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Abstract. In this work a precise condition for the singularity of a circuit distance poﬁ;ﬁéj? is derived.
Namely, eitherz andd are not relatively prime or the order of 2dh4- 1 is strictly smaller than im. It is also shown
that the simple eigenvalues of circuit distance powers are contaife€lir0, 24}, generalizing a well-known result

for circuits. Further, the nullity oC,Sd) is calculated.

1. Introduction

The nullity of a graph, i.e. the multiplicity of the zero eigenvalue in its spectrum, is
a property frequently studied in algebraic ginatheory. Applications can be found e.g. in
chemistry, biology or communication science.

Distance powers of circuits belong to the imporant class of circulant graphs. Such graphs
are frequently used for modelling redundancies of communication networks. Since circulant
graphs reveal strong symmetries a number of interesting results on them have been found [5].
In this work, we are concerned with the spectral properties of distance powers of circuits. It
may not surprise that there exists a simple explicit formula to calculate the eigenvalues of
any circulant graph [3]. However, it is not quite obvious under which conditions a certain
eigenvalue belongs to the spectrum — not even for the well-studied class of distance powers
of circuits.

In this work we derive precise conditions for the singularity of a circuit distance power
C,ﬁd), generalize a well-known result on the simple eigenvalues of circuits to distance powers
of circuits and finally state the nullity at\®.

Some known results on the nullity of graphs include e.g. [11] where the nullity of graphs
is studied in terms of certain minimal singular subgraphs (so-called minimal configurations).
In [2] it is shown that the nullity of a tree equals the number of its vertices minus the num-
ber of vertices covered by a maximum matching. [7] gives a linear time algorithm for the
computation of the nullity of a tree. In [10] these results are transferred to unicyclic graphs,
yielding a linear time algorithm that can check whether a unicyclic graph is singular. Finally,
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[12] proves that the nullity of a unicyclic graph anvertices may range exactly between 0
andn — 4.

2. Préiminaries

2.1. Basics and notation. For the general basics of graph theory, the reader is re-
ferred to sources like [1], [6], or [9].

The d-th distance powe6 @ of a graphG is formed by taking the vertices @ and
adding edges between all vertices whose distancgigat most.

The adjacency matrid(G) = (a;;) of a graphG with verticesxy, ..., x, is defined
by a;; = 1if x; andx; are adjacent and O otherwise. The eigenvalue§ aire the roots
of the characteristic polynomigl(x; G) = detA(G) — xI). SinceA(G) is symmetric it
follows that the eigenvalues of a graph are real and that the multiplicity of a rgotofG)
equals the dimension of the correspondingeeispace. We call a graph singular if it has a
zero eigenvalue. By the nullity of a graph we denote the multiplicity of the zero eigenvalue.

The foundations of algebraic graph theory are treated in [4], [3] and [8].

Further, letz denote the complex conjugate of a complex numpand letfi(z) be its
real part. The sets of positive and non-negative integers are writfdraagNg, respectively.

Let ord(p, n) denote the order of the prime divispiwith respect tas, i.e.

ord(p,n) =max{j € No : p’|n}.

2.2. Circulant graphs. A matrix in which thei-th column vector can be derived from
the first column vector by means of a downward rotatiori byl entries is called a circulant
matrix. Details on circulant matrices can be found in [5].

A circulant graph is a graph whose adjacencynras circulant with respect to a suitable
vertex ordering. Note that this definition is Bmant under isomorphisms. The spectrum of a
circulant graph exhibits very strictrsictural properties as we will see below.

In the following, we will abbreviate) = e
THEOREM 1. Let(az,az, ..., a,)T be the first column of a real circulant matrix.
Then the eigenvalues dfare exactly

n
Ar :Zaja)(j_l)r, r=0,....,.n—1.
j=1

COROLLARY 2. LetG be a circulant graph. Let0, ap, ..., a,)! be the first column
of a circulant adjacency matrix a. Then the eigenvalues 6fare exactly

n
A = Za./w(-"_l)r, r=0,....,n—1.
j=2
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CoRoOLLARY 3. The eigenvalues of the circuit grajgh, are

Arzw’+w—r=2cos<@>, F=0.....n—1.
n

All eigenvalues of modulusare simplethe other eigenvalues are double.

3. Distance powers C,(,d) of circuits

In this section we will investigate singularity of the gram%”.
Distance powers of circuits are circulartietefore we can use Corollary 2 to establish
their spectrum.

