Токуо J. Матн. Vol. 31, No. 2, 2008

An Appendix to the Weierstrass Representation of a Maximal Spacelike Surface in \mathbb{L}^3

Maria Luiza LEITE

Universidade Federal de Pernambuco

(Communicated by K. Shinoda)

Abstract. In this note we uncover some analytical properties of the Weierstrass pair $\{g, \eta\}$ representing an oriented and connected maximal surface in Minkowski space \mathbb{L}^3 , proving that g is holomorphic with values in the unit disk \mathbb{D} and η is a holomorphic 1-form that never vanishes.

In his paper Maximal surfaces in the 3-dimensional Minkowski space \mathbb{L}^3 , O. Kobayashi obtains the Weierstrass representation of a maximal surface M of 1^{st} kind in terms of a pair $\{g, \eta\}$, where g is a meromorphic function satisfying $|g| \neq 1$ and η is a holomorphic 1-form such that $g^2\eta$ is a holomorphic 1-form on M which does not vanish on the zeroes of η (see [1], Theorem 1.1). Assuming M is connected and the unit normal is lying on the hyperbolic plane $\mathbb{H}^2 \subset \mathbb{L}^3$, modeled by the upper leaf of the quadric surface $r^2 + s^2 - t^2 = -1$ in \mathbb{R}^3 , we prove in Theorem 1 that g is actually holomorphic, |g| < 1 and the holomorphic 1-form η is never null.

It is natural that the normal map of a maximal immersion into \mathbb{L}^3 is represented by a holomorphic function $g: M \to \mathbb{D}$, in analogy to the normal map of a minimal immersion into Euclidean space, which is represented by a holomorphic function $g: M \to \mathbb{C} \cup \{\infty\}$.

THEOREM 1. Let $\mathbf{F} : M \to \mathbb{L}^3$ be a maximal immersion of an oriented and connected surface, with unit normal in $\mathbb{H}^2 = \{(r, s, t) : r^2 + s^2 - t^2 = -1, t \ge 1\}$. Considering the Riemann surface structure in M compatible with the normal choice, there corresponds a Weierstrass pair $\{g, \eta\}$, such that $g : M \to \mathbb{D}$ is holomorphic, η is a holomorphic 1-form without zeroes, each component of $(1 + g^2, i(1 - g^2), 2g) \eta$ has no real periods and the immersion satisfies

$$\mathbf{F} = (1/2) \Re \left(\int (1+g^2, i(1-g^2), 2g) \eta \right).$$

Received December 14, 2006; revised January 25, 2007

¹⁹⁹¹ Mathematics Subject Classification: 53C50 (Primary) Key words and phrases: maximal surfaces, Weierstrass representation

MARIA LUIZA LEITE

In complex coordinates $z \in \Omega \subset \mathbb{C}$, one has that $2\mathbf{F}_z = (\Phi_1, \Phi_2, \Phi_3)$ is holomorphic,

$$|\Phi_1 - i\Phi_2| > 0$$
, $g = \frac{\Phi_3}{\Phi_1 - i\Phi_2}$ and $\eta = (\Phi_1 - i\Phi_2)dz$.

Moreover, $g = \Pi \circ \mathbf{N}$, where $\Pi(r, s, t) = \frac{r+is}{1+t}$ maps \mathbb{H}^2 isometrically onto the unit disk \mathbb{D} with the Poincaré metric $ds^2 = (2|dz|/1 - |z|^2)^2$.

PROOF. Using coordinates and the notation $\mathbf{F}_z = \frac{1}{2}(\mathbf{F}_x - i\mathbf{F}_y)$, $\mathbf{F}_{\overline{z}} = \frac{1}{2}(\mathbf{F}_x + i\mathbf{F}_y)$, let us recall that $\Delta \mathbf{F} = 4\mathbf{F}_{z\overline{z}} = (2HE)\mathbf{N}$, where *H* denotes the mean curvature; in particular, the immersion is maximal iff \mathbf{F}_z is holomorphic in every system of complex coordinates. Therefore (Φ_1, Φ_2, Φ_3) is a triple of local holomorphic functions (see [1]).

The hypothesis that the complex structure is compatible with the unit normal means that the Minkowski vector product $\mathbf{R}(\mathbf{F}_x \times \mathbf{F}_y)$ is a positive multiple of **N**; here × denotes the usual vector product in \mathbb{R}^3 , and **R** stands for the reflection $\mathbf{R}(r, s, t) = (r, s, -t)$. It follows from $\mathbf{F}_x - i\mathbf{F}_y = (\Phi_1, \Phi_2, \Phi_3)$ that $\mathbf{R}(\mathbf{F}_x \times \mathbf{F}_y) = \Im(\Phi_2\overline{\Phi_3}, \Phi_3\overline{\Phi_1}, -\Phi_1\overline{\Phi_2})$, hence

$$\Im(\Phi_1 \overline{\Phi_2}) < 0 \tag{1}$$

Since $|\Phi_1 \pm i\Phi_2|^2 = |\Phi_1|^2 + |\Phi_2|^2 \pm 2\Im(\Phi_1\overline{\Phi_2})$, one uses (1) to obtain that

$$|\Phi_{1} - i\Phi_{2}|^{2} - |\Phi_{1} + i\Phi_{2}|^{2} = -4\Im(\Phi_{1}\overline{\Phi_{2}}) > 0 \Rightarrow$$
$$|\Phi_{1} - i\Phi_{2}| > |\Phi_{1} + i\Phi_{2}|.$$
(2)

