left(t_{i_{1}} \cup \cdots \cup t_{i_{k}}\right) \cap(F \times\{0\})\right)=p\left(\left(t_{i_{1}} \cup\right.\right.$ $\left.\left.\cdots \cup t_{i_{k}}\right) \cap(F \times\{1\})\right)$ for the natural projection $p: F \times I \rightarrow F$ and no proper subfamily of $\left\{t_{i_{1}}, \cdots, t_{i_{k}}\right\}$ satisfies the above condition. Each cyclic subfamily $\left\{t_{i_{1}}, \cdots, t_{i_{k}}\right\}$ defines a closed oriented curve c_{j} on F by taking the product of the oriented paths $p\left(t_{i_{1}}\right), \cdots, p\left(t_{i_{k}}\right)$ (each of which has an orientation induced from $t_{i_{1}}, \cdots, t_{i_{k}}$ respectively) in a suitable order.
(3) Let b_{1}, \cdots, b_{m} be a partition of a braid b into cyclic subfamilies, and let c_{1}, \cdots, c_{m} be the corresponding closed curves on F. We call $\mathcal{C}=\left\{c_{1}, \cdots, c_{m}\right\}$ a system of closed curves associated to b.
(4) b is filling if the corresponding system of closed curves $\mathcal{C}=\left\{c_{1}, \cdots, c_{m}\right\}$ is filling (i.e., $c_{1} \cup \cdots \cup c_{m}$ intersects every essential embedded loop on F). If any braid equivalent to b is filling, then b is said to be stably filling.
(5) A subset $\left\{t_{i_{1}}, \cdots, t_{i_{k}}\right\}(k \geq 2)$ is called a parallel family of b if there is a level preserving embedding $\eta: D_{1}^{2} \times I \cup \cdots \cup D_{k^{\prime}}^{2} \times I \rightarrow F \times I$ such that $\eta\left(D_{1}^{2} \times I \cup \cdots \cup D_{k^{\prime}}^{2} \times I\right)$ contains $t_{i_{1}}, \cdots, t_{i_{k}}$ and does not intersect any other strings, and $p\left(\eta\left(D_{1}^{2} \times\{0\} \cup \cdots \cup D_{k^{\prime}}^{2} \times\right.\right.$ $\{0\}))=p\left(\eta\left(D_{1}^{2} \times\{1\} \cup \cdots \cup D_{k^{\prime}}^{2} \times\{1\}\right)\right)$, see Figure 1 (1).
(6) A subset $\left\{t_{i_{1}}, \cdots, t_{i_{k}}\right\}(k \geq 1)$ is called a peripheral family of b if there is a collar neighborhood N of a component of $(\partial F) \times I$ in $F \times I$ which contains $t_{i_{1}}, \cdots, t_{i_{k}}$ and does not intersect any other strings, and $p(N \cap(F \times\{0\}))=p(N \cap(F \times\{1\}))$, see Figure 1 (2).
(7) We say that a subset $\left\{t_{i_{1}}, \cdots, t_{i_{k}}\right\}$ is a P-family if it is either a parallel family or a peripheral family.

FIGURE 1. Parallel family and peripheral family.

We are ready to state our classification theorem.
Theorem 1.2 (Nielsen-Thurston types). Let f be an element in $\mathcal{S}_{n}(F)$ and b^{f} an associated braid.
(i) \hat{f} is isotopic to a periodic automorphism if and only if the braid b^{f} is trivial.
(ii) \hat{f} is isotopic to a reducible automorphism if and only if the braid b^{f} has a P family or is not stably filling.
(iii) \hat{f} is isotopic to a pseudo-Anosov automorphism if and only if the braid b^{f} is stably filling and has no P-families.

If b^{f} is trivial, then by Proposition $1.1, \hat{f}$ is isotopic to the identity map. Hence (i) shows that \hat{f} is isotopic to a periodic automorphism if and only if it is isotopic to the identity map. Since any stably filling braid is necessarily nontrivial, (i) and (ii) imply that there is no periodic automorphism in $\mathcal{S}(\hat{F})$ which is irreducible (i.e. not isotopic to a reducible one). This means that an irreducible automorphism in $\mathcal{S}(\hat{F})$ is isotopic to a pseudo-Anosov automorphism. Thus (ii) can be rephrased as (iii).

Let f be an element in $\mathcal{S}_{n}(F)$ and b^{f} an associated braid. We call a system of closed curves associated to b^{f} a system of closed curves associated to f, and denote it by \mathcal{C}^{f}.

