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Abstract. We give several examples of towers F = (F0, F1, F2, · · · ) of function fields of one variable over a
finite field Fq , for which the Garcia-Stichtenoth number

λ(F) = lim
m→∞

number of Fq -rational places of Fm

genus of Fm

is zero. Moreover, we study an upper bound for the limit λ(F).

1. Introduction

Let Fq be the finite field of cardinality q , where q is a power of a prime number. Let
F/Fq be an algebraic function field of one variable with the field of constant Fq . We shall
refer to F/Fq as a function field. We denote by

g(F ) = g(F/Fq) (resp. N(F) = N(F/Fq ))

the genus (resp. the number of Fq -rational places, namely, places of degree one) of F/Fq .
Garcia and Stichtenoth [2] introduced towers of function fields in order to construct

sequences of codes with excellent error-correcting properties. A tower of function fields over
Fq is a sequence

F = (F0, F1, F2, · · · )
of function fields Fm/Fq having the following properties:

(i) F0 ⊆ F1 ⊆ F2 ⊆ · · · ;
(ii) for each m ≥ 0, Fm+1/Fm is a separable extension of degree [Fm+1 : Fm] > 1;

(iii) for some s ≥ 0, Fs/Fq is non-rational and non-elliptic.
A tower F over Fq is called tame if for all m ≥ 0 and all places P of Fm, the ramification
index of P in Fm/F0 is relatively prime to the characteristic of Fq . We say that a tower F is
of degree l if it satisfies the condition:

(iv) for each m, Fm+1/Fm is an extension of degree l.
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Let E/F be a finite separable extension of function fields over Fq . The Hurwitz Genus
Formula (see, [6] Theorem III.4.12) states that

2g(E) − 2 = [E : F ] · (2g(F ) − 2) + deg Diff(E/F) ,

where Diff(E/F) denotes the different divisor of E/F . By using Condition (iii) and the
Hurwitz Genus Formula, Garcia and Stichtenoth [2] showed that the limit

λ(F) = λ(F/Fq) = lim
m→∞ N(Fm)/g(Fm) (≥ 0)

exists. We call it the Garcia-Stichtenoth number. They also gave a criterion for

N(Fm)/g(Fm) → 0 as m → ∞ .

A tower F of function fields is said to be asymptotically bad (resp. asymptotically good) if

λ(F) = 0 (resp. λ(F) > 0) .

These terminologies are motivated by applications to coding theory.
Garcia and Stichtenoth showed the following fact:

FACT ([3]). Let f (X, Y ) ∈ Fq [X,Y ] be a separable polynomial both in X and Y over
Fq and a = degX f and b = degY f . Let F = (F0, F1, F2, · · · ) be a tower given recursively
by Fm = Fq(x0, · · · , xm) with

f (xi+1, xi) = 0 for i = 0, 1, · · · ,m − 1 .

Assume that [Fm : Fq (x0)] = am and [Fm : Fq(xm)] = bm for every m ≥ 0. If degX f �=
degY f , then the tower F is asymptotically bad.

In general, it is not easy to find asymptotically good sequences of codes. Kondo et alia
([7]) gave examples of sequences of one-point codes over the finite fields with good properties
from towers of function fields:

EXAMPLE 1 ([7]). Let r > 0 be an odd integer. We define function fields Km/Fq2r

recursively by Km = Fq2r (x0, x1, · · · , xm) with

xi+1
qr+1 = xi

q + xi for i = 0, 1, · · · ,m − 1 .

Then the sequence K = (K0,K1,K2, · · · ) is a tower of degree qr + 1 having the following
properties:

• g(Km) = qr

2

∑m−1
s=0 (qs+1 − 1)(qr + 1)m−1−s for m ≥ 1;

• N(Km) = q2r+1+m + 1 for m ≥ 0;
• the tower K is asymptotically bad: λ(K) = 0;

Drinfeld and Vlăduţ proved the following asymptotic result: Setting

Nq(g) := max{N(F) | F/Fq is a function field of genus g}
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and

A(q) := lim sup
g→∞

Nq(g)/g ,

they gave the following result on the asymptotic behavior of the number of Fq -rational places
(the so-called Drinfeld-Vlăduţ bound):

A(q) ≤ √
q − 1 .

