Токуо J. Матн. Vol. 31, No. 2, 2008

AH-substitution and Markov Partition of a Group Automorphism on T^d

Fumihiko ENOMOTO

Kanazawa University

(Communicated by A. Tani)

Abstract. The existence of a Markov partition of a hyperbolic group automorphism generated by an integral matrix with determinant ± 1 is established by Sinai (see [22]). After that, there are many articles to construct Markov partitions of group automorphisms generated by non-negative matrices satisfying Pisot condition by the tiling method from substitutions (see [1], [7], [16], [19], [5]). One of the purpose of this paper is to establish the construction method of a Markov partition for a group automorphism generated by a non-positive matrix satisfying "negative Pisot" condition. An anti-homomorphic extension of a substitution, called *AH*-substitution, is introduced in the paper. Owing to this new substitution, the Markov partition of the group automorphism from the non-positive integral matrix is constructed.

1. Introduction

A substitution σ is a mapping from a (finite) alphabet \mathcal{A} with d letters to the free monoid \mathcal{A}^* which consists of finite words by the letters of \mathcal{A} . For each $j \in \mathcal{A}$, we note $\sigma(j) = W_1^{(j)} \cdots W_k^{(j)} \cdots W_{l_j}^{(j)}$ ($W_k^{(j)} \in \mathcal{A}$), where l_j (> 0) is the length of $\sigma(j)$. A substitution extends to mappings on \mathcal{A}^* in two natural ways, that is, homomorphically and antihomomorphically; its extensions are called *H*-substitution and *AH*-substitution, respectively in this paper. An *H*-substitution, that is, a substitution in the usual sense has been studied by many articles (see [3], [5], [9], [15], [17], [21], [23]), and many remarkable applications have been obtained for unimodular Pisot substitutions recently (see [2], [4], [13], [14], [16]). The following are the main parts of them.

(1) The existence of the set equations for the partial atomic surfaces, that is, there exists a collection of compact sets $\{X'_1, \ldots, X'_d\}$ with fractal boundaries and positive measure on the L_{σ} -invariant stable subspace W^s such that

$$L_{\sigma}^{-1}X_{i}' = \bigcup_{\binom{j}{k}: W_{k}^{(j)} = i} \left(X_{j}' + L_{\sigma}^{-1}(\pi_{s}(f(P_{k}^{(j)})) \right),$$

Received September 20, 2006; revised February 1, 2007

where L_{σ} , π_s , f and $P_k^{(j)}$ are the incidence matrix of σ , a projection of \mathbf{R}^d to W^s , a canonical homomorphism and the prefix of $\sigma(j)$, respectively (see section 2 for detail).

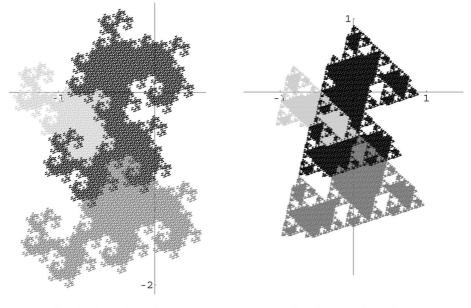
(2) The existence of a quasi-periodic tiling \mathfrak{T}' of W^s with the protoset $\{X'_1, \ldots, X'_d\}$ and that of a tiling substitution $E_1(\sigma)^*$ on \mathfrak{T}' given by

$$E_1(\sigma)^*(\pi_s(\mathbf{x}) + X'_i) = L_{\sigma}^{-1}\pi_s(\mathbf{x}) + \sum_{\substack{(j) \\ k}: W_k^{(j)} = i} \left(X'_j + L_{\sigma}^{-1}\pi_s(f(P_k^{(j)})) \right)$$

for $x \in \mathbb{Z}^d$.

(3) The construction of a Markov partition of a group automorphism on *d*-dimensional torus generated by the non-negative matrix L_{σ} .

In the present paper, on the assumption that an AH-substitution is of unimodular irreducible negative Pisot type, we obtain a series of results for AH-substitution similar to (1), (2), and (3) for H-substitution. One of the reason why we study AH-substitution in detail is that a Markov partition of a group automorphism on d-dimensional torus which is determined by a *non-positive* matrix has not been constructed in general. We give an answer of this problem by using an AH-substitution. Another reason is that we expect an AH-substitution, which is a new substitution, can bring us new results.



the atomic surface of $\sigma_{\!_H}$

the atomic surface of $\sigma_{_{\!\!A\!H}}$

FIGURE 1. The figures above are the atomic surfaces of σ_H and σ_{AH} induced from the substitution $\sigma : 1 \mapsto 112, 2 \mapsto 32, 3 \mapsto 1$.

The outline of the paper is as follows. The basic concepts and definitions about an AH-substitution are introduced in section 2. In section 3, the Markov transformation and the natural extension for AH-substitution are discussed, and the existence of the partial atomic surfaces $\{X_1, \ldots, X_d\}$ of AH-substitution is showed. They are defined by projecting the geometrical fixed point of AH-substitution to W^s , and satisfy the set equation by the negative integral matrix $-L_{\sigma}$ as follows:

$$(-L_{\sigma})^{-1}X_i = \bigcup_{\binom{j}{k}: W_k^{(j)} = i} (X_j + b_k^j)$$

where $b_k^j \in W^s$. In the last section, the existence of a quasi-periodic tiling \mathfrak{T} on W^s with the protoset $\{X_1, \ldots, X_d\}$ under the some condition is showed and also the Markov partition of the group automorphism on *d*-dimensional torus which is determined by the *non-positive* matrix $-L_\sigma$ is constructed.

2. AH-substitution

2.1. *AH*-substitution. Let $\mathcal{A} = \{1, 2, ..., d\}$ be an alphabet with $d \ge 2$, and \mathcal{A}^* the set of finite words over \mathcal{A} . \mathcal{A}^* is a free monoid, whose product is concatenation, with the empty word as the unit element denoted by ε .

If σ is a mapping from \mathcal{A} to \mathcal{A}^* satisfying the condition

$$\sigma(j) \neq \varepsilon$$
 for any $j \in \mathcal{A}$,

then σ is called a *substitution* on A. We denote by $W_{\sigma,k}^{(j)}$ the letter at the position k in $\sigma(j)$, that is,

$$\sigma(j) = W_{\sigma,1}^{(j)} W_{\sigma,2}^{(j)} \cdots W_{\sigma,l_j}^{(j)} (W_{\sigma,k}^{(j)} \in \mathcal{A}),$$

and also denote

$$\sigma(j) = P_{\sigma,k}^{(j)} W_{\sigma,k}^{(j)} \cdots W_{\sigma,l_j}^{(j)}$$

by using the *k*-th prefix $P_{\sigma,k}^{(j)}$ of $\sigma(j)$

$$P_{\sigma,k}^{(j)} := \begin{cases} W_{\sigma,1}^{(j)} \cdots W_{\sigma,k-1}^{(j)} \ (2 \le k \le l_j) \ ,\\ \varepsilon \ (k=1) \ . \end{cases}$$

We omit the subscript σ in $W_{\sigma,k}^{(j)}$ and $P_{\sigma,k}^{(j)}$, and denote them by $W_k^{(j)}$ and $P_k^{(j)}$ as usual throughout this paper.

We can construct the extension of σ , whose domain is \mathcal{A}^* , in two natural ways. One way is to extend homomorphically, that is, its extension $\sigma_H : \mathcal{A}^* \to \mathcal{A}^*$ is defined by $\sigma_H(\varepsilon) := \varepsilon$, and for $a_1, a_2, \ldots, a_n \in \mathcal{A}$ $(n \in \mathbb{N})$,

$$\sigma_H(a_1a_2\cdots a_n):=\sigma(a_1)\sigma(a_2)\cdots\sigma(a_n)$$

We call σ_H a homomorphic substitution or an *H*-substitution on \mathcal{A}^* , which is well-known as substitution. Another is to extend anti-homomorphically.

DEFINITION 2.1. Let a transformation $\sigma_{AH} : \mathcal{A}^* \to \mathcal{A}^*$ be defined as follows: $\sigma_{AH}(\varepsilon) := \varepsilon$, and for $a_1, a_2, \ldots, a_n \in \mathcal{A}$ $(n \in \mathbf{N})$,

$$\sigma_{AH}(a_1a_2\cdots a_n) := \sigma(a_n)\cdots \sigma(a_2)\sigma(a_1).$$
(2.1)

We call this transformation an *AH*-substitution or an *anti-homomorphic substitution* on \mathcal{A}^* .

It is evident that an AH-substitution σ_{AH} is anti-homomorphic, that is,

$$\sigma_{AH}(w_1w_2) = \sigma_{AH}(w_2)\sigma_{AH}(w_1) \quad \text{for any } w_1, w_2 \in \mathcal{A}^*.$$
(2.2)

The *incidence matrix* L_{σ} of a substitution σ (or an *H*-substitution σ_H) is defined as the $d \times d$ matrix, whose (i, j)-entry is the number of the occurrence of i in $\sigma(j)$. Since the matrix concerned with σ_{AH} intrinsically is $-L_{\sigma}$, we call $-L_{\sigma}$ the *incidence matrix* of σ_{AH} , which is an integral and non-positive matrix.