We say that two systems of closed curves $\mathcal{C}=\left\{c_{1}, \cdots, c_{m}\right\}$ and $\mathcal{C}^{\prime}=\left\{c_{1}^{\prime}, \cdots, c_{m}^{\prime}\right\}$ are equivalent if c_{i} is homotopic to c_{i}^{\prime} (as closed curves) for $i=1, \cdots, m$.

Definition 3. Let $\mathcal{C}=\left\{c_{1}, \cdots, c_{m}\right\}$ be a system of closed curves.
(1) \mathcal{C} is stably filling if any system \mathcal{C}^{\prime} equivalent to \mathcal{C} is filling.
(2) \mathcal{C} has property (*) if it is stably filling and satisfies (i) every c_{i} is primitive (i.e., c_{i} is not freely homotopic to a closed curve c^{p} with $p \geq 2$), (ii) c_{i} and c_{j} are not freely homotopic (as closed curves) for $i \neq j$, and (iii) c_{i} cannot be homotoped into ∂F.

In terms of systems of closed curves associated to automorphisms, we have the following result.

Corollary 1.3. Let f be an element in $\mathcal{S}_{n}(F)$ and $\mathcal{C}^{f}=\left\{c_{1}^{f}, \cdots, c_{m}^{f}\right\}$ an associated system of closed curves. If the system \mathcal{C}^{f} has property (*), then \hat{f} is isotopic to a pseudo-Anosov automorphism, in particular \hat{f} is irreducible.

Remark. (a) If f fixes x_{1}, \cdots, x_{n} pointwisely, then we do not need the condition (i) in property $(*)$ (see the proof of Claim 4.1). In particular, if $n=1$, then the 1 -string braid b^{f} has no parallel families and the definition of property $(*)$ is simplified to require that $\left\{c_{1}\right\}$ is stably filling and c_{1} cannot be homotoped into ∂F. (b) The converse of Corollary 1.3 does not hold if $n \geq 2$. In the case where $n=1$, adopting the above refinement of property ($*$), the converse is also true ([10]).

We conclude the introduction with some applications of Corollary 1.3.

Figure 2.

Figure 3.

ExAmple 1. Let f be an automorphism in $\mathcal{S}_{3}(F)$ such that $f\left(x_{1}\right)=x_{2}, f\left(x_{2}\right)=$ $x_{1}, f\left(x_{3}\right)=x_{3}$ and \mathcal{C}^{f} is given by Figure 2. Then \hat{f} is isotopic to a pseudo-Anosov automorphism in $\mathcal{S}_{3}(\hat{F})$. Note that the automorphism f with the the given system of closed curves \mathcal{C}^{f} below is not unique, but for each f, \hat{f} is isotopic to a pseudo-Anosov automorphism in $\mathcal{S}_{3}(\hat{F})$.

In fact, by Corollary 1.3, it is sufficient to show that $\mathcal{C}^{f}=\left\{c_{1}, c_{2}\right\}$ has property $(*)$, where $c_{1}=p\left(t_{1}^{f}\right) * p\left(t_{2}^{f}\right)$ and $c_{2}=p\left(t_{3}^{f}\right)$. It is straightforward to check that \mathcal{C}^{f} satisfies (i), (ii) and (iii). To show that it is stably filling, we first find a hyperbolic structure on F such that the curve c_{1} is realized as a closed geodesic. In fact this can be done by decomposing F into a pair of pants. Then it is known that a closed geodesic on a closed hyperbolic surface which cuts the surface into open disks is stably filling. Since $F-c_{1}$ consists of open disks, $\left\{c_{1}\right\}$ is stably filling, and is also $\left\{c_{1}, c_{2}\right\}$. This fact can be also checked by [7], in which Hass and Scott gave a combinatorial criteria showing the given system of closed curves are stably filling.

Example 2. Let f be an automorphism in $\mathcal{S}_{3}(F)$ such that $f\left(x_{1}\right)=x_{3}, f\left(x_{2}\right)=$ $x_{1}, f\left(x_{3}\right)=x_{2}$ and \mathcal{C}^{f} is given by Figure 3. Then the same argument as above shows that $\mathcal{C}^{f}=\left\{c_{1}\right\}\left(c_{1}=p\left(t_{1}^{f}\right) * p\left(t_{2}^{f}\right) * p\left(t_{3}^{f}\right)\right)$ has property $(*)$ and \hat{f} is isotopic to a pseudo-Anosov automorphism in $\mathcal{S}_{3}(\hat{F})$.

Acknowledgements. We would like to thank Sadayoshi Kojima, Hideki Miyachi for helpful discussions. We would also like to thank the referee for careful reading and useful comments.