If q = l2 is a square, the inequality is in fact an equality: Ihara (independently, Tsfasman,

Vlăduţ and Zink) proved that A(l2) = l − 1. Their proof requires deep results from algebraic
geometry and modular curves. It is obvious by the definition that λ(F) ≤ A(q). A tower F
is said to be optimal if λ(F) = A(q).

Our aim is to give another upper bound for the Garcia-Stichtenoth number, and to com-
pute the numbers for several towers of function fields. Moreover, we show that the converse
of Fact [3] of Garcia and Stichtenoth is false.

Section 2 gives some facts from the theory of function fields. In particular, we investigate
function fields of Kummer type.

We define, in Section 3, an important subset of the set N of natural numbers and a real-
valued function on the product of N and N, and give the main result: an upper bound for the
Garcia-Stichtenoth number.

In the final section, we treat several examples of towers of function fields, which are
counterexamples to the converse of Fact [3], and a few examples of optimal towers.

2. Genera of function fields

Throughout this paper, we use the notation and terminology of the textbook [6] of
Stichtenoth. In this section, we determine the genera of some Kummer extensions of func-
tion fields. We apply these results to computing the Garcia-Stichtenoth numbers of towers of
function fields in Section 4.

Let n be an integer with n > 1 and n | q − 1, and let F be a finite algebraic extension of
a rational function field with the field of constant Fq . Let x be a transcendental element of F

over Fq . Suppose that f (x), h(x) ∈ F are relatively prime polynomials over Fq satisfying

f (x)/h(x) �= wd for any w ∈ F and d | n, d > 1 .

We define the function field E = F(y) over Fq given by yn = f (x)/h(x). The field E is
called a Kummer extension of F . Let PF be the set of places of F . For a place P ′ ∈ PE of
E/Fq lying over P ∈ PF , we denote by e(P ′|P) (resp. by d(P ′|P)) the ramification index
(resp. the different exponent) of P ′ over P .

We recall two well-known facts.
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FACT ([6], Dedekind’s Different Theorem). With the notation above, the different ex-
ponent of P ′ over P is given by

d(P ′|P) =
{

0 if P ′|P is unramified ,

e(P ′|P) − 1 if P ′|P is tamely ramified .

FACT ([6], Kummer Extensions). Suppose that there exists a place Q ∈ PF such that

gcd(vQ(f (x)/h(x)), n) = 1 .

Then E/F is an cyclic extension of degree n with constant field Fq , and the genus of E is
given by

g(E) = 1 − n + 1

2

∑
P∈PF

(n − gcd(vP (f (x)/h(x)), n)) deg P . (1)

We will use the next lemma in the proof of Proposition 2 and in the last section.

LEMMA 1. Assume that

gcd(deg f (x), deg h(x)) = 1 and n = max{deg f (x), deg h(x)} . (2)

If Q ∈ PF is a place with

vQ(x) = −m < 0 and gcd(m, n) = 1 , (3)

then Q is totally ramified in E/F , the place Q′ ∈ PE lying over Q has

vQ′(y) = −m · (deg f (x) − deg h(x)) ,

and vQ(f (x)/h(x)) and n are coprime;

gcd(vQ(f (x)/h(x)), n) = 1 .

PROOF. We may assume that n = deg f (x). Since

vQ(f (x)/h(x)) = −m · (n − deg h(x)) , (4)

we have n · vQ′(y) = −e(Q′|Q) · m · (n − deg h(x)). It follows that n | e(Q′|Q) from the
hypotheses (2) and (3). On the other hand, we have

e(Q′|Q) ≤ [E : F ] = n ,

by [[6] Corollary III.1.12 (b)]. The numbers vQ(f (x)/h(x)) and n are coprime by the hy-
potheses (2), (3) and Eq. (4). This completes the proof of Lemma 1. �

In general, it is hard to determine the genera of function fields. By the rational func-
tion field theory (see, [6] Chapter I) and the Genus Formula (1), we can prove the following
proposition, which is used to calculate the Garcia-Stichtenoth numbers in the last section.
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PROPOSITION 2. Let E = Fq(x, y) be a Kummer extension of F = Fq(x) given by

yn = f (x)/h(x) .

