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Abstract. Let F be a compact, orientable surface with negative Euler characteristic, and let x1, · · · , xn be n

fixed but arbitrarily chosen points on intF , each of which has a (small) diskal neighborhood Di ⊂ F . Denote by
Sn(F ) a subgroup of Diff(F ) consisting of “sliding” maps f each of which satisfies
(1) f ({x1, · · · , xn}) = {x1, · · · , xn}, f (D1 ∪ · · · ∪ Dn) = D1 ∪ · · · ∪ Dn and
(2) f is isotopic to the identity map on F .

Then by restricting such automorphisms to F̂ = F − int(D1 ∪· · ·∪Dn), we have automorphisms f̂ : F̂ → F̂ , which

form a subgroup Sn(F̂ ) of Diff(F̂ ). We give a Nielsen-Thurston classification of elements of Sn(F̂ ) using braids in

F × I which characterize the elements of Sn(F̂ ).

1. Introduction

An automorphism (i.e., orientation preserving self diffeomorphism) of a compact, ori-
entable surface with possibly non-empty boundary is said to be periodic if its some power is
equal to the identity map, and is said to be reducible if it leaves an essential 1-submanifold
(i.e., a union of pairwise disjoint simple closed curves such that each curve is homotopically
non-trivial and not boundary-parallel, and that no two components are properly homotopic)
of the surface invariant.

Suppose that the surface has negative Euler characteristic. It is known by [11], [6],
[2] that if an automorphism is isotopic to neither a periodic automorphism nor a reducible
automorphism, then it is isotopic to a pseudo-Anosov automorphism (i.e., an automorphism
leaving singular foliations invariant) and vice versa; for the precise definition of a pseudo-
Anosov automorphism, see [11], [6, Exposé 11, see also p. 286], [2]. Thus each automorphism
is isotopic to an automorphism with (at least) one of the above three types which we refer to
as Nielsen-Thurston types.
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Let F be a compact orientable surface with negative Euler characteristic, and let
x1, · · · , xn be n fixed but arbitrarily chosen points on intF ; each xi has a (small) diskal neigh-
borhood Di ⊂ F . Let f be an automorphism of F which satisfies:
(1) f ({x1, · · · , xn}) = {x1, · · · , xn} and f (D1 ∪ · · · ∪ Dn) = D1 ∪ · · · ∪ Dn, and
(2) f is isotopic to the identity map on F .

We denote F − int(D1 ∪ · · · ∪ Dn) by F̂ and the restriction of f on F̂ by f̂ . Let
Diff(F ) be the group of all diffeomorphisms of F . Denote a subgroup of Diff(F ) consisting
of automorphisms each of which satisfies the above two conditions (1) and (2) by Sn(F ). We

denote by Sn(F̂ ) the subgroup of Diff(F̂ ) each of which is the restriction of f ∈ Sn(F ).

In [10] Kra gave a classification of S1(F̂ ) from a viewpoint of Teichmüller space theory.

Recently Imayoshi, Ito and Yamamoto gave a classification for the subgroup of S2(F̂ ) con-
sisting of automorphisms leaving each ∂Di (i = 1, 2) invariant [8]. Very recently, in [9], they

announce a classification for the subgroup of Sn(F̂ ) consisting of automorphisms leaving ∂Di

invariant for each i (i = 1, · · · , n).

The purpose of this paper is to give a Nielsen-Thurston classification forSn(F̂ ) (Theorem
1.2) using purely topological methods. To state the result we need some terminologies.

DEFINITION 1 (braids associated to f ). Let f be an automorphism in Sn(F ) and Φ

an isotopy from f to the identity map: Φ : F × I → F × I,Φ(x, 0) = (f (x), 0) and

Φ(x, 1) = (x, 1). Suppose that xi = f (xj ). Define t
f

i : I → F × I as t
f

i (t) = Φ(xj , t). We

call t
f
i (I ) an i-th string, which is a monotone arc connecting (f (xj ), 0) = (xi, 0) and (xj , 1).

Then t
f

1 , · · · , t
f
n define a braid bf = (t

f

1 (I), · · · , t
f
n (I); F × I) in F × I , which we call a

braid associated to f . In the following, by abuse of notation, we also use the same symbol

to denote a map and its image; for instance t
f

i denotes also the image of t
f

i . We orient each

string t
f
i from t

f
i (0) = (xi, 0) to t

f
i (1) = (xj , 1).