2. Isotopies of essential circles on a surface

In this section we will prove the following result which implies that an isotopy sending a family of circles on a surface F to themselves is essentially unique if F has negative Euler characteristic.

Let F be a compact, orientable surface of negative Euler characteristic and a_{1}, \cdots, a_{k} mutually isotopic, pairwise disjoint essential circles on F. Let A_{1}, \cdots, A_{k} be pairwise disjoint, monotone (meaning no local maxima and minima) annuli in $F \times I$ such that $p\left(\partial\left(A_{1} \cup \cdots \cup A_{k}\right)\right)=a_{1} \cup \cdots \cup a_{k}$. Then a map $\sigma:\{1, \cdots, k\} \rightarrow\{1, \cdots, k\}$ is determined so that A_{i} connects $a_{i, 0}=a_{i} \times\{0\}$ and $a_{\sigma(i), 1}=a_{\sigma(i)} \times\{1\} . A_{1} \cup \ldots \cup A_{k}$ corresponds to an isotopy sending $a_{1} \cup \cdots \cup a_{k}$ to itself. Then we have:

LEMMA 2.1. (1) $\sigma(i)=i$ for $i=1, \cdots$, k, i.e., $\partial A_{i}=a_{i} \times\{0,1\}$, and
(2) A_{i} can be isotoped to a vertical annulus $a_{i} \times I$ by a level preserving isotopy which is the identity on $F \times\{0,1\}$

Proof. First we suppose that F is a closed surface of genus g. Choose a family of $2 g$ essential simple closed curves $\varepsilon_{1}, \cdots, \varepsilon_{2 g}$ on F as in Figure $4 ; \cup_{k=1}^{2 g} \varepsilon_{k}$ cuts F into a single disk and a_{i} is homologous to none of $\varepsilon_{1}, \cdots, \varepsilon_{2 g}$. Without loss of generality, we may assume that the curve a_{i} is precisely as in Figure 4 (1) or (2) depending on whether a_{i} is nonseparating or separating: $a_{i} \cap \varepsilon_{4}=\left\{z_{i}\right\}, a_{i} \cap \varepsilon_{j}=\left\{z_{i}, z_{i}^{\prime}\right\}$. In fact, for a given essential simple loop a_{i} on F, there is a diffeomorphism $h: F \rightarrow F$ sending a_{i} to the curve as in Figure 4 (1) or (2). Then we have the required situation by applying $h \times$ id. : $F \times I \rightarrow F \times I$.

In the following we may relabel the indices and orient a_{i} so that a_{1}, \cdots, a_{k} are homotopic as oriented curves, and if a_{i} is separating, then a_{i} intersects ε_{j} at z_{i} and z_{i}^{\prime} with opposite directions and $\left(a_{1} \cup \cdots \cup a_{k}\right) \cap \varepsilon_{j}$ appears $z_{k}, \cdots, z_{2}, z_{1}, z_{1}^{\prime}, z_{2}^{\prime}, \cdots, z_{k}^{\prime}$ in circular ordering on ε_{j}.

Let E_{k} be the vertical annulus $p^{-1}\left(\varepsilon_{k}\right)$ for $1 \leq k \leq 2 g$.

(1) a_{i} is non-separating

(2) a_{i} is separating

$k=1$

Figure 5.

Since a_{i} is essential, A_{i} is incompressible. Thus we may assume, by a level preserving isotopy fixing $F \times\{0,1\}$, that each A_{i} intersects E_{4} (resp. E_{j}) transversely and that each component of $A_{i} \cap E_{4}$ (resp. $A_{i} \cap E_{j}$) does not bound a disk in E_{4} (resp. E_{j}). Note that each level preserving isotopy keeps A_{i} monotone.

We first consider the case where a_{i} is non-separating.
Claim 2.2. $\quad A_{i} \cap E_{4}$ consists of an arc ζ_{i} isotopic to a vertical segment by a level preserving isotopy leaving its boundary invariant.

Proof. Since $a_{i} \cap \varepsilon_{4}=\left\{z_{i}\right\}$, there is no boundary-parallel arc in E_{4}. Hence ($A_{1} \cup$ $\left.\cdots \cup A_{k}\right) \cap E_{4}$ consists of essential monotone arcs, say as in Figure 5.