THEOREM 4. The eigenvalues aﬂ’,ﬁd) are exactly

PrROOFE Choose a sequential vertex order and apply Corollary 2 to the resulting adja-
cency matrix ofc\?. n

Although we can explicitly compute the eigenvalueftﬁ“ it is somewhat intricate to
predict the occurrence of a prescribed eigenvalue. In the following, we will develop criteria

to determine wherf,gd) is singular, i.e. it has a zero eigenvalue.

3.1. Singularity of C,ﬁd)

THEOREM 5. Letd < 5 — L. ThenC,(,d) is singular if and only if there exist integers
1<r <nand/ € Ngsuchthatdr =inor2(d + 1)r = (2 + D)n.

PROOF We may assume % r < n (which impliesw # 1).
Let us abbreviate

d+1 n
j—1 j—1
Sn,d,r = E w7, Tn,d,r = E wl 7.
j=2 j=n+1-d

These terms correspond to the sums that occur in Theorem 4 sﬁf,fﬂas singular if and
only if there exists some € {1, 2, ...,n — 1} such thatS, 4. + T,.a.r = 0.
Now observe that

ol —1

w—1

d-=1
Sndr = wZa)J =w
j=0
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and
4 n—j _ n d el -1
Tndr—wjz_lw =w ;w e
If we write
@= ‘”Cf__ ; (1)
we see that
Sndr+Thar=52+ Q2.
Consequently,
Sndr+Thar=0 & NR(2)=0. )

Letp = % so thatw = ¢'¢ (note thaty > 0). Substitutinge = cose andy = sing it
follows that

w x+iy x+iy)x—1—1iy) 1 y .
w—1 x—1+iy (x — 124 y2 2 21-x)
Also,
o? —1=coddy) — 1+isindg). (4)

Substituting equations (3) and (4) into equation (1) we get
N(2) = = (cosdp) — 1) + —2—
=5 ¢ 2(1—x)

— Y (cotdp) — 1)+ "¢
T2 ¢ 1 — cosp

sin(de)

Siﬂ(d(p)) .

Thus,
N(R2) =0 & (coddy) — 1) (1 — cosy) + sing sindy) = 0
& co9dg) + cosp — cosy coqdy) + sing sin(de) = 1
& cogdg) + cosp — cos((d + 1)p) =1 (5)
cos((d + 1)¢) —coddy)  cosp — cosO
% %

The final equation of (5) allows a geometric interpretation. We require the slopes of two
particular secant lines of the cosine funatim be equal. In this case, due to the nature of
the cosine curve there are only two possible constellations for which the slopes are the same.
Either both secant lines must be apart by a nonvanishing multiple @fr 2heir endpoints, if
projected onto the same period of the cosine curve, must be point symmetrical with respect to

<
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. The first condition means thadt = 2r/ and the second yieldg + 1)¢ = 7 + 271. The
result now follows by combining (2) and (5). ]

COROLLARY 6. Forsomed < 5 —1let C,ﬁd) be nonsingular. Then
gedn,d) =1.
The order of 2 as a divisor afandd + 1 plays a crucial role for the singularity dtf,d):
COROLLARY 7. Letd <5 —1 ThenC,Sd) is singular if and only if either
gcdn,d) > 1
or
gcdn,d) = 1land ord(2,d + 1) < ord(2, n)

holds.

PrROOF Let C,(,d) be singular. Assume g¢a, d) = 1. Then by Theorem 5 there exist
integers 1< r < n andl € Ng such that 24 + 1)r = (2/ + 1)n. Since 2+ 1 is odd it follows
that 1+ ord(2, d + 1) < ord(2, n).

For the converse statement we need to consider two cases.

Case 1. Assume that ged d) > 1. Then singularity oC,ﬁd) follows from Corollary

Case 2. Assumethatgedd) = 1. Letk < vfork = ord(2, d+1) andv = ord(2, n).
Then there exist odd integeisandv such thatl + 1 = 2“v andn = 2"u.

Leta = gcdu, v) so thatu = au’ andv = av’ for suitable integera’, v'. Now, if we
choose

p=20m 0y = %(v’ -1

we getr < n by virtue of 2=®+D < 2V andu’ < u. Further,
2(d 4+ Dr = 22v)2" =« Dy = 2"0au’ = v'(2"u) = (2 + D)n (6)

so that by Theorem 5 the result follows. [ |

3.2. Eigenvaluemultiplicities. Letus now study eigenvalue multiplicities of distance
powers of circuits. The next theorem provides a generalization of the result on eigenvalue
multiplicites of circuits (cf. Corollary 3) to the class of circuit powers.

THEOREM 8.
1. Letn be odd. Then = 24 is the only simple eigenvalue 6 2

2. Letn be even. If is a simple eigenvalue aﬂ‘,ﬁd), then

A e (=20 2d}.
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If » = Ois a simple eigenvalue m]’,(,d), then the numbed must necessarily be even.

