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Abstract. Vogel showed that any oriented link diagram D can be deformed to a closed braid by a finite se-
quence of Reidemeister II moves, each performed on two coherently oriented edges in a face of D such that the edges
are contained in distinct Seifert circles. We show that the number of such moves is constant for a given oriented link
diagram, and does not depend on the sequence of moves. An easy way of calculating the number is given.

1. Introduction

J. W. Alexander showed in [1] that any oriented link diagram D can be deformed to
a closed braid. In [3], S. Yamada accomplished this by a sequence of certain operations
on D, each of which does not change the number of the Seifert circles derived from D. P.
Vogel showed in [2] that any oriented link diagram D can be deformed to a closed braid
by a finite sequence of a special kind of Reidemeister II moves, which he called elementary
operations. The diagram D can be regarded as a 4-valent graph, the vertices of which are
the crossings. The edges of D have orientations derived from that of L. Each elementary
operation is performed in a face f of D on two edges α, β which are coherently oriented
(i.e., their orientations agree with those induced from some orientation of f ) and contained in
distinct Seifert circles. See Figure 1. Such an operation does not change the number of Seifert
circles. He called (f, α, β) an admissible triple. He showed that the number of operations

in any such sequence is (n+1)(n+2)
2 − χ(D) or smaller, where n is the number of the Seifert

circles. We recall later the definition of χ(D) which is a positive integer for any D, (and is
not the Euler characteristics as in the usual notation in Topology).

We cite here the first two sentences in Remark 5-3 in [2]: “The number of elementary
operations T needed to transform a diagram D in a closure of a braid is not completely clear.
It depends on the sequence of admissible triples.” However, we show in this paper that, in
fact, it does not. The number of operations is determined only by D and does not depend on
the sequence. An easy way of calculating the precise number is given in the next section.
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FIGURE 1. Elementary operation.

In the rest of this section, we recall the machinery of the proof in [2], and the definition
of χ(D). We regard the diagram D is on a 2-sphere Σ . Let S be the union of Seifert circles
derived from D. The circles of S have orientations induced from that of D. Cutting the 2-
sphere Σ along S, we obtain plural connected components, each of which is called a region of
S. We form a graph Γ associated to S. Every region of S contains precisely one vertex of Γ

in its interior. Two vertices v0, v1 are connected by an edge e if and only if the corresponding
regions f0, f1 share a Seifert circle C of S in their boundaries. We place e so that it intersects
S in a single transverse point in C, and orient it so that v0 is the initial vertex and v1 is the
terminal vertex if f0 is on the left hand side of C and f1 on right with respect to the orientations
of C and Σ . (In Figure 1, terminal vertices are furnished with arrow-heads.) Then Γ is a tree
with all its edges oriented.

A tree with the edges oriented is called a chain if either it consists of a single vertex and
no edges, or it has precisely two isolated vertices (i.e., the vertices of valency 1) and all the
edges are oriented coherently (i.e., each of the other vertices is the terminal vertex of a single
edge and the initial vertex of a single edge). The diagram D is a closed braid if and only if Γ

is a chain. χ(D) = χ(Γ ) is the number of the subtrees of Γ which are chains.
Let D′ be the link diagram obtained by an elementary operation on an admissible triple

(f, α, β) of D. We can obtain the tree Γ ′ associated to D′ from Γ as below. Let u be the
vertex corresponding to the region of S which contains the face f of D. Let σ and τ be the
edges corresponding to the Seifert circles which contain α and β respectively. Either u is the
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initial vertex of σ and τ , or the terminal vertex of them. We consider the former case. (The
latter case is similar, and is described in Figure 1.) We amalgamate the edges σ and τ to an
edge σ ′, and add a new edge θ so that the terminal vertex of σ ′ is the initial vertex of θ and that
the terminal vertex of θ is isolated. The resulting graph is the desired Γ ′. Such a deformation
on a tree with the edges oriented is called an elementary transformation, independently from
link diagrams.