Recall from [K] that

$$\Phi_1^2 + \Phi_2^2 - \Phi_3^2 = (\Phi_1 - i\Phi_2)(\Phi_1 + i\Phi_2) - \Phi_3^2 = 0, \qquad (3)$$

$$|\Phi_1|^2 + |\Phi_2|^2 - |\Phi_3|^2 = \mathbf{F}_x \cdot \mathbf{F}_x + \mathbf{F}_y \cdot \mathbf{F}_y > 0.$$
(4)

Letting $\mathcal{Z} \subset \Omega$ denote the zero set of Φ_3 , we claim that

- (i) $|\Phi_1 i\Phi_2| > 0 = |\Phi_3| = |\Phi_1 + i\Phi_2|$ in \mathcal{Z} .
- (ii) $|\Phi_1 i\Phi_2| > |\Phi_3| > |\Phi_1 + i\Phi_2| > 0$ in ΩZ .

Indeed, it is immediate from (3) that

$$|\Phi_1 - i\Phi_2| |\Phi_1 + i\Phi_2| = |\Phi_3|^2.$$
(5)

Combining (2) and (5), one sees that the the zeroes of $|\Phi_1 + i\Phi_2|$ and $|\Phi_3|$ coincide. Clearly, (i) holds. Outside \mathcal{Z} , one has that $|\Phi_1 - i\Phi_2| > |\Phi_1 + i\Phi_2| > 0$, so (5) gives us (ii).

Having proved the claim, one concludes that $f = \Phi_1 - i\Phi_2 \neq 0$ everywhere in Ω , $g = \frac{\phi_3}{\phi_1 - i\phi_2}$ is holomorphic and |g| < 1 are true.

The other assertions in the theorem are well known (see [1]): g and η are globally defined,

$$\mathbf{F}_{x} - i\mathbf{F}_{y} = (1/2)(1+g^{2}, i(1-g^{2}), 2g)f, \quad \mathbf{F}_{x} \cdot \mathbf{F}_{x} = \mathbf{F}_{y} \cdot \mathbf{F}_{y} = (1-|g|^{2})^{2}|f|^{2}/4 > 0,$$

344

WEIERSTRASS REPRESENTATION

$$\mathbf{R}(\mathbf{F}_x \times \mathbf{F}_y) = (1 - |g|^2) |f|^2 / 4 \ (2\Re(g), 2\Im(g), 1 + |g|^2) \Rightarrow$$
$$\mathbf{N} = \frac{(2\Re(g), 2\Im(g), 1 + |g|^2)}{1 - |g|^2} = \Pi^{-1} \circ g , \quad \mathbf{N}.\mathbf{N} = -1 ,$$

since $(2\Re(g), 2\Im(g), 1 + |g|^2) \cdot (2\Re(g), 2\Im(g), 1 + |g|^2) = -(1 - |g|^2)^2$ holds in \mathbb{L}^3 .

Standard computations show that the stereographic projection $\Pi : \mathbb{H}^2 \to \mathbb{D}$ is conformal and induces the Poincaré metric on the unit disk. One may prove directly that the metric on \mathbb{H}^2 induced by \mathbb{L}^3 is hyperbolic.

REMARK 1. Minor adjustments are necessary in order to describe the examples in Kobayashi paper within the convention that the normal map be represented by a holomorphic map $g : M \to \mathbb{D}$. The first one is to replace the Weierstrass pair $\{g, \eta\}$ given in [1] by $\{1/g, g^2\eta\}$ on any connected component where |g| > 1 holds. The second one concerns a maximal surface of 2^{nd} kind, alternatively represented by a Weierstrass pair $\{g, \eta\}$, with g satisfying $\Re(g) \neq 0$ (see Corollary 1.3 of [1]); to obtain the same immersion, it suffices to change the pair $\{g, \eta\}$ into $\left\{\frac{1-g}{1+g}, -(1+g^2)\eta/2\right\}$, knowing that $\left|\frac{1-g}{1+g}\right| \neq 1 \Leftrightarrow \Re(g) \neq 0$.

REMARK 2. Two connected components of a same maximal surface described in [1] may be congruent, or totally non-congruent. For instance, the so-called *Enneper maximal surface of* 1st *kind* is the disjoint union of two connected maximal surfaces which are not congruent, even at a small level; the component represented by g(z) = z, |z| < 1, $\eta = dz$, has each family of curvature lines mapped by the normal map into a family of equidistant curves in \mathbb{H}^2 , in contrast to the other one, represented by g(z) = 1/z, |z| > 1, $\eta = z^2 dz$, for which a subfamily of curvature lines is mapped into a family of geodesic circles converging to one horocycle in \mathbb{H}^2 . On the other hand, the so-called *Enneper maximal surface* of 2nd kind consists of two congruent components, corresponding to $g(z) = \frac{1-z}{1+z}$, $\eta = (-1/g')dz$, with |g| < 1 (resp. |g| > 1) on the domain $\Re(z) > 0$ (resp. $\Re(z) < 0$); the change $z \to -z$ yields the congruence.

References

 O. KOBAYASHI, Maximal surfaces in the 3-dimensional Minkowski space L³, Tokyo J. Math. 6 (1983), 297– 309.

Present Address: DEPARTAMENTO DE MATEMÁTICA, UNIVERSIDADE FEDERAL DE PERNAMBUCO, RECIFE, 50.740–540, PE, BRASIL. *e-mail*: mll@dmat.ufpe.br