PROOF Letv = (v;) be an eigenvector for the simple eigenvaluef C,(f’). Let P
be the matrix of the automorphism that shifts the vertex numbering madiiyp exactly

one. ThenPv is also an eigenvector aﬂ’,ﬂd) and therefore must be a multiple ofbecause

A is simple. Thus(vi, ..., vu_1,v,)7 = p(va, ..., v, v1)! for some real numben #
0. By repeated substitution we get = puvo = p2v3 = --- = p" v, = pv1 so that
necessarily.” = 1. For alln € N we see thap = 1 yields the eigenvectai, ..., 1)7,

which corresponds to the degree of regularity. For evere getu = —1 as a second possible
solution and the vectorl, —1,1, —1,...)7 as eigenvector candidate. It is readily checked
that for evend the candidate is an eigenvector foe= 0 whereas for odd it is an eigenvector
fora = —2. ]

3.3. Thenullity of C!“. Having determined when a circuit distance power is singu-
lar, the next step is to ask for the nullity, i.e. the dimension of the null space or kernel of the
graph.

THEOREM 9. Forgivenn,d € Nlet g := gcdn, d) andh := gcdn, d + 1). Then
dimkerC(® =0

ford > [4], and

g—1 if ord2,d + 1) > ord(2, n),
dimkerC\) = Yg+h—1 if ord2 d + 1) < ord2,n) and 2 fd ,
g+h—2 iford2,d+ 1) <ord2,n)and 2|d

ford < [%5].

PROOF Ford > [4] the graphc® is the complete graplt,, so thatC\? is non-

singular [3]. Letd < [%]. According to [5] the column vectors of the matrix

F*=n"2(i DUy, .y eCmo,

which is the conjugate transpose of the so-called Fourier métrig C"*", constitute a
complete and universal set of complex eigenvectors for every circulant métoikordern .

In order to determine the nullity c(f,ﬁd) we therefore need to count all valueghat fulfil the
condition of Theorem 5 (note that every suchieldsx, = 0 by Theorem 4).

CLAIM 1. There exist exactly — 1 values ofr (with 1 < r < n) such that a solution
| € Np exists fordr = In.

Sinceged(4, %) = 1 we see that the equation‘é = 1% has solutiond € No and

1<r <nifandonlyifr = jg with integer; satisfyingl < j < g — L
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CLAIM 2. Letord(2,d + 1) < ord(2, n). Then there exist exactlyvalues ofr (with
1 < r < n) such that a solutio’ € Ng exists for2(d + 1)r = (2I' + D)n.
First note that}! is even so thagcd(42, ) = 1. It follows that the equation®t =

(20’ + 1) 4 has solutions, r € Ng exactly forr = j’2- and2/’ +1 = j'4 with odd integer
j' satisfyingl < j’ < 2h (note that% is odd).

CLAIM 3. Letord(2,d + 1) > ord(2, n). Then2(d + 1)r = (2!’ + L)n is not solvable
withl <r < n andl’ € Np.
Since’ is odd it follows thatgcd242, ) = 1. Consequently2r4L is even and

(20’ + 1) is odd so that we cannot sol2e L = (21 + 1)2.

CLAIM 4. Letord2,d +1) < ord(2,n). If d is eventhenr = 7 is the only integer

1 < r < n such that simultaneous solutiohg’ € Ng can be found for the equatiods = In
and2(d + 1)r = (2I' + 1)n. If d is odd then none suchexists.

From Claims 1 and 2 it follows that necessarjh)% = (2j2 + 1) for integersj, j2
satisfying 1< j; < g —1and 0< j, < h — 1. Equivalently,j12h = (22 + 1)g must hold.

Assume that/ is even. Since: is necessarily even it follows thatis even, too. But
gcd 3, k) = 1 yields thatjy must be multiple of}, hence we obtain valid solutions = 5
andjz = “51. This yieldsr = 4.

Assume that/ is odd. Therny must be odd as well so th#t2h = (2j2> + 1)¢g cannot be
solved.

In order to finish the proof of the theorem it now suffices to combine the above
claims. ]

Obviously, Corollary 7 also follows directly from Theorem 9.

4. Conclusion

Based on a well-known formula for the calculation of the spectrum of a circulant graph
we have derived explicit conditions for the singularity of a circuit distance p@)?@r, de-
pending on the order of 2 as a divisormiandd + 1. We have generalized the result that
the simple eigenvalues of a circuit are contained in th¢-st 2} by showing that the simple
eigenvalues of circuit distance powers are containge-i) 0, 2d}. Finally, we have presented
a theorem on the nullity od'?,gd).
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