Denote by Brn(F ) the set of braids in F × I such that the i-th string is a monotone arc
with endpoints (xi, 0), (xj , 1). We say that two braids b and b′ in Brn(F ) are equivalent if
there is a diffeomorphism G of F × I level preservingly isotopic to the identity map which is
the identity on F × {0, 1} and G(b) = b′.

For each automorphism f̂ ∈ Sn(F̂ ), we have an automorphism f ∈ Sn(F ), which
defines a braid bf ∈ Brn(F ) as in Definition 1. Conversely each braid b ∈ Brn(F ) gives

an automorphism f ∈ Sn(F ) such that bf = b, whose restriction f̂ belongs to Sn(F̂ ).
Then we establish the following one to one correspondence, which is certainly well-known to
specialists and can be found in the literature [1] (when F is closed), see also [10], [9]. For
convenience of readers, we will give a sketch of a proof in Appendix.

PROPOSITION 1.1. The map Ψ : Sn(F̂ ) → Brn(F ) sending f̂ to bf induces a natural

isomorphism Ψ̄ : Sn(F̂ )/isotopy → Brn(F )/equivalence. In particular, the equivalence
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class of the braid bf does not depend on the choice of an isotopy Φ from f to the identity
map.

DEFINITION 2. Let b = (t1, · · · , tn; F × I) be a braid in Brn(F ). Assume that each
ti is oriented from ti ∩ F × {0} to ti ∩ F × {1}.

(1) b is trivial if it is equivalent to the braid ({x1} × I, · · · , {xn} × I ; F × I).
(2) A subfamily {ti1, · · · , tik } is cyclic if p((ti1 ∪ · · · ∪ tik ) ∩ (F × {0})) = p((ti1 ∪

· · · ∪ tik ) ∩ (F × {1})) for the natural projection p : F × I → F and no proper subfamily
of {ti1 , · · · , tik } satisfies the above condition. Each cyclic subfamily {ti1 , · · · , tik } defines a
closed oriented curve cj on F by taking the product of the oriented paths p(ti1 ), · · · , p(tik )

(each of which has an orientation induced from ti1, · · · , tik respectively) in a suitable order.
(3) Let b1, · · · , bm be a partition of a braid b into cyclic subfamilies, and let c1, · · · , cm

be the corresponding closed curves on F . We call C = {c1, · · · , cm} a system of closed curves
associated to b.

(4) b is filling if the corresponding system of closed curves C = {c1, · · · , cm} is filling
(i.e., c1 ∪ · · · ∪ cm intersects every essential embedded loop on F ). If any braid equivalent to
b is filling, then b is said to be stably filling.

(5) A subset {ti1, · · · , tik } (k ≥ 2) is called a parallel family of b if there is a level

preserving embedding η : D2
1 ×I ∪· · ·∪D2

k′ ×I → F ×I such that η(D2
1 ×I ∪· · ·∪D2

k′ ×I)

contains ti1, · · · , tik and does not intersect any other strings, and p(η(D2
1 × {0} ∪ · · · ∪ D2

k′ ×
{0})) = p(η(D2

1 × {1} ∪ · · · ∪ D2
k′ × {1})), see Figure 1 (1).

(6) A subset {ti1 , · · · , tik } (k ≥ 1) is called a peripheral family of b if there is a collar
neighborhood N of a component of (∂F ) × I in F × I which contains ti1, · · · , tik and does
not intersect any other strings, and p(N ∩ (F × {0})) = p(N ∩ (F × {1})), see Figure 1 (2).

(7) We say that a subset {ti1 , · · · , tik } is a P -family if it is either a parallel family or a
peripheral family.

FIGURE 1. Parallel family and peripheral family.
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We are ready to state our classification theorem.

THEOREM 1.2 (Nielsen-Thurston types). Let f be an element in Sn(F ) and bf an
associated braid.

(i) f̂ is isotopic to a periodic automorphism if and only if the braid bf is trivial.

(ii) f̂ is isotopic to a reducible automorphism if and only if the braid bf has a P -
family or is not stably filling.

(iii) f̂ is isotopic to a pseudo-Anosov automorphism if and only if the braid bf is stably
filling and has no P -families.