A mapping $f : \mathcal{A}^* \to \mathbf{Z}^d$ defined by $f(\varepsilon) := \mathbf{0}$ and

$$f(a_1a_2\cdots a_n):=\boldsymbol{e}_{a_1}+\boldsymbol{e}_{a_2}+\cdots+\boldsymbol{e}_{a_n}\quad\text{for any }a_1a_2\cdots a_n\in\mathcal{A}^*\backslash\{\varepsilon\}$$

is said to be a *canonical homomorphism* or a *homomorphism of abelianization*, where $(e_j)_{j \in A}$ is the canonical basis of \mathbf{R}^d . It is clear that f is homomorphic. The following properties are trivial from the definitions:

$$L_{\sigma} = (f(\sigma(1)), \dots, f(\sigma(d))), \qquad (2.3)$$

$$f \circ \sigma_{AH} = f \circ \sigma_H = L_\sigma \circ f \text{ on } \mathcal{A}^*.$$
(2.4)

An algebraic integer α is called a *Pisot number* (and a *negative Pisot number*) if $\alpha > 1$ (and $\alpha < -1$) and all the conjugates except α are less than 1 in modulus, respectively.

DEFINITION 2.2. Let σ be a substitution on A.

- (1) σ (or σ_H) is of *Pisot type* if the Perron-Frobenius root λ of L_{σ} is a Pisot number,
- (2) σ_{AH} is of *negative Pisot type* if the Perron-Frobenius root λ of L_{σ} is a Pisot number (by the fact $-L_{\sigma}$ is the incidence matrix of σ_{AH}).
- (3) σ (σ_H or σ_{AH}) is unimodular if det $L_{\sigma} = \pm 1$,
- (4) σ (σ_H or σ_{AH}) is *irreducible* if the characteristic polynomial of L_{σ} is irreducible over **Q**,
- (5) σ (σ_H or σ_{AH}) satisfies the *fixed point condition* if there exists $j \in A$ such that $\sigma(j) = jw$ for some $w \in A^* \setminus \{\varepsilon\}$.
- (6) σ (σ_H or σ_{AH}) is *primitive* if L_{σ} is primitive.

REMARK 2.1. We can set j = 1 without loss of generality in the definition of fixed point condition. The definition of the substitution of Pisot type in [8] is different from ours.

Since an *AH*-substitution σ_{AH} of irreducible negative Pisot type is primitive, we have the well-known proposition by Perron-Frobenius theorem.

PROPOSITION 2.1. Given an AH-substitution σ_{AH} of irreducible negative Pisot type, then we have that \mathbf{R}^d is decomposed into the direct sum

$$\mathbf{R}^d = W^u \oplus W^s$$

where W^u is a 1-dimensional eigenspace of $-L_{\sigma}$ corresponding to $-\lambda$, and W^s is a (d-1)dimensional contractive invariant subspace with respect to $-L_{\sigma}$. Moreover we can take a positive vector as an eigenvector of W^u .

We denote by π_u (and π_s) the projection to W^u (and W^s) with respect to this direct decomposition, respectively.

2.2. Fixed point of *AH*-substitution. In the rest of the paper, we shall consider the class of *AH*-substitutions on \mathcal{A}^* satisfying the following conditions:

(NP) σ_{AH} is of negative Pisot type,

(UM) σ_{AH} is unimodular,

(IR) σ_{AH} is irreducible,

(FP) σ_{AH} satisfies the fixed point condition.

We set, for $k, l \in \mathbb{N} \cup \{0\}$

$$\mathcal{A}_{k,l} := \{ a_{-k} \cdots a_{-1} \cdot a_0 a_1 \cdots a_l \mid a_j \in \mathcal{A}, \ j = -k, -k+1, \dots, l \},\$$

which is the set of finite words of length (k, l + 1) with the decimal point, and

$$\tilde{\mathcal{A}} := \bigcup_{k,l \ge 0} \tilde{\mathcal{A}}_{k,l} \, .$$

Since $uwv \in \tilde{\mathcal{A}}$ for $u, v \in \mathcal{A}^*$, $w \in \tilde{\mathcal{A}}$, the free monoid \mathcal{A}^* acts on the set $\tilde{\mathcal{A}}$ from the left and the right.

We shall also consider σ_{AH} as a transformation on \tilde{A} defined by

 $\sigma_{AH}(a_{-k}\cdots a_{-1}.a_0a_1\cdots a_l):=\sigma(a_l)\cdots\sigma(a_1).\sigma(a_0)\sigma(a_{-1})\cdots\sigma(a_{-k}),$

and we have that for $u, v \in A^*, w \in \tilde{A}$

$$\sigma_{AH}(uwv) = \sigma_{AH}(v)\sigma_{AH}(w)\sigma_{AH}(u) \,.$$

We can extend σ_{AH} to the transformation on $\mathcal{A}^{\mathbb{Z}}$ similarly. We define a relation \leq on $\tilde{\mathcal{A}}$ as follows. Let $w_1, w_2 \in \tilde{\mathcal{A}}$. Then we write $w_1 \leq w_2$ if there exist $u, v \in \mathcal{A}^*$ such that $w_2 = uw_1v$, in addition we write $w_1 \prec w_2$ if $w_1 \neq w_2$ and $w_1 \leq w_2$.

DEFINITION 2.3. If $s \in \mathcal{A}^{\mathbb{Z}}$ satisfies $\sigma_{AH}(s) = s$, then s is called *the fixed point of* σ_{AH} .

By Assumption (FP), we have $\sigma(1) = 1w$ ($w \in A^* \setminus \{\varepsilon\}$). Let us iterate $\sigma_{AH}^n(.1)$ (n = 1, 2, 3, ...). Then we have

$$\sigma_{AH}(.1) = .\sigma(1) = .1w,$$

$$\sigma_{AH}^2(.1) = \sigma_{AH}(w)\sigma_{AH}(.1) = \sigma_{AH}(w).1w,$$

$$\sigma_{AH}^3(.1) = \sigma_{AH}(w).1w\sigma_{AH}^2(w),$$

$$\vdots$$

In general, we get

$$\sigma_{AH}^{n}(.1) = \begin{cases} \sigma_{AH}^{n-2}(w)\sigma_{AH}^{n-4}(w)\cdots\sigma_{AH}(w).1w\sigma_{AH}^{2}(w)\cdots\sigma_{AH}^{n-1}(w) \ (n:\text{odd}), \\ \sigma_{AH}^{n-1}(w)\sigma_{AH}^{n-3}(w)\cdots\sigma_{AH}(w).1w\sigma_{AH}^{2}(w)\cdots\sigma_{AH}^{n-2}(w) \ (n:\text{even}). \end{cases}$$

Therefore we have

$$\sigma_{AH}^n(.1) \prec \sigma_{AH}^{n+1}(.1)$$

for $n \in \mathbf{N}$, which induces a bi-infinite sequence s

$$s := \lim_{n \to \infty} \sigma_{AH}^n(.1) = \cdots s_{-2} s_{-1} . s_0 s_1 s_2 \cdots$$

where $s_0 = 1$. It is clear that *s* is the fixed point of σ_{AH} .

2.3. Geometrical fixed point of *AH*-substitution. Next we shall give the geometrical representation of the fixed point *s* of σ_{AH} . We denote an oriented unit line segment with the base point *x* and the orientation e_i by

$$(\boldsymbol{x}, j) := \left\{ \boldsymbol{x} + t\boldsymbol{e}_j \mid 0 \le t < 1 \right\}$$

for $\mathbf{x} \in \mathbf{Z}^d$ and $j \in \mathcal{A}$. We set $\Lambda := \{(\mathbf{x}, j) \mid \mathbf{x} \in \mathbf{Z}^d, j \in \mathcal{A}\}$, and let $\mathcal{G}_1 = \mathcal{G}_1(\Lambda)$ be a **Z**-free module generated by Λ . The action on \mathcal{G}_1 by \mathbf{Z}^d (denote by +) is defined by

 $\mathbf{y} + (\mathbf{x}, j) := (\mathbf{y} + \mathbf{x}, j) \quad (\mathbf{y} \in \mathbf{Z}^d, (\mathbf{x}, j) \in \Lambda).$

A homomorphism $E_1(\sigma_{AH})$ on \mathcal{G}_1 is defined as follows:

$$E_1(\sigma_{AH})(\mathbf{x}, j) := (-L_{\sigma})(\mathbf{x} + \mathbf{e}_j - \mathbf{e}_1) + \sum_{k=1}^{l_j} (f(P_k^{(j)}), W_k^{(j)})$$

for any generator (\mathbf{x}, j) of \mathcal{G}_1 .