As mentioned in Remark 5-3 in [2], it is possible that we cannot perform an elementary
operation corresponding to a given elementary transformation on a triple (u, σ, τ ) of Γ . This
happens when the Seifert circles corresponding to σ and τ do not meet the same face of D.
(For example, we cannot perform an elementary operation on D corresponding the pair of the
edges ε and τ in Figure 1.) Note that the region of S corresponding to u may be divided to
faces of D by crossings of D. However, even in such a case, there is another pair of edges
σ ′ and τ ′ sharing the initial vertex u, such that we can perform a corresponding elementary
operation on D.

2. Definitions and results

Let Γ be a finite tree with all the edges are oriented. (We assume neither property (P)
nor (P1) in [2].)

A connected subgraph of Γ is called a path if either it consists of a single vertex and no
edges or it has precisely two isolated vertices. A path may be a union of plural chains with
orientaions of adjacent ones incoherent.

A height function h on Γ assigns an integer h(v) to every vertex v of Γ so that h(u) =
h(w) + 1 for every edge with the initial vertex w and the terminal vertex u.

LEMMA 2.1. (1) There exists a height function on Γ , and (2) for arbitrary two height
functions h1 and h2, the difference h1(v) − h2(v) is constant over all the vertices of Γ .

PROOF. If Γ consists of a single vertex and no edges, this lemma is very clear.
We prove first (1) by induction on the number of edges of Γ . Suppose Γ has one or more

edges. Since Γ is a tree, it has an isolated vertex w. Then w is incident to a single edge f .
Let u be the other vertex of f . We obtain a tree Γ ′ from Γ by removing w and f . There is
a height function h′ on Γ by the assumption of induction. If w is the initial vertex of f , then
we set h(w) = h′(u) − 1, and h(v) = h′(v) for the other vertices of Γ . If w is the terminal
vertex of f , then we set h(w) = h′(u)+1, and h(v) = h′(v) for the other vertices of Γ . Thus
we can obtain a height function h on Γ .

We prove (2) by induction. Let w, f , Γ ′ be as above. For i = 1 and 2, let h′
i be the

height function on Γ ′ obtained from the height function hi on Γ by restricting it on Γ ′. Then
h′

1(v) − h′
2(v) is constant over all the vertices of Γ ′ by the assumption of induction. Hence

h1(v) − h2(v) is also constant over all the vertices of Γ ′. If w is an initial vertex of f , then
h1(w) − h2(w) = (h1(u) − 1) − (h2(u) − 1) = h1(u) − h2(u). If w is a terminal vertex of
f , then h1(w) − h2(w) = (h1(u) + 1) − (h2(u) + 1) = h1(u) − h2(u). This shows (2). �
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FIGURE 2. Formation of Γ + and Γ −.

FIGURE 3. e1 and e2 are to be amalgamated.

A vertex is at the same height as (or higher than) another vertex with respect to h1 if and
only if it is so with respect to h2 by the above lemma. We fix a height function h on Γ .

A pair of edges e1 and e2 is called an upper branch pair if they share the initial vertex,
which is called an upper branch point. Similarly we define a lower branch pair and a lower
branch point.

We form a graph Γ + from Γ by amalgamating edges of Γ . See Figure 2. Two edges
e1 and e2 of Γ are amalgamated if and only if their terminal vertices v1, v2 are at the same
height h and the path connecting v1 and v2 in Γ has no vertex at height lower than h. The
path is uniquely determined by v1 and v2 because Γ is a tree. In Figure 3 e1 and e2 are to be
amalgamated, while e3 and e4 are not. The vertices of Γ + have height derived from those of
Γ .

LEMMA 2.2. The graph Γ + is a tree.

PROOF. Suppose, for a contradiction, that Γ + contains a cycle. It contains no lower
branch pair of edges because they should be amalgamated in Γ +. Hence all the edges are
oriented coherently on the cycle. Let v0, v1, · · · , vm−1, vm = v0 be the vertices of the cycle
appearing in this order on it, so that h(v0) < h(v1) < · · · < h(vm−1) < h(vm) = h(v0). This
is a contradiction. �
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Similarly we form Γ −. We will show the lemmas below in the next section.