If bf is trivial, then by Proposition 1.1, f̂ is isotopic to the identity map. Hence (i) shows

that f̂ is isotopic to a periodic automorphism if and only if it is isotopic to the identity map.
Since any stably filling braid is necessarily nontrivial, (i) and (ii) imply that there is no periodic

automorphism in S(F̂ ) which is irreducible (i.e. not isotopic to a reducible one). This means

that an irreducible automorphism in S(F̂ ) is isotopic to a pseudo-Anosov automorphism.
Thus (ii) can be rephrased as (iii).

Let f be an element in Sn(F ) and bf an associated braid. We call a system of closed
curves associated to bf a system of closed curves associated to f , and denote it by Cf .

We say that two systems of closed curves C = {c1, · · · , cm} and C ′ = {c′
1, · · · , c′

m} are

equivalent if ci is homotopic to c′
i (as closed curves) for i = 1, · · · ,m.

DEFINITION 3. Let C = {c1, · · · , cm} be a system of closed curves.
(1) C is stably filling if any system C ′ equivalent to C is filling.
(2) C has property (∗) if it is stably filling and satisfies (i) every ci is primitive (i.e., ci is

not freely homotopic to a closed curve cp with p ≥ 2), (ii) ci and cj are not freely homotopic
(as closed curves) for i 	= j , and (iii) ci cannot be homotoped into ∂F .

In terms of systems of closed curves associated to automorphisms, we have the following
result.

COROLLARY 1.3. Let f be an element in Sn(F ) and Cf = {cf

1 , · · · , c
f
m} an asso-

ciated system of closed curves. If the system Cf has property (∗), then f̂ is isotopic to a

pseudo-Anosov automorphism, in particular f̂ is irreducible.

REMARK. (a) If f fixes x1, · · · , xn pointwisely, then we do not need the condition (i)
in property (∗) (see the proof of Claim 4.1). In particular, if n = 1, then the 1-string braid
bf has no parallel families and the definition of property (∗) is simplified to require that {c1}
is stably filling and c1 cannot be homotoped into ∂F . (b) The converse of Corollary 1.3 does
not hold if n ≥ 2. In the case where n = 1, adopting the above refinement of property (∗),
the converse is also true ([10]).

We conclude the introduction with some applications of Corollary 1.3.
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FIGURE 2.

FIGURE 3.

EXAMPLE 1. Let f be an automorphism in S3(F ) such that f (x1) = x2, f (x2) =
x1, f (x3) = x3 and Cf is given by Figure 2. Then f̂ is isotopic to a pseudo-Anosov automor-

phism in S3(F̂ ). Note that the automorphism f with the the given system of closed curves

Cf below is not unique, but for each f , f̂ is isotopic to a pseudo-Anosov automorphism in

S3(F̂ ).

In fact, by Corollary 1.3, it is sufficient to show that Cf = {c1, c2} has property (∗),

where c1 = p(t
f

1 ) ∗ p(t
f

2 ) and c2 = p(t
f

3 ). It is straightforward to check that Cf satisfies (i),
(ii) and (iii). To show that it is stably filling, we first find a hyperbolic structure on F such
that the curve c1 is realized as a closed geodesic. In fact this can be done by decomposing F

into a pair of pants. Then it is known that a closed geodesic on a closed hyperbolic surface
which cuts the surface into open disks is stably filling. Since F − c1 consists of open disks,
{c1} is stably filling, and is also {c1, c2}. This fact can be also checked by [7], in which Hass
and Scott gave a combinatorial criteria showing the given system of closed curves are stably
filling.

EXAMPLE 2. Let f be an automorphism in S3(F ) such that f (x1) = x3, f (x2) =
x1, f (x3) = x2 and Cf is given by Figure 3. Then the same argument as above shows that

Cf = {c1} (c1 = p(t
f

1 )∗p(t
f

2 )∗p(t
f

3 )) has property (∗) and f̂ is isotopic to a pseudo-Anosov

automorphism in S3(F̂ ).
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2. Isotopies of essential circles on a surface

In this section we will prove the following result which implies that an isotopy sending
a family of circles on a surface F to themselves is essentially unique if F has negative Euler
characteristic.