Take a subfamily $A_{1}, A_{\sigma(1)}, \cdots, A_{\sigma^{j-1}(1)}$ of the annuli such that $j \in\{1, \cdots, k\}$ satisfies $\sigma^{j}(1)=1$ and no proper subfamily satisfies this property. Let T^{\prime} be a torus obtained from $A_{1} \cup A_{\sigma(1)} \cup \cdots \cup A_{\sigma^{j-1}(1)}$ by identifying their boundaries via the identification $(x, 0)=(x, 1)$. Then there is a map p^{\prime} such that the following diagram commutes:

Connecting the $\operatorname{arcs} \zeta_{1}, \zeta_{\sigma(1)}, \cdots, \zeta_{\sigma^{j-1}(1)}$ in a suitable order, we obtain an essential loop α on T^{\prime}, which satisfies $p_{*}^{\prime}([\alpha])=\left[\varepsilon_{4}\right]^{m} \in \pi_{1}\left(F, z_{1}\right)$ for some integer m. Assume for a contradiction that $m>0$. Then $p_{*}^{\prime}([\alpha])$ is nontrivial. The essential loop $a_{1,0}$ also gives an essential loop β on T^{\prime}. Note that since $[\alpha][\beta]=[\beta][\alpha] \in \pi_{1}\left(T^{\prime}\right)$, $p_{*}^{\prime}([\alpha]) p_{*}^{\prime}([\beta])=$ $p_{*}^{\prime}([\beta]) p_{*}^{\prime}([\alpha])$ in $\pi_{1}\left(F, z_{1}\right)$. Furthermore, since $\left|\varepsilon_{4} \cap a_{1}\right|=1, p_{*}^{\prime}([\alpha])$ and $p_{*}^{\prime}([\beta])$ generate a rank two free abelian subgroup in $\pi_{1}\left(F, z_{1}\right)$. This contradicts that the genus of F is greater than one.

It follows that $m=0$, hence $p\left(\partial \zeta_{i}\right)=z_{i}$ and we can isotope A_{i} by a level preserving isotopy of $F \times I$ fixing $F \times\{0,1\}$ so that $A_{i} \cap E_{4}$ consists of a single vertical segment.
\square (Claim 2.2)
This claim implies the first assertion of Lemma 2.1 in the case where a_{i} is non-separating.

Now let us show that A_{i} can be isotoped to the vertical annulus as required. Since $E_{3} \cap E_{4}, E_{4} \cap E_{5}$ (if $g>2$) and $A_{i} \cap E_{4}$ consist of a vertical segment respectively, we can isotope without changing $A_{i} \cap E_{4}$ so that $A_{i} \cap E_{3}=\emptyset$ and $A_{i} \cap E_{5}=\emptyset$ (if $g>2$); here we use also a fact that $a_{i} \cap \varepsilon_{3}=\emptyset, a_{i} \cap \varepsilon_{5}=\emptyset$ (if $g>2$) and an incompressibility of A_{i}. For other $E_{S}(s \neq 3,4,5)$, since $a_{i} \cap \varepsilon_{s}=\emptyset$ and A_{i} is incompressible, we can isotope further by a level preserving isotopy fixing $F \times\{0,1\}$ so that $A_{i} \cap E_{s}$ is empty or consists of essential circles in E_{S}; each circle is also essential in A_{i} because E_{S} is incompressible. In the latter case a_{i} is homotopic to ε_{s}, a contradiction. Since A_{i} intersects only E_{4} or E_{j} in vertical segments and $E_{1} \cup \cdots \cup E_{2 g}$ cuts $F \times I$ into a [disk] $\times I$, we can isotope A_{i} to the vertical annulus by a level preserving isotopy as desired.