By the calculation of $E_1(\sigma_{AH})^n(\mathbf{0}, j)$ $(n \in \mathbf{N})$, we obtain

$$E_1(\sigma_{AH})^n(\mathbf{0}, j) = \sum_{\substack{(j_0 \cdots j_{n-1} \\ k_0 \cdots k_{n-1}): G_{\sigma} \text{-admissible}, \ j_0 = j}} (s_{k_0 \cdots k_{n-1}}^{(j_0 \cdots j_{n-1})}), W_{k_{n-1}}^{(j_{n-1})}), \qquad (2.5)$$

where

$$s\binom{j_0\cdots j_{n-1}}{k_0\cdots k_{n-1}} := \sum_{\alpha=1}^n (-L_{\sigma})^{\alpha-1} \left((-L_{\sigma})(\boldsymbol{e}_{j_{n-\alpha}} - \boldsymbol{e}_1) + f(\boldsymbol{P}_{k_{n-\alpha}}^{(j_{n-\alpha})}) \right),$$
(2.6)

and the summation of the right hand side of (2.5) means the sum of all G_{σ} -admissible sequences $\binom{j_0 \cdots j_{n-1}}{k_0 \cdots k_{n-1}}$ with $j_0 = j$. The term " G_{σ} -admissible" is defined in the next section.

If $\lambda \in \mathcal{G}_1$ is represented by

$$\lambda = (\mathbf{x}_1, j_1) + \dots + (\mathbf{x}_k, j_k), \quad ((\mathbf{x}_i, j_i) \in \Lambda, \ i = 1, 2, \dots, k)$$

then we denote the union of (\mathbf{x}_i, j_i) 's by $|\lambda|$, that is, $|\lambda| := \bigcup_{i=1}^k (\mathbf{x}_i, j_i)$. Let $\overline{\mathcal{G}}_1$ be a set of the finite or countable unions of the elements of Λ . Since for any $L \in \overline{\mathcal{G}}_1$, there exist some finite or countable index set A and $(\mathbf{x}_{\alpha}, j_{\alpha}) \in \Lambda$ ($\alpha \in A$) such that

$$L = \bigcup_{\alpha \in A} (\boldsymbol{x}_{\alpha}, \, j_{\alpha}) \,,$$

a mapping $\bar{E}_1(\sigma_{AH}): \bar{\mathcal{G}}_1 \to \bar{\mathcal{G}}_1$ can be defined by

$$\bar{E}_1(\sigma_{AH})(L) := \bigcup_{\alpha \in A} |E_1(\sigma_{AH})(\mathbf{x}_\alpha, j_\alpha)|.$$

Thus we have for any $n \in \mathbf{N}$ and $j \in \mathcal{A}$

$$\bar{E}_1(\sigma_{AH})^n(\mathbf{0}, j) = |E_1(\sigma_{AH})^n(\mathbf{0}, j)|.$$

From (2.5) and (2.6), we have that $\bar{E}_1(\sigma_{AH})^n(\mathbf{0}, 1)$ is a connected oriented broken line segment through the origin satisfying

$$\bar{E}_1(\sigma_{AH})^n(\mathbf{0},1) \subset \bar{E}_1(\sigma_{AH})^{n+1}(\mathbf{0},1) \ (n \in \mathbf{N}) \,.$$

Therefore there exists the limit \bar{s} of the sequence $(\bar{E}_1(\sigma_{AH})^n(\mathbf{0}, 1))_{n \in \mathbb{N}}$:

$$\bar{s} := \lim_{n \to \infty} \bar{E}_1(\sigma_{AH})^n(\mathbf{0}, 1) = \bigcup_{n=0}^{\infty} \bar{E}_1(\sigma_{AH})^n(\mathbf{0}, 1).$$

It holds that $\overline{E}_1(\sigma_{AH})(\overline{s}) = \overline{s}$. The limit \overline{s} is called the *geometrical fixed point* of σ_{AH} .

EXAMPLE 2.1. Let σ be a substitution as follows:

$$\sigma: \begin{cases} 1 \mapsto 112\\ 2 \mapsto 12. \end{cases}$$

Then the incidence matrix of σ is

$$L_{\sigma} = \begin{pmatrix} 2 & 1 \\ 1 & 1 \end{pmatrix},$$

the characteristic polynomial of L_{σ} is $t^2 - 3t + 1$, and σ_{AH} satisfies the conditions (NP), (UM), (IR) and (FP). The words with decimal point $\sigma_{AH}^n(.1)$ (n = 1, 2, 3, ...) are given by

$$\sigma_{AH}(.1) = .112$$

$$\sigma_{AH}^{2}(.1) = \sigma(2)\sigma(1).\sigma(1) = 12112.112$$

$$\sigma_{AH}^{3}(.1) = 12112.1121211211212112$$

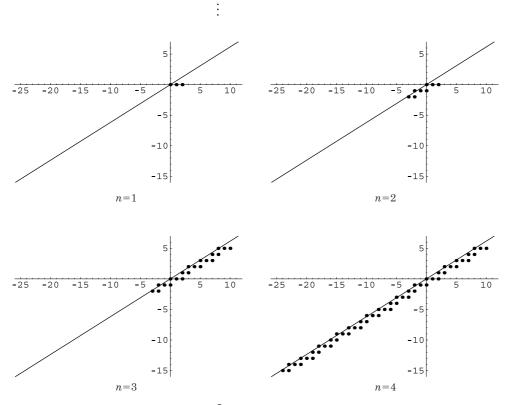
$$\vdots$$

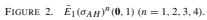
By the definition of $E_1(\sigma_{AH})$, we obtain

$$E_1(\sigma_{AH})(\mathbf{0}, 1) = (\mathbf{0}, 1) + (\mathbf{e}_1, 1) + (2\mathbf{e}_1, 2)$$
$$E_1(\sigma_{AH})(\mathbf{0}, 2) = (\mathbf{e}_1, 1) + (2\mathbf{e}_1, 2),$$

therefore we have

$$E_1(\sigma_{AH})^2(\mathbf{0}, 1) = (\mathbf{0}, 1) + (\mathbf{e}_1, 1) + (2\mathbf{e}_1, 2) + (\binom{-2}{-1}, 1) + (\binom{-1}{-1}, 1) + (\binom{0}{-1}, 2) + (\binom{-3}{-2}, 1) + (\binom{-2}{-2}, 2),$$





The geometric representations of $\sigma_{AH}^n(.1)$, that is, $\bar{E}_1(\sigma_{AH})^n(\mathbf{0}, 1)$ (n = 1, 2, 3, 4) is given by Figure 2 which draw only base points.

3. Markov transformation

3.1. Markov transformation on J. Associated to a substitution σ on A, a directed graph $G_{\sigma} = (\mathcal{V}_{\sigma}, \mathcal{E}_{\sigma}, \partial_{\sigma}^+, \partial_{\sigma}^-)$ is defined in the following way. The vertex set \mathcal{V}_{σ} of G_{σ} is the alphabet A. The following is the edge set \mathcal{E}_{σ} of G_{σ} :

$$\mathcal{E}_{\sigma} := \left\{ \binom{j}{k} \mid 1 \le j \le d, \ 1 \le k \le l_j \right\}.$$

Two mappings ∂_{σ}^+ : $\mathcal{E}_{\sigma} \to \mathcal{V}_{\sigma}$ and ∂_{σ}^- : $\mathcal{E}_{\sigma} \to \mathcal{V}_{\sigma}$ are defined by $\partial_{\sigma}^+(\binom{j}{k}) := j$ and $\partial_{\sigma}^-(\binom{j}{k}) := W_k^{(j)}$, respectively.

The graph G_{σ} is primitive, and the adjacency matrix of G_{σ} is ${}^{t}L_{\sigma}$. The edge shift space $\hat{\Omega}_{\sigma}$ of G_{σ} is defined by

$$\hat{\Omega}_{\sigma} := \left\{ \begin{pmatrix} \cdots_{j-1} j_0 j_1 \cdots j_n \cdots \\ \cdots k_{-1} k_0 k_1 \cdots k_n \cdots \end{pmatrix} \in \mathcal{E}_{\sigma}^{\mathbf{Z}} \mid W_{k_n}^{(j_n)} = j_{n+1}, \ n \in \mathbf{Z} \right\},\$$

and its shift map S_{σ} on $\hat{\Omega}_{\sigma}$

$$S_{\sigma}: \hat{\Omega}_{\sigma} \to \hat{\Omega}_{\sigma}, \quad S_{\sigma} \left(\begin{pmatrix} j_n \\ k_n \end{pmatrix}_{n \in \mathbf{Z}} \right) := \begin{pmatrix} j'_n \\ k'_n \end{pmatrix}_{n \in \mathbf{Z}},$$

where $\binom{j'_n}{k'_n} = \binom{j_{n+1}}{k_{n+1}}$. It is clear that $(\hat{\Omega}_{\sigma}, S_{\sigma})$ is a shift of finite type (see [18]) and it is wellknown that there exists an S_{σ} -invariant maximal measure μ_{σ} on $\hat{\Omega}_{\sigma}$ and that $(\hat{\Omega}_{\sigma}, S_{\sigma}, \mu_{\sigma})$ is the measure preserving dynamical system (see [12]). Similarly we define the one-sided shift space of G_{σ} by

$$\Omega_{\sigma} := \left\{ \begin{pmatrix} j_0 j_1 \cdots j_n \cdots \\ k_0 k_1 \cdots k_n \cdots \end{pmatrix} \in \mathcal{E}_{\sigma}^{\mathbf{N} \cup \{0\}} \mid W_{k_n}^{(j_n)} = j_{n+1}, \ n \in \mathbf{N} \cup \{0\} \right\},\$$

and denote its shift map by the same letter S_{σ} . A finite or infinite sequence of \mathcal{E}_{σ} which occurs some element of $\hat{\Omega}_{\sigma}$ is called G_{σ} -admissible.