Let F be a compact, orientable surface of negative Euler characteristic and a1, · · · , ak

mutually isotopic, pairwise disjoint essential circles on F . Let A1, · · · , Ak be pairwise
disjoint, monotone (meaning no local maxima and minima) annuli in F × I such that
p(∂(A1 ∪ · · · ∪ Ak)) = a1 ∪ · · · ∪ ak. Then a map σ : {1, · · · , k} → {1, · · · , k} is de-
termined so that Ai connects ai,0 = ai × {0} and aσ(i),1 = aσ(i) × {1}. A1 ∪ · · · ∪ Ak

corresponds to an isotopy sending a1 ∪ · · · ∪ ak to itself. Then we have:

LEMMA 2.1. (1) σ (i) = i for i = 1, · · · , k, i.e., ∂Ai = ai × {0, 1}, and
(2) Ai can be isotoped to a vertical annulus ai × I by a level preserving isotopy which

is the identity on F × {0, 1}.
PROOF. First we suppose that F is a closed surface of genus g . Choose a family of

2g essential simple closed curves ε1, · · · , ε2g on F as in Figure 4; ∪2g
k=1εk cuts F into a

single disk and ai is homologous to none of ε1, · · · , ε2g . Without loss of generality, we may
assume that the curve ai is precisely as in Figure 4 (1) or (2) depending on whether ai is non-
separating or separating: ai ∩ε4 = {zi}, ai ∩εj = {zi, z

′
i}. In fact, for a given essential simple

loop ai on F , there is a diffeomorphism h : F → F sending ai to the curve as in Figure 4 (1)

or (2). Then we have the required situation by applying h× id. : F × I → F × I .
In the following we may relabel the indices and orient ai so that a1, · · · , ak are homo-

topic as oriented curves, and if ai is separating, then ai intersects εj at zi and z′
i with opposite

directions and (a1 ∪ · · · ∪ ak) ∩ εj appears zk, · · · , z2, z1, z
′
1, z

′
2, · · · , z′

k in circular ordering
on εj .

Let Ek be the vertical annulus p−1(εk) for 1 ≤ k ≤ 2g .

FIGURE 4.
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FIGURE 5.

Since ai is essential, Ai is incompressible. Thus we may assume, by a level preserving
isotopy fixing F × {0, 1}, that each Ai intersects E4 (resp. Ej ) transversely and that each
component of Ai ∩E4 (resp. Ai ∩Ej ) does not bound a disk in E4 (resp. Ej ). Note that each
level preserving isotopy keeps Ai monotone.

We first consider the case where ai is non-separating.

CLAIM 2.2. Ai ∩ E4 consists of an arc ζi isotopic to a vertical segment by a level
preserving isotopy leaving its boundary invariant.

PROOF. Since ai ∩ ε4 = {zi}, there is no boundary-parallel arc in E4. Hence (A1 ∪
· · · ∪ Ak) ∩ E4 consists of essential monotone arcs, say as in Figure 5.

Take a subfamily A1, Aσ(1), · · · , Aσj−1(1) of the annuli such that j ∈ {1, · · · , k} satisfies

σj (1) = 1 and no proper subfamily satisfies this property. Let T ′ be a torus obtained from
A1∪Aσ(1)∪· · ·∪Aσj−1(1) by identifying their boundaries via the identification (x, 0) = (x, 1).

Then there is a map p′ such that the following diagram commutes:

Connecting the arcs ζ1, ζσ(1), · · · , ζσ j−1(1) in a suitable order, we obtain an essential

loop α on T ′, which satisfies p′∗([α]) = [ε4]m ∈ π1(F, z1) for some integer m. Assume for
a contradiction that m > 0. Then p′∗([α]) is nontrivial. The essential loop a1,0 also gives
an essential loop β on T ′. Note that since [α][β] = [β][α] ∈ π1(T

′), p′∗([α])p′∗([β]) =
p′∗([β])p′∗([α]) in π1(F, z1). Furthermore, since |ε4 ∩ a1| = 1, p′∗([α]) and p′∗([β]) generate
a rank two free abelian subgroup in π1(F, z1). This contradicts that the genus of F is greater
than one.

It follows that m = 0, hence p(∂ζi) = zi and we can isotope Ai by a level preserving
isotopy of F × I fixing F × {0, 1} so that Ai ∩ E4 consists of a single vertical segment.