Next we consider the case where a_{i} is separating.
In this case, $A_{i} \cap E_{j}$ consists of two properly embedded arcs ζ_{i} and ζ_{i}^{\prime} in E_{j}.
CLAIM 2.3. $\partial \zeta_{i}=\left\{\left(z_{i}, 0\right),\left(z_{i}, 1\right)\right\}$, and hence $\partial \zeta_{i}^{\prime}=\left\{\left(z_{i}^{\prime}, 0\right),\left(z_{i}^{\prime}, 1\right)\right\}$.
Proof. If ζ_{i} is boundary-parallel arc, then since A_{i} is boundary-incompressible and $F \times\{0,1\}$ are incompressible, there should be a bigon $D \subset F$ with $\partial D=d_{1} \cup d_{2}$ such that $d_{1} \subset a_{i}$ and $d_{2} \subset \varepsilon_{j}$. This is impossible, see Figure 4 (2). Thus the arcs ζ_{i} 's define a bijection τ on $\left\{z_{k}, \cdots, z_{1}, z_{1}^{\prime}, \cdots, z_{k}^{\prime}\right\}$ so that ζ_{i} connects the points $\left(z_{i}, 0\right)$ and $\left(\tau\left(z_{i}\right), 1\right)$, for otherwise, there must be boundary parallel arcs as illustrated in Figure 6 (1). In fact, since A_{i} connects $a_{i} \times\{0\}$ and $a_{\sigma(i)} \times\{1\}, \zeta_{i}$ connects $\left(z_{i}, 0\right)$ and $\left(z_{\sigma(i)}, 1\right)$ or $\left(z_{\sigma(i)}^{\prime}, 1\right) ; \tau\left(z_{i}\right)$ equals $z_{\sigma(i)}$ or $z_{\sigma(i)}^{\prime}$. Remark that since ζ_{i}^{\prime} is also a component of $A_{i} \cap E_{j}$, if $\tau\left(z_{i}\right)=z_{\sigma(i)}$ (resp. $\left.\tau\left(z_{i}\right)=z_{\sigma(i)}^{\prime}\right), \zeta_{i}^{\prime}$ connects the points $\left(z_{i}^{\prime}, 0\right)$ and $\left(z_{\sigma(i)}^{\prime}, 1\right)\left(\right.$ resp. $\left.\left(z_{\sigma(i)}, 1\right)\right)$.

Let us show that $\tau\left(z_{i}\right)=z_{i}$. Suppose to the contrary that $\tau\left(z_{i}\right) \neq z_{i}$ for some i. If $\tau\left(z_{i}\right)=z_{\sigma(i)}$, say as in Figure $6(1)$ in which $i=1$ and $\sigma(i)=2$, then there would be a boundary-parallel arc in $\left(A_{1} \cup \cdots \cup A_{k}\right) \cap E_{j}$, a contradiction. If $\tau\left(z_{i}\right)=z_{\sigma(i)}^{\prime}$, say as in Figure 6 (2) in which $i=2$ and $\sigma(i)=2$, then sliding the oriented closed curve $a_{i, 0}$ along the annulus A_{i} to obtain an oriented closed curve $a_{\sigma(i), 1}$. Then since $a_{\sigma(i), 0}$ is orientedly

(1)

(2)

Figure 6.

Figure 7.
homotopic to $a_{i, 0}, p\left(a_{\sigma(i), 1}\right)$ and $p\left(a_{\sigma(i), 0}\right)$ have opposite orientations. This implies that $a_{\sigma(i)}$ and $\overline{a_{\sigma(i)}}$ (the closed curve obtained from $a_{\sigma(i)}$ by inverting its orientation) are freely homotopic in F, hence F would be non-orientable, a contradiction.
(Claim 2.3)
Thus we have a situation, say as in Figure 7.
This observation implies the first assertion of Lemma 2.1 in the case where a_{i} is separating.

Let us show that A_{i} is also isotoped to the vertical annulus as required in this case. By using the same argument in the proof of Claim 2.2 for a torus T^{\prime} obtained from single A_{i}, ζ_{i} and ζ_{i}^{\prime} are shown to be isotopic to vertical segments by a level preserving isotopy leaving their boundaries invariant. Then, as in the above, we can isotope A_{i} (fixing $F \times\{0,1\}$) so that $A \cap E_{s}=\emptyset(s \neq j)$, thus we can isotope A_{i} to the vertical annulus by a level preserving isotopy as desired.

Finally suppose that F has genus g and d boundary components. We can find a system of properly embedded $\operatorname{arcs}\left\{\varepsilon_{1}, \cdots, \varepsilon_{2 g}, \delta_{1}, \cdots, \delta_{d-1}\right\}$ so that they cut F into a single disk. Then the result follows by applying the same argument as above. (The proof is easier, because $p^{-1}\left(\varepsilon_{j}\right)$ and $p^{-1}\left(\delta_{k}\right)$ is a rectangle, not an annulus.)
\square (Lemma 2.1)

3. Proof of Theorem 1.2

Let f be an element in $\mathcal{S}_{n}(F)$ and b^{f} an associated braid.
3.1. Proof of (i). This is certainly well-known, but for completeness, we give a proof. If b^{f} is trivial, then \hat{f} is isotopic to the identity map, which has period 1 . Conversely if \hat{f} is isotopic to a periodic automorphism, then by Proposition $1.1, b^{f}$ has a finite order in the braid group. If b^{f} is nontrivial, then [5, Theorem 8] shows that F would be S^{2} or the projective plane $\mathbb{R} P^{2}$, contradicting our assumption. Thus b^{f} is trivial.
3.2. Proof of the "only if" part of (ii). We show that if \hat{f} is isotopic to a reducible automorphism, then the braid b^{f} has a P-family or is not stably filling.