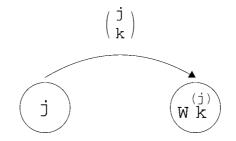


FIGURE 3. A directed graph G_{σ} associated to a substitution σ .

Let $v \in W^u$ be the Perron-Frobenius vector, which can be taken as the positive and unit eigenvector of L_{σ} corresponding to λ . We define the closed intervals of W^u as follows: for $a, b \in W^u$ with a = av, b = bv $(a, b \in \mathbf{R})$, if $a \leq b$, we set

$$[\boldsymbol{a}, \boldsymbol{b}] := \left\{ \boldsymbol{x} \mid \boldsymbol{x} = t \boldsymbol{v}, \ \boldsymbol{a} \leq t \leq b \right\}.$$

Let J_j $(j \in A)$ be the following closed intervals on W^u :

$$J_j := \left[-\frac{\lambda}{1+\lambda} \pi_u \boldsymbol{e}_1, -\frac{\lambda}{1+\lambda} \pi_u \boldsymbol{e}_1 + \pi_u \boldsymbol{e}_j \right].$$

Then we have

$$(-\lambda)J_j = \left[-\frac{\lambda}{1+\lambda}\pi_u \boldsymbol{e}_1 - \lambda\pi_u (\boldsymbol{e}_j - \boldsymbol{e}_1), \ \frac{\lambda^2}{1+\lambda}\pi_u \boldsymbol{e}_1\right].$$

From (2.4), we can obtain the following decomposition of $(-\lambda)J_i$

$$(-\lambda)J_j = \bigcup_{k=1}^{l_j} (J_{W_k^{(j)}} + a_k^j)$$
(3.1)

where $a_k^j := (-\lambda)\pi_u(\boldsymbol{e}_j - \boldsymbol{e}_1) + \pi_u(f(P_k^{(j)}))$. Let *J* be the direct sum of J_j $(j \in \mathcal{A})$, that is, $J := \coprod_{j \in \mathcal{A}} J_j$. By giving the 1-dimensional Lebesgue measure $|\cdot|$ to *J*, we can consider *J* as a measure space.

By (3.1), a Markov transformation $T_{\sigma_{AH}}$: $J \to J$ is defined for almost all points of J as follows:

$$T_{\sigma_{AH}}\boldsymbol{x} := (-\lambda)\boldsymbol{x} - a_k^j \in J_{W_k^{(j)}} \quad (\boldsymbol{x} \in J_j) \,.$$

Thus we have the following theorem.

THEOREM 3.1. $T_{\sigma_{AH}}$ has the following properties:

- (1) There exists a $T_{\sigma_{AH}}$ -invariant probability measure μ on J which is absolutely continuous with respect to the Lebesgue measure $|\cdot|$,
- (2) For almost all $\mathbf{x} \in J_j$ $(j \in \mathcal{A})$, there exists a G_{σ} -admissible sequence $\binom{j_0 j_1 \cdots j_n \cdots}{k_0 k_1 \cdots k_n \cdots} \in \Omega_{\sigma}$ with $j_0 = j$ such that

$$\mathbf{x} = \sum_{n=0}^{\infty} \frac{a_{k_n}^{j_n}}{(-\lambda)^{n+1}} \,.$$

PROOF. (1) is trivial from the Markov structure. We shall show (2) next. Let $x \in J_j$, and put $j_0 := j$. Then there exists a k_0 such that

$$T_{\sigma_{AH}} \mathbf{x} := (-\lambda) \mathbf{x} - a_{k_0}^{j_0} \in J_{W_{k_0}^{(j_0)}}$$

Set $j_1 := W_{k_0}^{(j_0)}$. Similarly for some k_1 , it holds

$$T_{\sigma_{AH}}^{2} \mathbf{x} := (-\lambda) T_{\sigma_{AH}} \mathbf{x} - a_{k_{1}}^{j_{1}} \in J_{W_{k_{1}}^{(j_{1})}}.$$

Repeatedly we get

$$T_{\sigma_{AH}}^{n} \mathbf{x} := (-\lambda) T_{\sigma_{AH}}^{n-1} \mathbf{x} - a_{k_{n-1}}^{j_{n-1}} \in J_{W_{k_{n-1}}^{(j_{n-1})}}$$

for any $n \in \mathbf{N}$. Therefore we have

$$\mathbf{x} = \sum_{s=0}^{n-1} \frac{a_{k_s}^{j_s}}{(-\lambda)^{s+1}} + \frac{1}{(-\lambda)^n} T_{\sigma_{AH}}^n \mathbf{x} \,,$$

which means that the conclusion holds when n tends to ∞ .

We can define $\varphi \colon \Omega_{\sigma} \to J$ by

$$\varphi\left(\binom{j_0j_1\cdots j_n\cdots}{k_0k_1\cdots k_n\cdots}\right) := \sum_{n=0}^{\infty} \frac{a_{k_n}^{j_n}}{(-\lambda)^{n+1}},$$

and see that $\varphi \colon \Omega_{\sigma} \to J$ is bijective almost everywhere. Therefore we have the following theorem.

THEOREM 3.2. Dynamical system $(J, T_{\sigma_{AH}}, \mu)$ is isomorphic (a.e.) to Markov shift $(\Omega_{\sigma}, S, \mu_{\sigma})$ by the isomorphism φ .

3.2. Atomic surface of *AH*-substitution. We shall recall the basic concepts. The closure and the interior of a subset *A* in W^s are denoted by \overline{A} and by Int *A* respectively. $|\cdot|$ denotes Lebesgue measure on W^s . If A_1, \ldots, A_n are Lebesgue measurable sets with $|A_i \cap A_j| = 0$ ($i \neq j$), then we call $\bigcup_{j=1}^n A_j$ a *non-overlapping* union of A_1, \ldots, A_n and denote it by $\bigcup_{i=1}^n A_j$ (non-overlapping).

Setting Y_j $(j \in \mathcal{A})$, Y by $Y_j := \left\{ \mathbf{y} \in \mathbf{Z}^d \mid (\mathbf{y}, j) \subset \overline{s} \right\},$ $Y := \left\{ \mathbf{y} \in \mathbf{Z}^d \mid (\mathbf{y}, j) \subset \overline{s}, \ j \in \mathcal{A} \right\},$

we shall define the *partial atomic surfaces* X_j ($j \in A$) and the *atomic surface* X of AH-substitution σ_{AH} as follows:

$$X_j := \overline{\pi_s Y_j}, \quad X := \overline{\pi_s Y}.$$

Then we have $X = \bigcup_{i=1}^{d} X_i$.

THEOREM 3.3. We have the following properties about the atomic surfaces.

- (1) $X, X_j (j \in A)$ are compact,
- (2) For each $i \in A$,

$$(-L_{\sigma})^{-1}X_{i} = \bigcup_{\binom{j}{k}: W_{k}^{(j)} = i} (X_{j} + b_{k}^{j}), \qquad (3.2)$$

- where $b_k^j = \pi_s(e_j e_1) + (-L_{\sigma})^{-1}(\pi_s(f(P_k^{(j)}))),$ (3) Int $X_j \neq \phi$ $(j \in \mathcal{A}),$
- (4) $\overline{\operatorname{Int} X_j} = X_j \ (j \in \mathcal{A}).$

REMARK 3.1. (3.2) is called the set equation with respect to the partial atomic surfaces of σ_{AH} . The right hand side of (3.2) means the union of $X_j + b_k^j$'s with respect to all $\binom{j}{k} \in \mathcal{E}_{\sigma}$ such that $W_k^{(j)} = i$.