�(Claim 2.2)
This claim implies the first assertion of Lemma 2.1 in the case where ai is non-separating.
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Now let us show that Ai can be isotoped to the vertical annulus as required. Since
E3 ∩ E4, E4 ∩ E5 (if g > 2) and Ai ∩ E4 consist of a vertical segment respectively, we can
isotope without changing Ai ∩ E4 so that Ai ∩ E3 = ∅ and Ai ∩ E5 = ∅ (if g > 2); here we
use also a fact that ai ∩ ε3 = ∅, ai ∩ ε5 = ∅ (if g > 2) and an incompressibility of Ai . For
other Es (s 	= 3, 4, 5), since ai ∩ εs = ∅ and Ai is incompressible, we can isotope further by
a level preserving isotopy fixing F × {0, 1} so that Ai ∩ Es is empty or consists of essential
circles in Es ; each circle is also essential in Ai because Es is incompressible. In the latter case
ai is homotopic to εs , a contradiction. Since Ai intersects only E4 or Ej in vertical segments
and E1 ∪ · · · ∪ E2g cuts F × I into a [disk]×I , we can isotope Ai to the vertical annulus by
a level preserving isotopy as desired.

Next we consider the case where ai is separating.
In this case, Ai ∩ Ej consists of two properly embedded arcs ζi and ζ ′

i in Ej .

CLAIM 2.3. ∂ζi = {(zi, 0), (zi, 1)}, and hence ∂ζ ′
i = {(z′

i , 0), (z′
i , 1)}.

PROOF. If ζi is boundary-parallel arc, then since Ai is boundary-incompressible and
F × {0, 1} are incompressible, there should be a bigon D ⊂ F with ∂D = d1 ∪ d2 such
that d1 ⊂ ai and d2 ⊂ εj . This is impossible, see Figure 4 (2). Thus the arcs ζi’s define a
bijection τ on {zk, · · · , z1, z

′
1, · · · , z′

k} so that ζi connects the points (zi, 0) and (τ (zi), 1), for
otherwise, there must be boundary parallel arcs as illustrated in Figure 6 (1). In fact, since Ai

connects ai × {0} and aσ(i) × {1}, ζi connects (zi, 0) and (zσ(i), 1) or (z′
σ(i), 1); τ (zi) equals

zσ(i) or z′
σ(i). Remark that since ζ ′

i is also a component of Ai ∩ Ej , if τ (zi) = zσ(i) (resp.

τ (zi) = z′
σ(i)), ζ ′

i connects the points (z′
i , 0) and (z′

σ(i), 1) (resp. (zσ(i), 1)).

Let us show that τ (zi) = zi . Suppose to the contrary that τ (zi) 	= zi for some i. If
τ (zi) = zσ(i), say as in Figure 6 (1) in which i = 1 and σ(i) = 2, then there would be a
boundary-parallel arc in (A1 ∪ · · · ∪ Ak) ∩ Ej , a contradiction. If τ (zi) = z′

σ(i), say as in

Figure 6 (2) in which i = 2 and σ(i) = 2, then sliding the oriented closed curve ai,0 along
the annulus Ai to obtain an oriented closed curve aσ(i),1. Then since aσ(i),0 is orientedly

FIGURE 6.
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FIGURE 7.

homotopic to ai,0, p(aσ(i),1) and p(aσ(i),0) have opposite orientations. This implies that
aσ(i) and aσ(i) (the closed curve obtained from aσ(i) by inverting its orientation) are freely
homotopic in F , hence F would be non-orientable, a contradiction. �(Claim 2.3)

Thus we have a situation, say as in Figure 7.
This observation implies the first assertion of Lemma 2.1 in the case where ai is separat-

ing.
Let us show that Ai is also isotoped to the vertical annulus as required in this case. By

using the same argument in the proof of Claim 2.2 for a torus T ′ obtained from single Ai ,
ζi and ζ ′

i are shown to be isotopic to vertical segments by a level preserving isotopy leaving
their boundaries invariant. Then, as in the above, we can isotope Ai (fixing F × {0, 1}) so
that A ∩ Es = ∅ (s 	= j), thus we can isotope Ai to the vertical annulus by a level preserving
isotopy as desired.

Finally suppose that F has genus g and d boundary components. We can find a system
of properly embedded arcs {ε1, · · · , ε2g , δ1, · · · , δd−1} so that they cut F into a single disk.
Then the result follows by applying the same argument as above. (The proof is easier, because

p−1(εj ) and p−1(δk) is a rectangle, not an annulus.) �(Lemma 2.1)

3. Proof of Theorem 1.2

Let f be an element in Sn(F ) and bf an associated braid.