LEMMA 2.3. Let Γ ′ be a tree obtained by amalgamating a lower branch pair of edges
of Γ . Then (Γ ′)+ = Γ +.

COROLLARY 2.4. Γ + is obtained from Γ by amalgamating lower branch pairs of
edges one by one till it has no such pair.

Similar things hold for Γ −.

LEMMA 2.5. Γ is a chain if and only if both Γ + and Γ − are chains.

We define complexity c(Γ ) of Γ as below. Let v be a branch point of Γ +. Let e1, · · · , em

be the edges of Γ + with their initial vertex v. Among the graphs obtained by cutting Γ + at
the vertex v, let Γ +

i be the component which contains ei . Let ni be the number of edges

of Γ +
i . Then we define ω+(Γ +, v) = ∑

1≤i<j≤m ninj . Let B be the set of all the branch

points of Γ +. Then we define c+(Γ ) by
∑

v∈B ω+(Γ +, v). (For example, for Γ in Figure 2,

ω+(Γ +, v1) = 1×7 = 7, ω+(Γ +, v2) = 1×2+1×3+2×3 = 11, ω+(Γ +, v3) = 1×1 = 1,
and hence c+(Γ ) = 7 + 11 + 1 = 19.) Clearly, c+(Γ ) = 0 if and only if Γ + is a chain.

Similarly we define ω−(Γ −, v) and c−(Γ ), and set c(Γ ) = c+(Γ )+c−(Γ ). By Lemma
2.5 c(Γ ) = 0 if and only if Γ is a chain.

LEMMA 2.6. Let Γ ′ be a graph obtained from Γ by an elementary transformation on
a pair of branch edges. Then c(Γ ′) = c(Γ ) − 1.

The next is the main result, and follows immediately from the above lemma.

THEOREM 2.7. c(Γ ) is equal to the number of elementary transformations for de-
forming Γ to a chain. This number does not depend on the sequence of transformations.

REMARK 2.8. Let n+ be the number of the edges of Γ +. Then c+(Γ ) =
(n++1)(n++2)

2 − χ(Γ +) by Remark 4-4 and Corollary 4-5 in [2] and Theorem 2.7 in this

paper. (Note that Γ + satisfies the property (P1) in Remark 4-4.) However, c+(Γ ) is a little
easier to calculate than χ(Γ +).

COROLLARY 2.9. If a sequence of elementary operations deforms a link diagram D

to a closed braid, then the number of the operations is c(Γ ).

3. Proofs

PROOF. We prove Lemma 2.3. There is a natural continuous map ρ : Γ → Γ ′, which
keeps the heights of the vertices.

First, we prove that a pair of edges e1, e2 of Γ , which are amalgamated in Γ +, are
amalgamated also in (Γ ′)+. If they are amalgamated in Γ ′, then we are done. We can assume
they are not amalgamated in Γ ′. In Γ there is a path λ connecting the terminal points v1, v2

of e1 and e2 with all its vertices not lower than h(v1) = h(v2). The image ρ(λ) is connected,
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FIGURE 4. ẽ and ê are amalgamated to form e′ .

and contains ρ(v1) and ρ(v2). Hence ρ(λ) contains a path γ connecting ρ(v1) and ρ(v2) in
Γ ′. (The path is possibly a single point.) No vertex of γ is lower than h(ρ(v1)) = h(ρ(v2))

because γ ⊂ ρ(λ). Hence ρ(e1) and ρ(e2) are also amalgamated in (Γ ′)+.
Let ẽ and ê be the lower branch pair of edges in Γ , which are to be amalgamated to

an edge e′ to form Γ ′. Then they share their terminal vertex, and hence are amalgamated in
Γ +. See Figure 4. We prove that a pair of edges e′