Suppose that f (x), h(x) ∈ Fq [x] are relatively prime separable polynomials with

gcd(deg f (x), deg h(x)) = 1 and n = max{deg f (x), deg h(x)} .

Then the genus of E is given by

g(E) = n − 1

2
· (deg f (x) + deg h(x) − 1) ≥ 1 .

PROOF. For the infinite place Q ∈ PF , we have vQ(x) = −1, and hence we get

gcd(vQ(f (x)/h(x)), n) = 1

by Lemma 1. Let

f (x) = a ·
s∏

i=1

pi(x)

(
resp. h(x) = b ·

t∏
j=1

qj (x)

)

denote the factorization of f (x) (resp. h(x)) into a product of irreducible polynomials in
Fq [x], where a, b ∈ Fq . For i and j , choose the place Ppi , Pqj ∈ PF such that a prime
element for Ppi is the polynomial pi(x) and that for Pqj is qj (x). Then we have

vPpi
(f (x)/h(x)) = vPpi

(pi(x)) = 1 , gcd(vPpi
(f (x)/h(x)), n) = 1 ,

vPqj
(f (x)/h(x)) = −1 and gcd(vPqj

(f (x)/h(x)), n) = 1 .

If P ∈ PF is a place different from Ppi , Pqj and Q, then

vP (f (x)/h(x)) = 0 and gcd(vP (f (x)/h(x)), n) = n .

Since

s∑
i=1

deg Ppi = deg f (x) and
t∑

j=1

deg Pqj = deg h(x) ,

the Genus Formula (1) yields

g(E) = 1 − n + n − 1

2
·
( s∑

i=1

deg Ppi +
t∑

j=1

deg Pqj + deg Q

)

= 1 − n + n − 1

2
· (deg f (x) + deg h(x) + 1)

= n − 1

2
· (deg f (x) + deg h(x) − 1) .

This completes the proof of Proposition 2. �
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This proposition implies that the function field Fq(x, y)/Fq is not rational.

3. Upper bound of towers

This section contains the heart of this paper.

DEFINITION. (1) A tower F = (F0, F1, F2, · · · ) over Fq is said to be tame if the
extension Fm/F0 is tame for each m ≥ 1.

(2) The F0-ramification locus of F/Fq is defined to be

VF0(F) = {P ∈ PF0 | P is ramified in Fs/F0, for some s ≥ 1} ,

where PF0 denotes the set of places of F0/Fq .
(3) The set of Fq -rational places of F0 that split completely in each extension Fm/F0

is denoted by TF0(F), namely,

TF0(F) = {P ∈ PF0 | P is Fq -rational and splits completely in each Fm/F0} .

Garcia, Stichtenoth and Thomas proved the following fact.

FACT ([5]). Let F = (F0, F1, F2, · · · ) be a tame tower over Fq having properties

�VF0(F) < ∞ and TF0(F) �= ∅ .

Then the limit λ(F) satisfies the inequality

λ(F) ≥ 2 · �TF0(F)

2g(F0) +
∑

P∈VF0 (F)

deg P − 2
(> 0) .

We now give an upper bound for the limit λ(F).

DEFINITION. Let F = (F0, F1, F2, · · · ) be a tower of function fields over Fq , and let
m be a positive integer. We say that F has the property λ(m, l) if it satisfies the inequalities

deg Diff(Fm+i/Fm+i−1)

[Fm+i : Fm+i−1] − 1
≥ [Fm+i−1 : F0] + [F1 : F0]

for all i = 1, 2, · · · , l. We define the set

Σm(F) = Σm(F/Fq) = {l ≥ 1 | F/Fq has the property λ(m, l) } .