PROOF. The proof can be obtained by the analogy of [11], [15]. Therefore we will give a sketch of the proof here. We show (1) first. Set for each $n \in \mathbf{N}$,

$$Y^{(n)} := \left\{ \mathbf{y} \in \mathbf{Z}^d \mid (\mathbf{y}, j) \subset \overline{E}_1(\sigma_{AH})^n(\mathbf{0}, 1), \ j \in \mathcal{A} \right\},\$$

then we get from (2.5) and (2.6)

$$Y^{(n)} = \left\{ s \begin{pmatrix} j_0 \cdots j_{n-1} \\ k_0 \cdots k_{n-1} \end{pmatrix} \mid \begin{pmatrix} j_0 \cdots j_{n-1} \\ k_0 \cdots k_{n-1} \end{pmatrix} : G_{\sigma} \text{-admissible}, \ j_0 = 1 \right\}$$

Let I be

$$\left\{ (-L_{\sigma})(e_j - e_1) + f(P_k^{(j)}) \mid {j \choose k} \in \mathcal{E} \right\}$$

and θ the maximum of the eigenvalues of L_{σ} except λ in modulus, then there exists a constant C > 0 for any $y \in I$ and any $n \in \mathbb{N}$

$$|(-L_{\sigma})^n(\pi_s \mathbf{y})| \leq C\theta^n.$$

Therefore we have

$$\left|\pi_s\left(s\binom{j_0\cdots j_{n-1}}{k_0\cdots k_{n-1}}\right)\right| < \frac{C}{1-\theta}.$$

This means that the X is compact and that so are X_i $(i \in A)$. We show (2) next. Let (Y_i, i) denote the set $\{(y, i) \mid (y, i) \subset \overline{s}\}$. Then we have $\overline{s} =$ $\bigcup_{i=1}^{d} (Y_i, j)$, and

$$(Y_i, i) = \{ (\mathbf{y}, i) \mid (\mathbf{y}, i) \subset \bar{s} \}$$
$$= \left\{ (\mathbf{y}, i) \mid (\mathbf{y}, i) \subset \bar{E}_1(\sigma_{AH}) \left(\bigcup_{j=1}^d (Y_j, j) \right) \right\}$$
$$= \bigcup_{j=1}^d \left\{ (\mathbf{y}, i) \mid (\mathbf{y}, i) \subset \bar{E}_1(\sigma_{AH})(Y_j, j) \right\}$$

AH-SUBSTITUTION AND MARKOV PARTITION

$$= \bigcup_{\binom{j}{k}: W_k^{(j)} = i} \left\{ (-L_{\sigma})(\mathbf{y}) + (\mathbf{e}_j - \mathbf{e}_1) + (-L_{\sigma})^{-1} (f(P_k^{(j)})), i) \mid \mathbf{y} \in Y_j \right\},\$$

which shows the set equation (3.2).

We show (3). Let ${}^{t}(1, v_1, ..., v_{d-1})$ be the positive eigenvector of λ . Since the characteristic polynomial of L_{σ} is the minimal polynomial of the algebraic integer λ , $\{1, v_1, ..., v_{d-1}\}$ is a **Q**-basis of the algebraic number field **Q**(λ), which means $\overline{\pi_s \mathbf{Z}^d} = W^s$. We shall consider the following hyperplane:

$$P := \left\{ \boldsymbol{x} \in \mathbf{R}^d \mid \langle \boldsymbol{x}, {}^t(1, 1, \dots, 1) \rangle = 0 \right\},\$$

where \langle , \rangle is the inner product of \mathbf{R}^d . By considering the lattice

$$L := \left\{ \sum_{j=2}^{d} n_j (\boldsymbol{e}_j - \boldsymbol{e}_1) \mid n_i \in \mathbf{Z} \right\}$$

on *P*, we get $\mathbf{Z}^d = \bigcup_{n=1}^{\infty} (Y^{(n)} + L) = Y + L$, which shows $W^s = X + \pi_s L$. From Baire category theorem, we have Int $X \neq \phi$. By the set equation and the primitivity of L_{σ} , we have Int $X_j \neq \phi$ ($j \in A$).

(4) is clear from the set equation and (3).

The following lemma can be found in [5], [20].

LEMMA 3.4. Let A be a primitive matrix with the largest eigenvalue λ . Suppose that \mathbf{v} is a positive vector such that $A\mathbf{v} \geq \lambda \mathbf{v}$. Then the inequality becomes equality and \mathbf{v} is the eigenvector of A corresponding to λ .

LEMMA 3.5. ${}^{t}(|X_1|, |X_2|, ..., |X_d|)$ is the positive eigenvector of L_{σ} corresponding to λ , where $|\cdot|$ is Lebesgue measure on W^s .

PROOF. From the set equations (3.2) and the fact that the determinant of $L_{\sigma}^{-1}|_{W^s}$ is λ ,

$$\lambda |X_i| = |(-L_{\sigma})^{-1} X_i| \le \sum_{j=1}^d l_{ij} |X_j| \ (i \in \mathcal{A}) \,, \tag{3.3}$$

where l_{ij} is (i, j)-entry of L_{σ} . By the previous lemma, the equality of (3.3) holds.

REMARK 3.2. The set equations (3.2) are non-overlapping unions by Lemma 3.5.

DEFINITION 3.1. The coincidence condition of AH-substitution means that we can take $j_0 \in \mathcal{A}$, $n \ge 1$ such that for any $i \in \mathcal{A}$, there exist *d* different G^* -admissible sequences $\binom{j_{-1}^{(i)} \cdots j_{-n}^{(i)}}{k^{(i)} \cdots k^{(i)}}$ satisfying

$$j_{-n}^{(i)} = i$$
, $W_{k_{-1}^{(i)}}^{(j_{-1}^{(i)})} = j_0$,

and $\sum_{\alpha=1}^{n} (-L_{\sigma})^{-(n-\alpha)} b_{k_{-\alpha}^{(i)}}^{j_{-\alpha}^{(i)}}$ are constant vector for all $i \in \mathcal{A}$.

THEOREM 3.6. Under the coincidence condition of AH-substitution σ_{AH} , we have

$$X = \bigcup_{j \in \mathcal{A}} X_j \text{ (non - overlapping)}$$

PROOF. By the set equations (3.2), we have

$$(-L_{\sigma})^{n} X_{j_{0}} = \bigcup_{\substack{\binom{j_{-1}\cdots j_{-n}}{k_{-1}\cdots k_{-n}}: G_{\sigma}^{*}-\text{admissible}\\ j_{0}=W_{k_{-1}}^{(j_{-1})}}} \left(X_{j_{-n}} + \sum_{\alpha=1}^{n} (-L_{\sigma})^{-(n-\alpha)} b_{k_{-\alpha}}^{j_{-\alpha}} \right).$$
(3.4)

By Remark 3.2, we have that the set equations are non-overlapping, and so are (3.4). On the other hand, we know that $\bigcup_{i=1}^{d} \left(X_{j_{-n}^{(i)}} + \sum_{\alpha=1}^{n} (-L_{\sigma})^{-(n-\alpha)} b_{k_{-\alpha}^{(i)}}^{j_{-\alpha}^{(i)}} \right)$ is a subpatch of $(-L_{\sigma})^n X_{j_0}$ from the coincidence condition. Therefore we have the conclusion.

EXAMPLE 3.1. Figure 1 and Figure 4 are the atomic surfaces of the H-substitution and the AH-substitution induced by the following substitution:

$$\sigma: 1 \mapsto 112, 2 \mapsto 32, 3 \mapsto 1$$

The set equations (3.2) say that for $\mathbf{x} \in X_i$, there exist $\binom{j}{k} \in \mathcal{E}_{\sigma}$ such that $W_k^{(j)} = i$ and $(-L_{\sigma})^{-1}\mathbf{x} \in X_j + b_k^j$. Therefore a Markov transformation $T_{\sigma_{AH}}^*: X \to X$ is defined for almost all points of X as follows:

$$T^*_{\sigma_{AH}}\boldsymbol{x} := (-L_{\sigma})^{-1}\boldsymbol{x} - b^j_k \in X_j \ (\boldsymbol{x} \in X_i) \,.$$

Let the (backward) one-sided shift space of G_{σ} be

$$\Omega_{\sigma}^{*} := \left\{ \begin{pmatrix} j_{-1} j_{-2} \dots \\ k_{-1} k_{-2} \dots \end{pmatrix} \in \mathcal{E}_{\sigma}^{\mathbf{N}} \mid W_{k_{-(n+1)}}^{j_{-(n+1)}} = j_{-n}, \ n \in \mathbf{N} \right\},\$$

and its shift map S^*_{σ} on Ω^*_{σ}

$$S_{\sigma}^*: \, \mathcal{Q}_{\sigma}^* \to \, \mathcal{Q}_{\sigma}^*, \, \, S_{\sigma}^* \left(\begin{pmatrix} j_{-1} j_{-2} j_{-3} \cdots \\ k_{-1} k_{-2} k_{-3} \cdots \end{pmatrix} \right) := \begin{pmatrix} j_{-2} j_{-3} j_{-4} \cdots \\ k_{-2} k_{-3} k_{-4} \cdots \end{pmatrix}.$$

A finite or infinite sequence of \mathcal{E}_{σ} which occurs some element of Ω_{σ}^* is called G_{σ}^* -admissible sequence.

AH-SUBSTITUTION AND MARKOV PARTITION

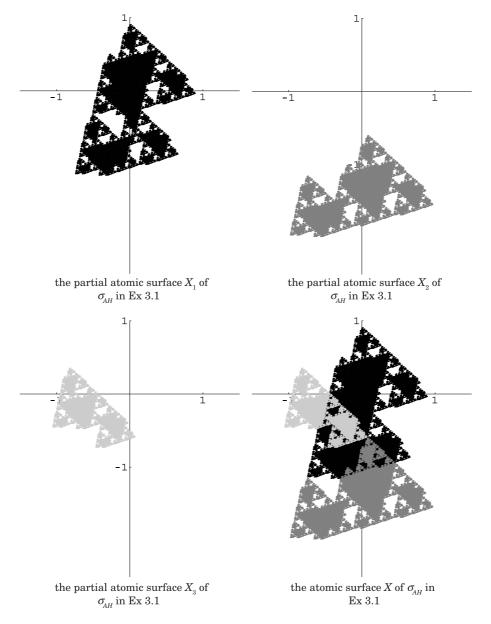


FIGURE 4. X_1, X_2, X_3, X .