1 e′
2 of Γ ′, which are amalgamated in

(Γ ′)+, are amalgamated also in Γ +. In Γ ′ there is a path λ′ connecting the terminal points

v′
1, v

′
2 of e′

1 and e′
2 with all its vertices not lower than h(v′

1) = h(v′
2). If the preimage ρ−1(λ′)

is connected, then a similar argument as in the previous paragraph will do. Suppose that

ρ−1(λ′) is disconnected. Then λ′ contains the initial point w′ of the edge e′, and does not

contain the edge e′. The preimage ρ−1(w′) is the union of the two initial vertices w̃, ŵ of
ẽ, ê. ρ−1(λ′) consists of two disjoint paths, one of which contains w̃, and the other ŵ. Hence

ρ−1(λ′) ∪ ẽ ∪ ê is a path connecting ρ−1(v′
1) and ρ−1(v′

2). Its vertices are not lower than

h(ρ−1(v′
1)) = h(ρ−1(v′

2)). Thus ρ−1(e′
1) and ρ−1(e′

2) are amalgamated in Γ +. �

PROOF. We prove Corollary 2.4. Let Γ = Γ0, Γ1, · · · , Γm be a sequence of trees such
that Γi+1 is obtained from Γi by amalgamating a lower branch pair of edges and that Γm has no
lower branch point. (Every sequence terminates within finite length because amalgamation
decreases the number of edges by one and because Γ has only finitely many edges.) By

Lemma 2.3 Γ + = Γ +
1 = · · · = Γ +

m . Since Γm has no lower branch pair of edges, Γ +
m = Γm.

Thus Γ + = Γm. �

PROOF. We prove Lemma 2.5.
“Only if part” is very clear. We consider “if” part.
For the original graph Γ and a height h we define µ+(Γ, h) by (the number of edges

with initial vertices of height h) − (the number of such vertices of height h). We do not count
in µ+ the vertices which are not initial for any edge. Then, µ+(Γ, h) = 0 for all h ∈ Z if and
only if Γ has no upper branch point.

CLAIM. µ+(Γ, h) = µ+(Γ +, h) for all h ∈ Z.

PROOF. By Corollary 2.4 Γ + can be obtained from Γ by a sequence of amalgamation
operations of lower branch pair of edges. It is enough to show that a single operation does
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not change the value of µ+ for all h ∈ Z. In fact, this does not change the numbers of the
vertices and the edges counted in µ+ at the height other than the level of the initial vertices
of the lower branch pair of edges. There both the number of the vertices and that of the edges
decrease by one, and hence the value of µ+ does not change. This completes the proof of
Claim. �

If Γ + is a chain, then µ+(Γ +, h) = 0, and hence µ+(Γ, h) = 0 for all h ∈ Z. This
implies that Γ has no upper branch point.

A similar argument shows if Γ − is a chain, then Γ has no lower branch point.
Thus, if both Γ + and Γ − are chain, then Γ has no branch point, and hence is a chain. �

PROOF. We prove Lemma 2.6. We will prove c+(Γ ′) = c+(Γ ) − 1 and c−(Γ ′) =
c−(Γ ) when Γ ′ is obtained from Γ by an elemantary transformation on an upper branch pair
of edges. Similar arguments will do for the case of a lower branch pair of edges.

First, we prove c−(Γ ′) = c−(Γ ). Let e1 and e2 be the upper branch pair of edges of Γ .

Amalgamating them to an edge e′ we obtain a tree Γ̃ . To form Γ ′, we add a new edge θ to

Γ̃ so that its initial vertex is the terminal vertex of e′ and that its terminal vertex is isolated.
By Lemma 2.3 Γ − = Γ̃ −. Hence c−(Γ ) = c−(Γ̃ ). If θ is amalgamated with some edge in

Γ ′− when we form Γ ′− from Γ ′, then Γ̃ − = Γ ′−, and hence c−(Γ ) = c−(Γ ′). If θ is not

amalgamated with any edge in Γ ′−, then Γ ′− is obtained from Γ̃ − by adding the edge θ so

that its initial vertex is the terminal vertex of e′. This does not affect c−(Γ̃ ), which means

c−(Γ̃ ) = c−(Γ ′).
Now we prove c+(Γ ′) = c+(Γ ) − 1. Let e1, e2, e′, Γ̃ , θ and Γ ′ be as above, and v the

common initial vertex of e1 and e2.

