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Abstract. In this work a precise condition for the singularity of a circuit distance powerC
(d)
n is derived.

Namely, eithern andd are not relatively prime or the order of 2 ind + 1 is strictly smaller than inn. It is also shown
that the simple eigenvalues of circuit distance powers are contained in{−2,0, 2d}, generalizing a well-known result

for circuits. Further, the nullity ofC(d)
n is calculated.

1. Introduction

The nullity of a graph, i.e. the multiplicity of the zero eigenvalue in its spectrum, is
a property frequently studied in algebraic graph theory. Applications can be found e.g. in
chemistry, biology or communication science.

Distance powers of circuits belong to the imporant class of circulant graphs. Such graphs
are frequently used for modelling redundancies of communication networks. Since circulant
graphs reveal strong symmetries a number of interesting results on them have been found [5].
In this work, we are concerned with the spectral properties of distance powers of circuits. It
may not surprise that there exists a simple explicit formula to calculate the eigenvalues of
any circulant graph [3]. However, it is not quite obvious under which conditions a certain
eigenvalue belongs to the spectrum — not even for the well-studied class of distance powers
of circuits.

In this work we derive precise conditions for the singularity of a circuit distance power

C
(d)
n , generalize a well-known result on the simple eigenvalues of circuits to distance powers

of circuits and finally state the nullity ofC(d)
n .

Some known results on the nullity of graphs include e.g. [11] where the nullity of graphs
is studied in terms of certain minimal singular subgraphs (so-called minimal configurations).
In [2] it is shown that the nullity of a tree equals the number of its vertices minus the num-
ber of vertices covered by a maximum matching. [7] gives a linear time algorithm for the
computation of the nullity of a tree. In [10] these results are transferred to unicyclic graphs,
yielding a linear time algorithm that can check whether a unicyclic graph is singular. Finally,
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[12] proves that the nullity of a unicyclic graph onn vertices may range exactly between 0
andn − 4.

2. Preliminaries

2.1. Basics and notation. For the general basics of graph theory, the reader is re-
ferred to sources like [1], [6], or [9].

Thed-th distance powerG(d) of a graphG is formed by taking the vertices ofG and
adding edges between all vertices whose distance inG is at mostd.

The adjacency matrixA(G) = (aij ) of a graphG with verticesx1, . . . , xn is defined
by aij = 1 if xi andxj are adjacent and 0 otherwise. The eigenvalues ofG are the roots
of the characteristic polynomialχ(x; G) = det(A(G) − xI). SinceA(G) is symmetric it
follows that the eigenvalues of a graph are real and that the multiplicity of a root ofχ(x; G)

equals the dimension of the corresponding eigenspace. We call a graph singular if it has a
zero eigenvalue. By the nullity of a graph we denote the multiplicity of the zero eigenvalue.

The foundations of algebraic graph theory are treated in [4], [3] and [8].
Further, letz̄ denote the complex conjugate of a complex numberz and let�(z) be its

real part. The sets of positive and non-negative integers are written asN andN0, respectively.
Let ord(p, n) denote the order of the prime divisorp with respect ton, i.e.

ord(p, n) = max{j ∈ N0 : pj |n} .

2.2. Circulant graphs. A matrix in which thei-th column vector can be derived from
the first column vector by means of a downward rotation byi − 1 entries is called a circulant
matrix. Details on circulant matrices can be found in [5].

A circulant graph is a graph whose adjacency matrix is circulant with respect to a suitable
vertex ordering. Note that this definition is invariant under isomorphisms. The spectrum of a
circulant graph exhibits very strict structural properties as we will see below.

In the following, we will abbreviateω = e
2πi
n .

THEOREM 1. Let (a1, a2, . . . , an)
T be the first column of a real circulant matrixA.

Then the eigenvalues ofA are exactly

λr =
n∑

j=1

ajω
(j−1)r , r = 0, . . . , n − 1 .

COROLLARY 2. Let G be a circulant graph. Let(0, a2, . . . , an)
T be the first column

of a circulant adjacency matrix ofG. Then the eigenvalues ofG are exactly

λr =
n∑

j=2

ajω
(j−1)r , r = 0, . . . , n − 1 .
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COROLLARY 3. The eigenvalues of the circuit graphCn are

λr = ωr + ω−r = 2 cos

(
2πr

n

)
, r = 0, . . . , n − 1 .

All eigenvalues of modulus2 are simple, the other eigenvalues are double.

3. Distance powers C
(d)
n of circuits

In this section we will investigate singularity of the graphsC
(d)
n .

Distance powers of circuits are circulant, therefore we can use Corollary 2 to establish
their spectrum.

THEOREM 4. The eigenvalues ofC(d)
n are exactly

λr = 2
d∑

j=1

cos

(
2πrj

n

)
, r = 0, . . . , n − 1 .

PROOF. Choose a sequential vertex order and apply Corollary 2 to the resulting adja-

cency matrix ofC(d)
n .

Although we can explicitly compute the eigenvalues ofC
(d)
n it is somewhat intricate to

predict the occurrence of a prescribed eigenvalue. In the following, we will develop criteria

to determine whenC(d)
n is singular, i.e. it has a zero eigenvalue.