A problem arises whether there exists a tower F over Fq such that the set Σm(F) is
nonempty. We will take up this problem and show affirmative examples in the last section.
The following Theorem and Corollary 3 make sense only when the set Σm(F) is nonempty.

THEOREM. Suppose that F = (F0, F1, F2, · · · ) is a tower of function fields over Fq

with Σm(F) �= ∅.
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(1) The inequality

l∑
i=1

[Fm+l : Fm+i ] · deg Diff(Fm+i /Fm+i−1) ≥ [Fm+l : F0] · R(m, l)

holds for every l ∈ Σm(F), where

R(m, l) := l −
l∑

i=1

1

[Fm+i : Fm+i−1] + [Fm+l : Fm] − 1

[Fm+l : F1] .

(2) The inequality

2g(Fm+l ) − 2 ≥ [Fm+l : Fm] · (2g(Fm) − 2) + [Fm+l : F0] · R(m, l)

holds for every l ∈ Σm(F).
(3) We obtain

g(Fn) ≥ [Fn : Fm] · (g(Fm) − 1) + [Fn : F0]
2

· R(m, l) + 1

for every n ≥ m + l. In particular,

2 · N(Fn)

[Fn : Fm] · (2g(Fm) − 2) + [Fn : F0] · R(m, l) + 2
≥ N(Fn)

g(Fn)
.

PROOF. (1) This is an immediate consequence of the definitions of Σm(F) and
R(m, l).

(2) The Hurwitz Genus Formula yields

2g(Fm+l ) − 2 = [Fm+l : Fm] · (2g(Fm) − 2)

+
l∑

i=1

[Fm+l : Fm+i ] · deg Diff(Fm+i/Fm+i−1) .

Applying (1), we complete the proof of (2).
(3) The Hurwitz Genus Formula yields

2g(Fn) − 2 = [Fn : Fm+l ] · (2g(Fm+l ) − 2) + deg Diff(Fn/Fm+l )

≥ [Fn : Fm+l ] · (2g(Fm+l ) − 2) .

Then the desired result follows from (2). �

REMARK. (1) If l1 < l2, then R(m, l1) < R(m, l2).
(2) Let m1 and m2 be positive integers with m1 < m2. If F/Fq is of degree l, then

R(m1, l) > R(m2, l).

For a tower F = (F0, F1, F2, · · · ) and any m ≥ 1, we have

N(Fm) ≤ [Fm : Fm−1] · N(Fm−1) .
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Hence we obtain

0 ≤ N(Fm)/[Fm : F0] ≤ N(Fm−1)/[Fm−1 : F0] .

This shows that the limit limn→∞ N(Fn)/[Fn : F0] exists.

COROLLARY 3. With the above notation, we have

2t

2g(F0) + R(m, l) + dm − 2
≥ λ(F) ,

where t and dm are defined by

t := lim
n→∞

N(Fn)

[Fn : F0] and dm := deg Diff(Fm/F0)

[Fm : F0] ,

respectively.

REMARK. If m1 ≤ m2, then

dm2 = dm1 + deg Diff(Fm2/Fm1)

[Fm2 : F0] .

4. Examples

Let p > 2 be a prime number, and let

ax2 + bx + c and αx + β

be separable polynomials in Fp[x] with αx + β � ax2 + bx + c and α · a �= 0. We consider
the sequence F of function fields over Fp2 defined recursively by a quadratic equation

y2 = ax2 + bx + c

αx + β
.

For the sequence F , we get

PROPOSITION 4. The sequence F over Fp2 is a tame tower of degree 2.