FIGURE 5. Elementary transformation.
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CLAIM. An elementary operation on an upper branch pair in Γ causes an elementary
operation on the corresponding edges in Γ +. That is, (Γ ′)+ can be obtained from Γ + by an
elementary operation.

PROOF. The edges e1 and e2 are not amalgamated in Γ +. (If they were, then Γ contains
a path λ connecting their terminal vertices with all its vertices higher than h(v). Hence λ ∪
e1 ∪ e2 would be a cycle in the tree Γ .) They are to be amalgamated when we form (Γ ′)+
from Γ +.

In (Γ ′)+ the edge θ is not amalgamated with another edge of Γ ′ because its terminal
vertex is isolated. Hence we must add θ to Γ + when we form (Γ ′)+.

For {i, j } = {1, 2}, ei and another edge e of Γ + are amalgamated in (Γ ′)+ if and only
if e is amalgamated with either ei or ej in Γ +. In the latter case, when we form (Γ ′)+ from

Γ +, the edges ei and e are to be amalgamated, which is realized by amalgamating e1 and e2.
Besides them, a pair of edges of Γ is amalgamated in (Γ ′)+ if and only if it is amalga-

mated in Γ +. This completes the proof of Claim. �

In Γ + let e3, · · · , em be edges with the initial vertex v other than e1 and e2. See Figure

5. Among the graphs obtained by cutting Γ + at the vertex v, let Γ +
i be the component which

contains ei . Let ni be the number of edges of Γ +
i . Then ω+(Γ +, v) = ∑

1≤i<j≤m ninj . By

the elementary operation, the edges e1 and e2 are amalgamated into the edge e′, so that Γ +
1

and Γ +
2 are glued into a graph Γ̃ +

(1,2). Then Γ̃ +
(1,2) is added the edge θ to be deformed into a

graph (Γ ′)+(1,2) which is a subgraph of (Γ ′)+ and has n1 + n2 edges. Hence ω+((Γ ′)+, v) =
(n1+n2)(

∑
3≤k≤m nk)+∑

3≤i<j≤m ninj . Thus we have ω+((Γ ′)+, v) = ω+(Γ +, v)−n1n2.

The terminal vertices w1, w2 of e1 and e2 are amalgamated to the terminal vertex, say w′, of e′
in Γ ′. For i = 1 and 2, let Γ +

i,1, · · · , Γ +
i,m(i) be the connected components obtained by cutting

Γ + at wi such that Γ +
i,j contains an edge with the initial vertex wi . Let ni,j be the number of

the edges of Γ +
i,j . Recall that the new edge θ has the initial vertex w′ in (Γ ′)+. Hence

ω+((Γ ′)+, w′) − (ω+(Γ +, w1) + ω+(Γ +, w2))

=
( ∑

1≤i≤m(1)

∑
1≤j≤m(2)

n1,in2,j

)
+

( ∑
1≤p≤m(1)

n1,p × 1

)
+

( ∑
1≤q≤m(2)

n2,q × 1

)

=
( ∑

1≤i≤m(1)

n1,i

)( ∑
1≤j≤m(2)

n2,j

)
+

( ∑
1≤p≤m(1)

n1,p × 1

)
+

( ∑
1≤q≤m(2)

n2,q × 1

)

= (n1 − 1)(n2 − 1) + (n1 − 1) + (n2 − 1)

= n1n2 − 1 .

Since ω+((Γ ′)+, x) = ω+(Γ +, x) for the other vertex x, we obtain c+(Γ ′) = c+(Γ ) −
1. �
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