Assume that \hat{f} is isotopic to a reducible automorphism. Then there is an essential 1submanifold $C=a_{1} \cup \cdots \cup a_{m} \subset F$ such that $f(C)$ is isotopic to C on \hat{F}. In the following, we assume that $f\left(a_{k_{i}}\right)$ is isotopic to a_{i}, i.e., $a_{k_{i}}$ is isotopic to $f^{-1}\left(a_{i}\right)(i=1, \cdots, m)$ on \hat{F}.

The isotopy from $f^{-1}\left(a_{i}\right)$ to $a_{k_{i}}(1 \leq i \leq m)$ on \hat{F} is realized as a family of monotone annuli $\tilde{A}_{1}, \cdots, \tilde{A}_{m}$ in $\hat{F} \times I \subset F \times I$ so that $\partial \tilde{A}_{1}=\left(f^{-1}\left(a_{1}\right) \times\{0\}\right) \cup\left(a_{k_{1}} \times\{1\}\right), \cdots$, $\partial \tilde{A}_{m}=\left(f^{-1}\left(a_{m}\right) \times\{0\}\right) \cup\left(a_{k_{m}} \times\{1\}\right)$. Note that $\tilde{A}_{i} \cap\left(\left\{x_{j}\right\} \times I\right)=\emptyset$ for $i=1, \cdots, m, j=$ $1, \cdots, n$. Since f is isotopic to the identity on F, we have a level preserving diffeomorphism of $F \times I$ sending $(x, 0)$ to $(f(x), 0)$ and $(x, 1)$ to $(x, 1)$, which deforms also the vertical segment $\left\{x_{j}\right\} \times I$ to a monotone arc t_{i}^{f} with $\partial t_{i}^{f}=\left\{\left(x_{i}, 0\right),\left(x_{j}, 1\right)\right\}$, where $x_{i}=f\left(x_{j}\right)$. Then $t_{1}^{f}, \cdots, t_{n}^{f}$ define a braid b^{f} in $F \times I$ (see, Definition 1). Simultaneously, the annuli $\tilde{A}_{1}, \cdots, \tilde{A}_{m}$ are also deformed to a family of monotone annuli A_{1}, \cdots, A_{m} in $F \times I$, each of which is disjoint from the braid b^{f} and satisfies that $\partial A_{i}=\left(a_{i} \times\{0\}\right) \cup\left(a_{k_{i}} \times\{1\}\right)$. Let us choose annuli A_{1}, \cdots, A_{k} (after changing their indices if necessary) so that $p\left(\partial\left(A_{1} \cup \cdots \cup\right.\right.$ $\left.\left.A_{k}\right) \cap(F \times\{0\})\right)=p\left(\partial\left(A_{1} \cup \cdots \cup A_{k}\right) \cap(F \times\{1\})\right)$ and no proper subset satisfy this property.

Consider the case where a_{i} bounds a disk D_{i} on F. Then since C is an essential 1submanifold on \hat{F}, D_{i} contains at least two points of $\left\{x_{1}, \cdots, x_{n}\right\}$. Then for each $i(1 \leq$ $i \leq k), \partial A_{i} \cap(F \times\{0\})$ bounds a disk $D_{i, 0} \subset F \times\{0\}$ and $\partial A_{i} \cap(F \times\{1\})$ bounds a disk $D_{i, 1} \subset F \times\{1\}$. By the irreducibility of $F \times I$, the 2-sphere $A_{i} \cup D_{i, 0} \cup D_{i, 1}$ bounds a 3-ball B_{i}. It turns out that each B_{i} contains m strings in b^{f} for some integer $m \geq 2$ independent of i. The collection of strings in b^{f} each of which is contained in $B_{1} \cup \cdots \cup B_{k}$ give a parallel family in this case.