PROOF. It is sufficient to prove that
(i) Fp2 is the field of constant of Fm, for all m ≥ 0;

(ii) Fm+1/Fm is a cyclic and tame extension of degree 2, for all m ≥ 0.
We show the claims (i) and (ii) by induction on m: For the rational function field F0 =
Fp2(x0), the assumption (3) in Lemma 1 holds (i.e., vQ0(x0) = −1). Therefore the place Q0 is

totally ramified in F1/F0 (denote the place of F1 over Q0 by Q1 ∈ PF1 ). Then vQ1(x1) = −1.
Hence the field of constant of F1 is Fp2 . It follows from the Kummer Extension Theory that
F1/F0 is a cyclic and tame extension of degree 2. We now suppose that the claims (i) and (ii)
are true for m − 1, that is, there exists a place Qm−1 ∈ PFm−1 such that vQm−1(xm−1) = −1.
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By Lemma 1, we know that Fp2 is the field of constant of Fm. It is easily seen, from the
Kummer Extension Theory, that Fm/Fm−1 is a cyclic and tame extension of degree 2. �

EXAMPLE 2. Consider the tame tower F over F9 (resp. over F25) of degree 2 defined
recursively by the equation

y2 = x(x + 1)

x − 1
.

The tower F over F9 (resp. over F25) has the following properties:
(1) g(F0) = 0 and g(F1) = 1 by Proposition 2;
(2) N(Fm) = 8 · (m + 1), for all m ≥ 1 (resp. for all m ≥ 2);
(3) The rational places Pi of F1 are totally ramified in F2/F1:
• 1/x0, 1/x1 ∈ P1;
• x0, x1 ∈ P2;
• x0 + 1, x1 ∈ P3;
• x0 − 1, 1/x1 ∈ P4.

Thus, by Dedekind’s Different Theorem, we have

deg Diff(F2/F1) ≥ 4 , and 1 ∈ Σ1(F) .

Corollary 3 implies the tower F over F9 (resp. over F25) is asymptotically bad.

REMARK. (1) It can be shown that

g(Fm/F9) = 2m+2 − 4m − 3 for all m ≥ 1 .

By the definition, the Garcia-Stichtenoth number of the tower F is

λ(F/F9) = lim
m→∞

N(Fm/F9)

g(Fm/F9)
= lim

m→∞
8 · (m + 1)

2m+2 − 4m − 3
= 0 .

(2) It follows from Fact [5] of Garcia, Stichtenoth and Thomas, that the tower F over
F49 as in Example 2 is optimal, that is, λ(F/F49) = A(49) = 6.

EXAMPLE 3. The tame tower F over F9 (resp. over F49) of degree 2 defined recur-
sively by the equation

y2 = (x + 1)(x − 1)

x

has the following properties:
(1) The genera of F0 and F1 are g(F0) = 0 and g(F1) = 1;
(2) for all m ≥ 0, the number of rational places of Fm/F9 is

N(Fm/F9) =
{

7 · 2m/2+1 − 4 if m ≡ 0 (mod 2) ,

5 · 2(m+1)/2+1 − 4 if m ≡ 1 (mod 2)

(resp. N(Fm/F49) = 88 for m ≥ 3);
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(3) the rational places Pi of F1 are totally ramified in F2/F1:
• 1/x0, 1/x1 ∈ P1;
• x0, 1/x1 ∈ P2;
• x0 + 1, x1 ∈ P3;
• x0 − 1, x1 ∈ P4.

Therefore, we have deg Diff(F2/F1) ≥ 4 and 1 ∈ Σ1(F).

As a result, the tower F over F9 (resp. over F49) is asymptotically bad by Corollary 3.

REMARK. (1) It can be shown that, for all m ≥ 0

g(Fm/F9) =
{

2m+2 − 7 · 2m/2 + 3 if m ≡ 0 (mod 2) ,

2m+2 − 5 · 2(m+1)/2 + 3 if m ≡ 1 (mod 2) .

(2) By Fact [5], the tower F over F25 as in Example 3 is optimal, namely, λ(F/F25) =
A(25) = 4.

REMARK. Let q = 2, 4, 8. Consider the tower K = (K0,K1,K2, · · · ) of generalized
Klein Quartic function fields over Fq given by Km := Fq(x0, · · · , xm), with

xi · x3
i+1 + xi+1 + x3

i = 0 , for i = 0, 1, · · · ,m − 1 .

By Corollary 3, the tower K/Fq is asymptotically bad (see, [8]).
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