3.1. Proof of (i). This is certainly well-known, but for completeness, we give a proof.

If bf is trivial, then f̂ is isotopic to the identity map, which has period 1. Conversely if f̂ is
isotopic to a periodic automorphism, then by Proposition 1.1, bf has a finite order in the braid

group. If bf is nontrivial, then [5, Theorem 8] shows that F would be S2 or the projective

plane RP 2, contradicting our assumption. Thus bf is trivial.

3.2. Proof of the “only if ” part of (ii). We show that if f̂ is isotopic to a reducible

automorphism, then the braid bf has a P -family or is not stably filling.
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Assume that f̂ is isotopic to a reducible automorphism. Then there is an essential 1-

submanifold C = a1 ∪ · · · ∪ am ⊂ F such that f (C) is isotopic to C on F̂ . In the following,

we assume that f (aki ) is isotopic to ai , i.e., aki is isotopic to f −1(ai) (i = 1, · · · ,m) on F̂ .

The isotopy from f −1(ai) to aki (1 ≤ i ≤ m) on F̂ is realized as a family of monotone

annuli Ã1, · · · , Ãm in F̂ × I ⊂ F × I so that ∂Ã1 = (f −1(a1) × {0}) ∪ (ak1 × {1}), · · · ,

∂Ãm = (f −1(am) × {0}) ∪ (akm × {1}). Note that Ãi ∩ ({xj } × I) = ∅ for i = 1, · · · ,m, j =
1, · · · , n. Since f is isotopic to the identity on F , we have a level preserving diffeomorphism
of F × I sending (x, 0) to (f (x), 0) and (x, 1) to (x, 1), which deforms also the vertical

segment {xj } × I to a monotone arc t
f
i with ∂t

f
i = {(xi, 0), (xj , 1)}, where xi = f (xj ).

Then t
f
1 , · · · , t

f
n define a braid bf in F × I (see, Definition 1). Simultaneously, the annuli

Ã1, · · · , Ãm are also deformed to a family of monotone annuli A1, · · · , Am in F × I , each of
which is disjoint from the braid bf and satisfies that ∂Ai = (ai × {0}) ∪ (aki × {1}). Let us
choose annuli A1, · · · , Ak (after changing their indices if necessary) so that p(∂(A1 ∪ · · · ∪
Ak)∩(F ×{0})) = p(∂(A1 ∪· · ·∪Ak)∩(F ×{1})) and no proper subset satisfy this property.

Consider the case where ai bounds a disk Di on F . Then since C is an essential 1-

submanifold on F̂ , Di contains at least two points of {x1, · · · , xn}. Then for each i (1 ≤
i ≤ k), ∂Ai ∩ (F × {0}) bounds a disk Di,0 ⊂ F × {0} and ∂Ai ∩ (F × {1}) bounds a disk
Di,1 ⊂ F × {1}. By the irreducibility of F × I , the 2-sphere Ai ∪ Di,0 ∪ Di,1 bounds a 3-ball

Bi . It turns out that each Bi contains m strings in bf for some integer m ≥ 2 independent of

i. The collection of strings in bf each of which is contained in B1 ∪ · · · ∪ Bk give a parallel
family in this case.

Next consider the case where ai does not bound a disk Di on F . This implies that Ai

is incompressible in F × I . Then Lemma 2.1 (1) implies that k = 1 and Lemma 2.1 (2)

shows that A1 can be isotoped to the vertical annulus a1 × I by a level preserving isotopy

fixing F × {0, 1}. Under this level preserving isotopy, the braid bf = (t
f
1 , · · · , t

f
n ; F × I)

is also isotoped to another braid b′ = (t ′1, · · · , t ′n; F × I) (without moving their endpoints),

which is equivalent to bf ; they define equivalent systems of closed curves. Since the annulus

A1 is disjoint from bf , a1 × I does not intersect b′ neither, and hence a1 ∩ (∪n
i=1p(t ′i )) =

p(a1×I)∩p(b′) = p((a1×I)∩b′) = p(∅) = ∅. Therefore if a1 is essential in F , equivalently,
if a1 is not parallel to a component of ∂F , then b′ is not filling. Thus, by definition, bf is not
stably filling.