Next consider the case where a_{i} does not bound a disk D_{i} on F. This implies that A_{i} is incompressible in $F \times I$. Then Lemma 2.1 (1) implies that $k=1$ and Lemma 2.1 (2) shows that A_{1} can be isotoped to the vertical annulus $a_{1} \times I$ by a level preserving isotopy fixing $F \times\{0,1\}$. Under this level preserving isotopy, the braid $b^{f}=\left(t_{1}^{f}, \cdots, t_{n}^{f} ; F \times I\right)$ is also isotoped to another braid $b^{\prime}=\left(t_{1}^{\prime}, \cdots, t_{n}^{\prime} ; F \times I\right)$ (without moving their endpoints), which is equivalent to b^{f}; they define equivalent systems of closed curves. Since the annulus A_{1} is disjoint from $b^{f}, a_{1} \times I$ does not intersect b^{\prime} neither, and hence $a_{1} \cap\left(\cup_{i=1}^{n} p\left(t_{i}^{\prime}\right)\right)=$ $p\left(a_{1} \times I\right) \cap p\left(b^{\prime}\right)=p\left(\left(a_{1} \times I\right) \cap b^{\prime}\right)=p(\emptyset)=\emptyset$. Therefore if a_{1} is essential in F, equivalently, if a_{1} is not parallel to a component of ∂F, then b^{\prime} is not filling. Thus, by definition, b^{f} is not stably filling.

If a_{1} is parallel to a component of ∂F, then the parallelism must contain some specified points x_{i}, since C is an essential 1-submanifold. Thus $a_{1} \times I$, and hence A_{1}, is the frontier of a collar neighborhood $N\left(\cong S^{1} \times I \times I\right)$ of a component of $(\partial F) \times I$. Since $N\left(\cong S^{1} \times I \times I\right)$ contains some strings t_{i}^{f}, they give a peripheral family as we desired.
3.3. Proof of the "if" part of (ii). Suppose that the braid b^{f} has a P-family or is not stably filling. Then by definition, (1) b^{f} has a parallel family $\left\{t_{i_{1}}^{f}, \cdots, t_{i_{k}}^{f}\right\}$ or (2) b^{f} has a
peripheral family $\left\{t_{i_{1}}^{f}, \cdots, t_{i_{k}}^{f}\right\}$, or (3) b^{f} is equivalent to a braid $b^{\prime}=\left(t_{1}^{\prime}, \cdots, t_{n}^{\prime} ; F \times I\right)$ such that $p\left(t_{1}^{\prime}\right) \cup \cdots \cup p\left(t_{n}^{\prime}\right)$ does not intersect an essential embedded loop a.

In each case, $C=p\left(\eta\left(\partial\left(D_{1}^{2} \times\{0\} \cup \cdots \cup D_{m}^{2} \times\{0\}\right)\right)\right)$, the frontier of $p(N \cap(F \times\{0\}))$ in F, or the embedded loop a is an essential 1-submanifold which is isotopic to the image of f on \hat{F}. This means that \hat{f} is isotopic to a reducible automorphism.

4. Proof of Corollary 1.3

Corollary 1.3 follows immediately from Theorem 1.2 (iii) and the claim below.
CLAIM 4.1. If the system of closed curves $\mathcal{C}^{f}=\left\{c_{1}^{f}, \cdots, c_{m}^{f}\right\}$ has property $(*)$, then the braid $b^{f}=\left(t_{1}^{f}, \cdots, t_{n}^{f} ; F \times I\right)$ is stably filling and has no P-families.

Proof. Suppose that we have a parallel family $\left\{t_{i_{1}}, \cdots, t_{i_{k}}\right\}(k \geq 2)$, which consists of some cyclic subfamilies. The cyclic families give a subsystem of closed curves in \mathcal{C}^{f}. Since $k \geq 2$, the subsystem contains a closed curve homotopic to a nontrivial power of a closed curve or a pair of mutually homotopic closed curves. (If f fixes x_{1}, \cdots, x_{n} pointwisely, i.e., b^{f} is a pure braid, then we have the latter possibility.) This contradicts the assumption. If we have a peripheral family $\left\{t_{i_{1}}, \cdots, t_{i_{k}}\right\}$, then clearly c_{i}^{f} is homotoped into a component of ∂F, contradicting the assumption.

Let $b^{\prime}=\left(t_{1}^{\prime}, \cdots, t_{n}^{\prime} ; F \times I\right)$ be a braid equivalent to b^{f}. Then the system of closed curves \mathcal{C}^{\prime} corresponding to b^{\prime} is equivalent to \mathcal{C}^{f}. Since \mathcal{C}^{f} is stably filling, by definition, \mathcal{C}^{\prime} is filling.
\square (Claim 4.1)