THEOREM 3.7. For almost all $\mathbf{x} \in X_{j_0}$ $(j_0 \in \mathcal{A})$, there exists some G^*_{σ} -admissible sequence $\binom{j_{-1}j_{-2}\dots}{k_{-1}k_{-2}\dots} \in \Omega^*_{\sigma}$ with $W^{(j_{-1})}_{k_{-1}} = j_0$ such that

$$\mathbf{x} = \sum_{n=1}^{\infty} (-L_{\sigma})^n b_{k_{-n}}^{j_{-n}}.$$

PROOF. In the same way as Theorem 3.1, for each $n \in \mathbf{N}$, there exists G^*_{σ} -admissible sequence $\binom{j-1j-2\cdots j-n}{k-1} \in \Omega^*_{\sigma}$ such that

$$\boldsymbol{x} = \sum_{\alpha=1}^{n} (-L_{\sigma})^{\alpha} b_{k-\alpha}^{j-\alpha} + (-L_{\sigma})^{n} \left(T_{\sigma_{AH}}^{*n} \boldsymbol{x} \right) \,.$$

As L_{σ} is contractive on W^s , the second term converges to $0 \ (n \to \infty)$.

We can define $\varphi^*: \Omega^*_\sigma \to X$ by

$$\varphi^*\left(\binom{j_{-1}j_{-2}\cdots j_{-n}\cdots}{k_{-1}k_{-2}\cdots k_{-n}\cdots}\right) := \sum_{n=1}^{\infty} (-L_{\sigma})^n b_{k_{-n}}^{j_{-n}},$$

and see that $\varphi^*: \Omega_{\sigma}^* \to X$ is bijective almost everywhere.

THEOREM 3.8. The transformations $T^*_{\sigma_{AH}}$ and S^*_{σ} are isomorphic by φ^* almost everywhere.

PROOF. This is clear from the definitions.

3.3. Natural Extension of Markov transformation. We set

$$\hat{X}_i := X_i - J_i = \left\{ \boldsymbol{x} - \boldsymbol{y} \mid \boldsymbol{x} \in X_i, \ \boldsymbol{y} \in J_i \right\} \quad (i \in \mathcal{A}),$$

and

$$\hat{X} := \bigcup_{i \in \mathcal{A}} \hat{X}_i$$
 (non-overlapping).

Let us define a realization map $\hat{\varphi}: \hat{\Omega}_{\sigma} \to \hat{X}$ by

$$\hat{\varphi}\left(\left(\overset{\dots j_{-1}j_{0}j_{1}\dots}{\dots k_{-1}k_{0}k_{1}\dots}\right)\right) := \varphi^{*}\left(\left(\overset{j_{-1}j_{-2}\dots}{k_{-1}k_{-2}\dots}\right)\right) - \varphi\left(\left(\overset{j_{0}j_{1}\dots}{k_{0}k_{1}\dots}\right)\right)$$
$$= \sum_{n=1}^{\infty} (-L_{\sigma})^{n} b_{k_{-n}}^{j_{-n}} - \sum_{n=0}^{\infty} \frac{a_{k_{n}}^{j_{n}}}{(-\lambda)^{n+1}},$$

then we see that $\hat{\varphi}$ is bijective for almost all points in $\hat{\Omega}_{\sigma}$.

By the set equations (3.2), we have for each $i \in A$

$$X_{i} = \bigcup_{\substack{\binom{j}{k}: W_{k}^{(j)} = i}} (-L_{\sigma}) \left(X_{j} + b_{k}^{j} \right).$$

We define

$$X_{\binom{j}{k}} := (-L_{\sigma})(X_j + b_k^j), \quad \hat{X}_{\binom{j}{k}} := X_{\binom{j}{k}} - J_i\binom{j}{k}$$

390

for every $\binom{j}{k}$ such that $W_k^{(j)} = i$. Then we have the non-overlapping decompositions:

$$X_i = \bigcup_{\substack{\binom{j}{k}: W_k^{(j)} = i}} X_{\binom{j}{k}}, \quad \hat{X}_i = \bigcup_{\substack{\binom{j}{k}: W_k^{(j)} = i}} \hat{X}_{\binom{j}{k}}.$$

Set

$$\hat{\Omega}_{\sigma}(i) := \left\{ \begin{pmatrix} \cdots j_{-1} j_0 j_1 \cdots \\ \cdots k_{-1} k_0 k_1 \cdots \end{pmatrix} \in \hat{\Omega}_{\sigma} \mid j_0 = i \right\}, \\ \hat{\Omega}_{\sigma} \begin{pmatrix} j \\ k \end{pmatrix} := \left\{ \begin{pmatrix} \cdots j_{-1} j_0 j_1 \cdots \\ \cdots k_{-1} k_0 k_1 \cdots \end{pmatrix} \in \hat{\Omega}_{\sigma} \mid \begin{pmatrix} j_{-1} \\ k_{-1} \end{pmatrix} = \begin{pmatrix} j \\ k \end{pmatrix} \right\}$$

for every $\binom{j}{k}$ such that $W_k^{(j)} = i$, then $\hat{\Omega}_{\sigma}$ is decomposed as follows:

$$\hat{\Omega}_{\sigma} = \bigcup_{i \in \mathcal{A}} \hat{\Omega}_{\sigma}(i), \quad \hat{\Omega}_{\sigma}(i) = \bigcup_{\substack{(j \\ k\}: W_k^j = i}} \hat{\Omega}_{\sigma} {j \choose k}.$$

Theorems 3.1 and 3.7 give us the following equalities for almost all points:

$$\hat{X}_{i} = \hat{\varphi}\left(\hat{\Omega}_{\sigma}(i)\right), \ \hat{X}_{\binom{j}{k}} = \hat{\varphi}\left(\hat{\Omega}_{\sigma}\binom{j}{k}\right).$$
(3.5)

For almost all $\mathbf{x} \in \hat{X}_j$, there exists $\begin{pmatrix} \cdots j_{-1} j_0 j_1 \cdots \\ \cdots k_{-1} k_0 k_1 \cdots \end{pmatrix} \in \hat{\Omega}_{\sigma}$ with $j_0 = j$ such that

$$\mathbf{x} = \sum_{n=1}^{\infty} (-L_{\sigma})^n b_{k_{-n}}^{j_{-n}} - \sum_{n=0}^{\infty} \frac{a_{k_n}^{j_n}}{(-\lambda)^{n+1}}.$$

Then we have

$$(-L_{\sigma}) \mathbf{x} = \sum_{n=1}^{\infty} (-L_{\sigma})^n b_{k_{-(n-1)}}^{j_{-(n-1)}} - \sum_{n=0}^{\infty} \frac{a_{k_{n+1}}^{j_{n+1}}}{(-\lambda)^{n+1}} - \left\{ (-L_{\sigma}) \left(\mathbf{e}_{j_0} - \mathbf{e}_1 \right) + f(P_{k_0}^{(j_0)}) \right\}.$$

Therefore by (3.5), we get

$$(-L_{\sigma}) \hat{X}_{j} = \bigcup_{1 \le k \le l_{j}} \left(\hat{X}_{\binom{j}{k}} + c_{k}^{j} \right),$$

where $c_k^j := (-L_{\sigma}) (\boldsymbol{e}_{j_0} - \boldsymbol{e}_1) + f(P_{k_0}^{(j_0)})$, hence we obtain a Markov transformation $\hat{T}_{\sigma_{AH}}$: $\hat{X} \to \hat{X}$ with a Markov partition $\{\hat{X}_{\binom{j}{k}} \mid \binom{j}{k} \in \mathcal{E}_{\sigma}\}$ by

$$\hat{T}_{\sigma_{AH}}\boldsymbol{x} := (-L_{\sigma})\boldsymbol{x} - c_k^j \ (\boldsymbol{x} \in \hat{X}_j)$$

Thus we have the following theorem.