If a1 is parallel to a component of ∂F , then the parallelism must contain some specified
points xi , since C is an essential 1-submanifold. Thus a1 × I , and hence A1, is the frontier of

a collar neighborhood N(∼= S1 × I × I) of a component of (∂F )× I . Since N(∼= S1 × I × I)

contains some strings t
f
i , they give a peripheral family as we desired.

3.3. Proof of the “if ” part of (ii). Suppose that the braid bf has a P -family or is not

stably filling. Then by definition, (1) bf has a parallel family {tfi1 , · · · , t
f

ik
} or (2) bf has a
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peripheral family {tfi1 , · · · , t
f

ik
}, or (3) bf is equivalent to a braid b′ = (t ′1, · · · , t ′n; F × I)

such that p(t ′1) ∪ · · · ∪ p(t ′n) does not intersect an essential embedded loop a.

In each case, C = p(η(∂(D2
1 ×{0} ∪ · · ·∪D2

m ×{0}))), the frontier of p(N ∩ (F ×{0}))
in F , or the embedded loop a is an essential 1-submanifold which is isotopic to the image of

f on F̂ . This means that f̂ is isotopic to a reducible automorphism.

4. Proof of Corollary 1.3

Corollary 1.3 follows immediately from Theorem 1.2 (iii) and the claim below.

CLAIM 4.1. If the system of closed curves Cf = {cf

1 , · · · , c
f
m} has property (∗), then

the braid bf = (t
f

1 , · · · , t
f
n ; F × I) is stably filling and has no P -families.

PROOF. Suppose that we have a parallel family {ti1 , · · · , tik } (k ≥ 2), which consists of

some cyclic subfamilies. The cyclic families give a subsystem of closed curves in Cf . Since
k ≥ 2, the subsystem contains a closed curve homotopic to a nontrivial power of a closed
curve or a pair of mutually homotopic closed curves. (If f fixes x1, · · · , xn pointwisely, i.e.,
bf is a pure braid, then we have the latter possibility.) This contradicts the assumption. If we

have a peripheral family {ti1, · · · , tik }, then clearly c
f

i is homotoped into a component of ∂F ,
contradicting the assumption.

Let b′ = (t ′1, · · · , t ′n; F × I) be a braid equivalent to bf . Then the system of closed

curves C ′ corresponding to b′ is equivalent to Cf . Since Cf is stably filling, by definition, C ′
is filling. �(Claim 4.1)

Appendix. A sketch of a proof of Proposition 1.1

Here we give a sketch of a proof of Proposition 1.1, for details, see [1].
Let Bn(F ) be the subgroup of Diff(F ) consisting of automorphisms f satisfying

f ({x1, · · · , xn}) = {x1, · · · , xn}. Let Cn(F ) denote the space of n-tuples (z1, · · · , zn)

of distinct points in intF and Bn(F ) the quotient space of Cn(F ) by the symmetry group
Σn. Then we have an evaluation map εn : Diff(F ) → Bn(F ) defined by the rule
εn(f ) = (f (x1), · · · , f (xn)), which is a fibration with fiber Bn(F ). This fibration gives
the following homotopy exact sequence, in which Diff0(F ) denotes the identity component
of Diff(F ).

→ π1(Diff0(F ))
ε∗→ π1(Bn(F ))

d∗→ π0(Bn(F ))
i∗→ π0(Diff(F )) → π0(Bn(F )) = {1} .

Since F has negative Euler characteristic, Diff0(F ) is contractible ([3], [4]), and hence
Kerd∗ = Imε∗ = {1}. Thus d∗ is injective. It follows that the connecting homomorphism
d∗ is an isomorphism between Keri∗ and π1(Bn(F )), which is identified with the (full) braid
group Brn(F )/equivalence.
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It is obvious that Keri∗ is just the quotient of the group consisting of automorphisms f

of F satisfying f ({x1, · · · , xn}) = {x1, · · · , xn} and isotopic to the identity on F by isotopies
keeping xi (i = 1, · · · , n) invariant. This subgroup is naturally isomorphic to the quotient of
Sn(F ) by isotopies keeping Di and xi (i = 1, · · · , n) invariant, which is also isomorphic to

Sn(F̂ )/isotopy.
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