Appendix. A sketch of a proof of Proposition 1.1

Here we give a sketch of a proof of Proposition 1.1, for details, see [1].
Let $\mathbf{B}_{n}(F)$ be the subgroup of $\operatorname{Diff}(F)$ consisting of automorphisms f satisfying $f\left(\left\{x_{1}, \cdots, x_{n}\right\}\right)=\left\{x_{1}, \cdots, x_{n}\right\}$. Let $C_{n}(F)$ denote the space of n-tuples $\left(z_{1}, \cdots, z_{n}\right)$ of distinct points in int F and $\mathrm{B}_{n}(F)$ the quotient space of $\mathrm{C}_{n}(F)$ by the symmetry group Σ_{n}. Then we have an evaluation map $\varepsilon_{n}: \operatorname{Diff}(F) \rightarrow \mathrm{B}_{n}(F)$ defined by the rule $\varepsilon_{n}(f)=\left(f\left(x_{1}\right), \cdots, f\left(x_{n}\right)\right)$, which is a fibration with fiber $\mathbf{B}_{n}(F)$. This fibration gives the following homotopy exact sequence, in which $\operatorname{Diff}_{0}(F)$ denotes the identity component of $\operatorname{Diff}(F)$.

$$
\rightarrow \pi_{1}\left(\operatorname{Diff}_{0}(F)\right) \xrightarrow{\varepsilon_{*}} \pi_{1}\left(\mathrm{~B}_{n}(F)\right) \xrightarrow{d_{*}} \pi_{0}\left(\mathbf{B}_{n}(F)\right) \xrightarrow{i_{*}} \pi_{0}(\operatorname{Diff}(F)) \rightarrow \pi_{0}\left(\mathrm{~B}_{n}(F)\right)=\{1\}
$$

Since F has negative Euler characteristic, $\operatorname{Diff}_{0}(F)$ is contractible ([3], [4]), and hence $\operatorname{Ker} d_{*}=\operatorname{Im} \varepsilon_{*}=\{1\}$. Thus d_{*} is injective. It follows that the connecting homomorphism d_{*} is an isomorphism between Keri_{*} and $\pi_{1}\left(\mathrm{~B}_{n}(F)\right)$, which is identified with the (full) braid group $\mathrm{Br}_{n}(F) /$ equivalence.

It is obvious that Keri_{*} is just the quotient of the group consisting of automorphisms f of F satisfying $f\left(\left\{x_{1}, \cdots, x_{n}\right\}\right)=\left\{x_{1}, \cdots, x_{n}\right\}$ and isotopic to the identity on F by isotopies keeping $x_{i}(i=1, \cdots, n)$ invariant. This subgroup is naturally isomorphic to the quotient of $\mathcal{S}_{n}(F)$ by isotopies keeping D_{i} and $x_{i}(i=1, \cdots, n)$ invariant, which is also isomorphic to $\mathcal{S}_{n}(\hat{F}) /$ isotopy.

References

[1] J. S. Birman, Braids, links, and mapping class groups, Annals of Mathematics Studies, No. 82 Princeton University Press, Princeton, N.J. (1974).
[2] A. J. Casson and S. A. Bleiler, Automorphisms of surfaces after Nielsen and Thurston, London Mathematical Society Student Texts, 9 Cambridge University Press, Cambridge, 1988.
[3] C. J. Earle and J. Eells, A fibre bundle description of Teichmüller theory, J. Diff. Geom. 3 (1969), 19-43.
[4] C. J. Earle and A. Schatz, Teichmüller theory for surfaces with boundary, J. Diff. Geom. 4 (1970), 169185.
[5] E. Fadell and L. Neuwirth, Configuration spaces, Math. Scand. 10 (1962), 111-118.
[6] A. Fathi, F. Laudenbach and V. Poenaru, Travaux de Thurston sur les surfaces, Asterisque 66-67 (1991/1979).
[7] J. Hass and P. Scott, Intersections of curves on surfaces, Israel J. Math. 51 (1985), 90-120.
[8] Y. Imayoshi, M. Ito and H. Yamamoto, On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces with two specified points, Osaka J. Math. 40 (2003), 659-685.
[9] Y. Imayoshi, M. Ito and H. Yamamoto, A reducibility problem for monodromy of some surface bundles, preprint.
[10] I. KRA, On the Nielsen-Thurston-Bers type of some self-maps of Riemann surfaces, Acta Math. 146 (1981), 231-270.
[11] W. P. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc. 19 (1988), no. 2, 417-431.

Present Addresses:
Kazuhiro Ichihara College of General Education, Osaka Sangyo University,
Nakagaito, Daito, Osaka, 574-8530 Japan.
e-mail: ichihara@las.osaka-sandai.ac.jp
Kimihiko Motegi
Department of Mathematics, Nihon University, Sakurajosui, Setagaya-ku, Tokyo, 156-8550 Japan.
e-mail: motegi@math.chs.nihon-u.ac.jp