THEOREM 3.9. The transformations $\hat{T}_{\sigma_{AH}}$ and S_{σ} are isomorphic by $\hat{\varphi}$ almost everywhere, that is, the following diagram is commutative almost everywhere.

$$\begin{array}{cccc} \hat{\Omega}_{\sigma} & \xrightarrow{S_{\sigma}} & \hat{\Omega}_{\sigma} \\ \\ \hat{\varphi} \downarrow & & \downarrow \hat{\varphi} \\ \hat{X} & \xrightarrow{} & \hat{X} \\ \hline \hat{I}_{\sigma_{AH}} & \hat{X} \end{array}$$

4. Tiling by atomic surfaces

4.1. Stepped surface induced by *AH*-substitution. For $x \in \mathbb{Z}^d$, $j \in A$, we define (x, j^*) by

$$(\boldsymbol{x}, j^*) := \left\{ \boldsymbol{x} + \sum_{k \in \mathcal{A}, \ k \neq j} t_k \boldsymbol{e}_k \mid 0 \leq t_k < 1 \right\},$$

that is, (d - 1)-dimensional oriented unit square with the base point x generated by $\{e_1, \ldots, e_{j-1}, e_{j+1}, \ldots, e_d\}$ ([21]). We set

$$\Lambda^* := \left\{ (\boldsymbol{x}, j^*) \mid \boldsymbol{x} \in \mathbf{Z}^d, j \in \mathcal{A} \right\},\$$

and let \mathcal{G}_1^* be a **Z**-free module generated by Λ^* . Let us define the action on \mathcal{G}_1^* by \mathbf{Z}^d (denote by +) as

$$\mathbf{y} + (\mathbf{x}, j^*) := (\mathbf{y} + \mathbf{x}, j^*) \quad (\mathbf{y} \in \mathbf{Z}^d, (\mathbf{x}, j^*) \in \Lambda^*).$$

and a homomorphism $E_1(\sigma)^*: \mathcal{G}_1^* \to \mathcal{G}_1^*$ as

$$E_1(\sigma_{AH})^*(\mathbf{x}, i^*) := \sum_{\binom{j}{k}: W_k^{(j)} = i} \left((\mathbf{e}_j - \mathbf{e}_1) + (-L_\sigma)^{-1} (\mathbf{x} + f(P_k^{(j)})), j^* \right)$$
(4.1)

for any generator (\mathbf{x}, i^*) of \mathcal{G}_1^* .

Let us calculate

$$E_{1}(\sigma_{AH})^{*n}(\mathbf{0}, i^{*}) = \sum_{\substack{\binom{j_{-1}\cdots j_{-n}}{k_{-1}\cdots k_{-n}}: G_{\sigma}^{*} \text{-admissible}\\i = W_{k_{-1}}^{(j_{-1})}}} \left(s^{*}\binom{j_{-1}\cdots j_{-n}}{k_{-1}}, W_{k_{-n}}^{(j_{-n})*}\right)$$
(4.2)

(n = 1, 2, 3, ...), where

$$s^* \begin{pmatrix} j_{-1} \cdots j_{-n} \\ k_{-1} \cdots k_{-n} \end{pmatrix} := \sum_{\alpha=0}^{n-1} (-L_{\sigma})^{-\alpha} \left((\boldsymbol{e}_{j_{-n+\alpha}} - \boldsymbol{e}_1) + (-L_{\sigma})^{-1} (f(\boldsymbol{P}_{k_{-n+\alpha}}^{(j_{-n+\alpha})})) \right).$$
(4.3)

If $\lambda^* \in \mathcal{G}_1^*$ is represented by

$$\lambda^* = (\mathbf{x}_1, j_1^*) + \dots + (\mathbf{x}_k, j_k^*) \ \left((\mathbf{x}_i, j_i^*) \in \Lambda, \ i = 1, 2, \dots, k \right),$$

then we denote the union of (\mathbf{x}_i, j_i^*) 's by $|\lambda^*|$, that is, $|\lambda^*| := \bigcup_{i=1}^k (\mathbf{x}_i, j_i^*)$. Let $\overline{\mathcal{G}}_1^*$ be a set of the finite or countable unions of the elements of Λ^* . Since for any $C \in \overline{\mathcal{G}}_1^*$, there exist some finite or countable index set A and $(\mathbf{x}_{\alpha}, j_{\alpha}^*) \in \Lambda^*$ ($\alpha \in A$) such that

$$C = \bigcup_{\alpha \in A} (\boldsymbol{x}_{\alpha}, j_{\alpha}^*) \,,$$

a mapping $\bar{E}_1(\sigma_{AH})^*: \bar{\mathcal{G}}_1^* \to \bar{\mathcal{G}}_1^*$ can be defined by

$$\bar{E}_1(\sigma_{AH})^*(C) := \bigcup_{\alpha \in A} |E_1(\sigma_{AH})^*(\boldsymbol{x}_{\alpha}, j_{\alpha}^*)|.$$

Thus we have for any $n \in \mathbf{N}$ and $j \in \mathcal{A}$

$$\bar{E}_1(\sigma_{AH})^{*n}(\mathbf{0}, j^*) = |E_1(\sigma_{AH})^{*n}(\mathbf{0}, j^*)|$$

Therefore we have the following proposition from (4.2) and (4.3).

PROPOSITION 4.1. The partial atomic surfaces X_j $(j \in A)$ can be given by

$$X_j = \lim_{n \to \infty} (-L_{\sigma})^n \pi_s \bar{E}_1(\sigma_{AH})^{*n}(\mathbf{0}, j^*) \quad (j \in \mathcal{A}),$$

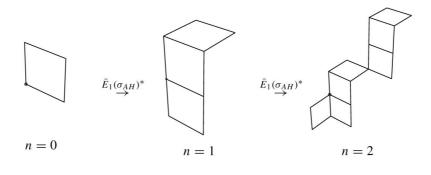
where the right hand side means the convergence with respect to Hausdorff distance.

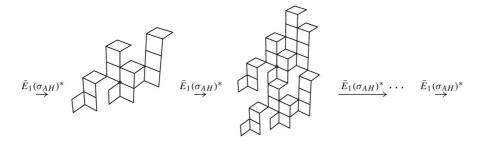
PROOF. From (4.3), we have

$$(-L_{\sigma})^n \pi_s s^* {\binom{j_{-1}\cdots j_{-n}}{k_{-1}\cdots k_{-n}}} = \sum_{\alpha=1}^n (-L_{\sigma})^{\alpha} b {\binom{j_{-\alpha}}{k_{-\alpha}}}.$$

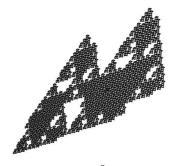
Thus we obtain the conclusion by Theorem 3.2.

EXAMPLE 4.1. Figure 5 depicts $\overline{E}_1(\sigma_{AH})^{*n}(\mathbf{0}, i^*)$ (n = 1, 2, 3, ...) of the substitution given by $\sigma : 1 \mapsto 112, 2 \mapsto 32, 3 \mapsto 1$





n = 3



n=9 Figure 5. $\bar{E}_1(\sigma_{AH})^{*n} \left({f 0},1^* \right), n=0,1,\dots,4,9.$

Setting

$$I_j := \left[-\frac{\lambda}{1+\lambda} \pi_u \boldsymbol{e}_1, \ -\frac{\lambda}{1+\lambda} \pi_u \boldsymbol{e}_1 + \pi_u \boldsymbol{e}_j \right) \quad (j \in \mathcal{A})$$
$$P := W^s - \frac{\lambda}{1+\lambda} \pi_u \boldsymbol{e}_1,$$

we define the stepped-surface of P by

$$\mathcal{S} := \left\{ (\boldsymbol{x}, j^*) \mid \pi_u \boldsymbol{x} \in I_j, \ j \in \mathcal{A} \right\}$$

We also call $S := \bigcup_{(x, j^*) \in S} (x, j^*)$ the stepped-surface of *P*. Let us define an affine transformation:

$$\pi'_s: \mathbf{R}^d \to P : \pi'_s(\mathbf{x}) := \pi_s(\mathbf{x}) - \frac{\lambda}{1+\lambda} \pi_u \mathbf{e}_1.$$

Then we have the following lemma:

LEMMA 4.2 (see [5], [10]). $\overline{E}_1(\sigma_{AH})^*$ has the following properties:

- (1) $\bar{E}_1(\sigma_{AH})^*(S) = S.$
- (2) If $(\mathbf{x}, i^*), (\mathbf{x'}, {i'}^*) \in S$ with $\operatorname{Int}(\mathbf{x}, i^*) \cap \operatorname{Int}(\mathbf{x'}, {i'}^*) = \phi$, then $\operatorname{Int} \bar{E}_1(\sigma_{AH})^*(\mathbf{x}, i^*) \cap \operatorname{Int} \bar{E}_1(\sigma_{AH})^*(\mathbf{x'}, {i'}^*) = \phi$,

where Int *A* is the interior of *A* for $A \subset \mathbf{R}^d$.

PROOF. As (2) is clear, we shall show (1). Setting

$$\mathbf{y} := (\mathbf{e}_j - \mathbf{e}_1) + (-L_{\sigma})^{-1} (\mathbf{x} + f(P_k^{(j)}))$$

for any $(\mathbf{x}, i^*) \in \mathcal{G}_1^*$ and any $\binom{j}{k}$ with $W_k^{(j)} = i$, we have $\pi_u \mathbf{x} = (-\lambda)\pi_u \mathbf{y} - a_k^j$. Take any $(\mathbf{x}, i^*) \subset S$. By the definition of the stepped surface, $\pi_u \mathbf{x} \in I_i$. Then we get

$$(-\lambda)\pi_u \mathbf{y} \in I_{W_k^{(j)}} + a_k^j \subset (-\lambda)I_j$$
.

Therefore we obtain $(\mathbf{y}, j^*) \subset S$ for any $\binom{j}{k}$ with $W_k^{(j)} = i$, which means $\overline{E}_1(\sigma_{AH})^*(\mathbf{x}, i^*) \subset S$. The converse is also similar.

4.2. Tiling by atomic surfaces. Projecting the stepped surface S to P by π'_s , we obtain a parallelogram tiling of P:

$$\mathcal{T}' := \left\{ \pi'_{s}(\boldsymbol{x}, j^{*}) \mid (\boldsymbol{x}, j^{*}) \in \mathcal{S} \right\},\$$

which has $\{\pi'_s(\mathbf{0}, j^*) \mid j \in \mathcal{A}\}\$ as a protoset. We set the parallelogram $\hat{C}(\mathbf{0}, j^*)$ by

$$\hat{C}(\mathbf{0}, j^*) := \pi_s(\mathbf{0}, j^*) - J_j,$$

and denote these union $\bigcup_{i=1}^{d} \hat{C}(\mathbf{0}, j^*)$ by $\hat{C}(\mathbf{0})$.

PROPOSITION 4.3 (see [6]). The set $\hat{C}(\mathbf{0})$ has the following properties:

- (1) $|\hat{C}(\mathbf{0})| = 1$
- (2) $\mathcal{T}'' = \left\{ \mathbf{x} + \hat{C}(\mathbf{0}) \mid \mathbf{x} \in \mathbf{Z}^d \right\} = \hat{C}(\mathbf{0}) + \mathbf{Z}^d \text{ is a tiling on } \mathbf{R}^d.$

PROOF. The assertion (1) is clear. We prove (2). We consider the intersection of P and $\hat{C}(\mathbf{0}) + \mathbf{Z}^d$. By the fact $\hat{C}(\mathbf{0}, j^*)$ is between P and $P + e_j$ for each $j \in A$, $(\mathbf{x} + \mathbf{0})$

 $\hat{C}(\mathbf{0}, j^*)) \cap P \neq \phi$ means $(\mathbf{x}, j^*) \in S$ for any $\mathbf{x} \in \mathbf{Z}^d$. Since \mathcal{T}' is a tiling of P, we get $\bigcup_{\mathbf{x} \in \mathbf{Z}^d} (\mathbf{x} + \hat{C}(\mathbf{0})) \cap P = P$. Therefore we have

$$\bigcup_{\mathbf{x}\in\mathbf{Z}^d}(\mathbf{x}+\hat{C}(\mathbf{0}))\cap(P+\mathbf{y})=P+\mathbf{y}\ (\mathbf{y}\in\mathbf{Z}^d)\ .$$

Hence we know $\mathbf{R}^d = \hat{C}(\mathbf{0}) + \mathbf{Z}^d$. From (1), we see that \mathcal{T}'' is a tiling on \mathbf{R}^d .

Replacing parallelograms $\pi'_s(\mathbf{x}, j^*)$ by the fractal sets $\pi'_s(\mathbf{x}) + \pi'_s(X_i)$, we define a collection:

$$\mathfrak{T} := \left\{ \pi'_{s}(\boldsymbol{x}) + \pi'_{s}(X_{i}) \mid \boldsymbol{x} \in \mathcal{S} \right\}.$$

The following theorem is obtained by slight modification of the proof of Theorem 3.3 in [15].

THEOREM 4.4. The following statements are equivalent:

- (1) \mathfrak{T} is a tiling of P,
- (2) $|X_i| = |\pi_s(\mathbf{0}, i^*)|$
- (3) For some *i*, the radius of the largest ball contained $\bar{E}_1(\sigma_{AH}^*)^n(\mathbf{0}, i^*)$ diverges as $n \to \infty$.
- (4) For some i, $\lim_{n\to\infty} \partial (-L_{\sigma})^n \pi_s \bar{E}_1(\sigma_{AH}^*)^n(\mathbf{0}, i^*) = \partial X_i$.

The following Corollary is proved in the same manner as Proposition 4.3.

COROLLARY 4.5. Under the coincidence condition, if one of the statements in Theorem 4.4 holds, then $\hat{\mathfrak{T}} := \{ \mathbf{x} + \hat{X} \mid \mathbf{x} \in \mathbb{Z}^d \}$ is a tilling on \mathbb{R}^d

The following is the main theorem.

THEOREM 4.6. Assume that an AH-substitution σ_{AH} satisfies (NP), (UM), (IR) and (FP), that σ_{AH} satisfies the coincidence condition for AH-substitution, and that one of the statements in Theorem 4.4 holds. Then we have the following statements:

- (1) \hat{X} is a torus.
- (2) $\hat{T}_{\sigma_{AH}}$: $\hat{X} \to \hat{X}$ is the group automorphism with a Markov partition $\{\hat{X}_{\binom{j}{k}} \mid \binom{j}{k} \in \mathcal{E}\}.$
- (3) The following commutative relation holds:

where pr means a natural projection of \mathbf{R}^d to the torus \hat{X} .

ACKNOWLEDGMENT. The author would like to thank Professor Shunji Ito for many helpful discussions and many valuable comments. I also thank Maki Furukado for preparing the nice pictures in this paper.

References

- [1] R. L. ADLER and B. WEISS, Similarity of Automorphisms of the Torus, Mem. Amer. Math. Soc. 98 (1970).
- [2] S. AKIYAMA, Self affine tiling and Pisot numeration system, Number Theory and its Applications, ed. by K. GYORY and S. KANEMITSU, Kluwer (1999), 7–17.
- [3] S. AKIYAMA, Cubic Pisot units with finite beta expansions, Algebraic Number Theory and Diophantine Analysis, ed. by F. HALTER-KOCH and R. F. TICHY, de Gruyter (2000), 11–26.
- [4] S. AKIYAMA and T. SADAHIRO, A self-similar tiling generated by the minimal Pisot number, Acta Math. Infor. Univ. Ostraviensis 6 (1998), 9–26.
- [5] P. ARNOUX and S. ITO, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin 8 (2001), 181–207.
- [6] P. ARNOUX, M. FURUKADO, E. HARRISS and S. ITO, Algebraic numbers and automorphism of free groups (preprint).
- [7] T. BEDFORD, Generating special Markov partitions for hyperbolic toral automorphisms using fractals, Ergod. Th. Dynam. Sys. 6 (1986), 325–333.
- [8] V. CANTRINI and A. SIEGEL, Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc. Comput. 353 (2001), 5121–5144.
- [9] H. EI and S. ITO, Tilings from some non-irreducible, Pisot substitutions, Discrete Math. Theor. Comput. Sci. 7 (2005), 81–123.
- [10] H. EI, S. ITO and H. RAO, Atomic surfaces, tilings and coincidences II: Reducible case, to appear in Annal. Institut Fourier (Grenoble).
- [11] D. J. FENG, M. FURUKADO and J. WU, Pisot substitutions and the Hausdorff dimension of boundaries of Atomic surfaces, Tsukuba J. Math. 30 (2006), 195–223.
- [12] S. ITO, A construction of transversal flows for maximal Markov automorphism, Tokyo J. Math. 1 (1978), 305–324.
- [13] S. ITO, J. FUJII, H. HIGASHINO and S. YASUTOMI, On simultaneous approximation to (α, α^2) with $\alpha^3 + k\alpha 1 = 0$, J. Number Theory **99** (2003), 255–283.
- [14] S. ITO and H. RAO, Purely periodic β-expansions with Pisot unit base, Proc. Amer. Math. Soc. 133 (2005), 953–964.
- [15] S. ITO and H. RAO, Atomic surfaces, tilings and coincidences I: Irreducible case, Israel J. Math. 153 (2006), 129–156.
- [16] S. ITO and M. OHTSUKI, Modified Jacobi-Perron algorithm and generating Markov partitions for special hyperbolic toral automorphisms, Tokyo J. Math. 16 (1993), 441–472.
- [17] R. KENYON, Self-replicating tilings, in *Symbolic dynamics and its applications*, Contemporary mathematics series. **135** (P.Walters, ed.) (1992), Amer. Math. Soc., Providence, RI.
- [18] D. LIND and B. MARCUS, An introduction to symbolic dynamics and coding, Cambridge University Press (1995), Cambridge.
- B. PRAGGASTIS, Numeration systems and Markov partitions from self-similar tilings, Tran. Amer. Math. Soc. 351 (1999), 3315–3349.
- [20] M. QUEFFÉLEC, Substitution dynamical systems—spectral analysis, Lecture Notes in Math. 1294 (1987), Springer.
- [21] Y. SANO, P. ARNOUX and S. ITO, Higher dimensional extensions of substitutions and their dual maps, J. Anal. Math. 83 (2001), 183–206.

- [22] YA. G. SINAI, Construction of Markov partitions, Funct. Anal. Appl. 2 (1968), 245–253.
- [23] W. P. THURSTON, Groups, tilings and finite state automata, In AMS Colloquium lecture notes (1989), 183– 206.

Present Address: Kanazawa University, Kakuma-machi, Kanazawa-shi, Ishikawa, 920–1192 Japan.