3.1. Singularity of C
(d)
n

THEOREM 5. Let d < n
2 − 1. ThenC

(d)
n is singular if and only if there exist integers

1 ≤ r < n andl ∈ N0 such thatdr = ln or 2(d + 1)r = (2l + 1)n.

PROOF. We may assume 1≤ r < n (which impliesω �= 1).
Let us abbreviate

Sn,d,r =
d+1∑
j=2

ωj−1, Tn,d,r =
n∑

j=n+1−d

ωj−1 .

These terms correspond to the sums that occur in Theorem 4 so thatC
(d)
n is singular if and

only if there exists somer ∈ {1, 2, . . . , n − 1} such thatSn,d,r + Tn,d,r = 0.
Now observe that

Sn,d,r = ω

d−1∑
j=0

ωj = ω
ωd − 1

ω − 1
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and

Tn,d,r = ω

d∑
j=1

ωn−j = ωn

d∑
j=1

ω̄j = ω̄
ω̄d − 1

ω̄ − 1
.

If we write

Ω = ω
ωd − 1

ω − 1
(1)

we see that

Sn,d,r + Tn,d,r = Ω + Ω̄ .

Consequently,

Sn,d,r + Tn,d,r = 0 ⇔ �(Ω) = 0 . (2)

Let ϕ = 2πr
n

so thatω = eiϕ (note thatϕ > 0). Substitutingx = cosϕ andy = sinϕ it
follows that

ω

ω − 1
= x + iy

x − 1 + iy
= (x + iy)(x − 1 − iy)

(x − 1)2 + y2 = 1

2
− y

2(1 − x)
i . (3)

Also,

ωd − 1 = cos(dϕ) − 1 + i sin(dϕ) . (4)

Substituting equations (3) and (4) into equation (1) we get

�(Ω) = 1

2
(cos(dϕ) − 1) + y

2(1 − x)
sin(dϕ)

= 1

2

(
(cos(dϕ) − 1) + sinϕ

1 − cosϕ
sin(dϕ)

)
.

Thus,

�(Ω) = 0 ⇔ (cos(dϕ) − 1) (1 − cosϕ) + sinϕ sin(dϕ) = 0

⇔ cos(dϕ) + cosϕ − cosϕ cos(dϕ) + sinϕ sin(dϕ) = 1

⇔ cos(dϕ) + cosϕ − cos((d + 1)ϕ) = 1

⇔ cos((d + 1)ϕ) − cos(dϕ)

ϕ
= cosϕ − cos 0

ϕ

(5)

The final equation of (5) allows a geometric interpretation. We require the slopes of two
particular secant lines of the cosine function to be equal. In this case, due to the nature of
the cosine curve there are only two possible constellations for which the slopes are the same.
Either both secant lines must be apart by a nonvanishing multiple of 2π or their endpoints, if
projected onto the same period of the cosine curve, must be point symmetrical with respect to
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π
2 . The first condition means thatdϕ = 2πl and the second yields(d + 1)ϕ = π + 2πl. The
result now follows by combining (2) and (5).

COROLLARY 6. For somed < n
2 − 1 let C(d)

n be nonsingular. Then,

gcd(n, d) = 1 .

The order of 2 as a divisor ofn andd + 1 plays a crucial role for the singularity ofC
(d)
n :

COROLLARY 7. Letd < n
2 − 1. ThenC

(d)
n is singular if and only if either

gcd(n, d) > 1

or

gcd(n, d) = 1 and ord(2, d + 1) < ord(2, n)

holds.

PROOF. Let C(d)
n be singular. Assume gcd(n, d) = 1. Then by Theorem 5 there exist

integers 1≤ r < n andl ∈ N0 such that 2(d + 1)r = (2l + 1)n. Since 2l + 1 is odd it follows
that 1+ ord(2, d + 1) ≤ ord(2, n).

For the converse statement we need to consider two cases.
Case 1. Assume that gcd(n, d) > 1. Then singularity ofC(d)

n follows from Corollary
6.

Case 2. Assume that gcd(n, d) = 1. Letκ < ν for κ = ord(2, d+1) andν = ord(2, n).
Then there exist odd integersu andv such thatd + 1 = 2κv andn = 2νu.

Let a = gcd(u, v) so thatu = au′ andv = av′ for suitable integersu′, v′. Now, if we
choose

r = 2ν−(κ+1)u′, l = 1

2
(v′ − 1)

we getr < n by virtue of 2ν−(κ+1) < 2ν andu′ < u. Further,

2(d + 1)r = 2(2κv)2ν−(κ+1)u′ = 2νv′au′ = v′(2νu) = (2l + 1)n (6)

so that by Theorem 5 the result follows.

3.2. Eigenvalue multiplicities. Let us now study eigenvalue multiplicities of distance
powers of circuits. The next theorem provides a generalization of the result on eigenvalue
multiplicites of circuits (cf. Corollary 3) to the class of circuit powers.

THEOREM 8.
1. Letn be odd. Thenλ = 2d is the only simple eigenvalue ofC

(d)
n .

2. Letn be even. Ifλ is a simple eigenvalue ofC(d)
n , then

λ ∈ {−2, 0, 2d} .
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If λ = 0 is a simple eigenvalue ofC(d)
n , then the numberd must necessarily be even.

PROOF. Let v = (vi) be an eigenvector for the simple eigenvalueλ of C
(d)
n . Let P

be the matrix of the automorphism that shifts the vertex numbering modulon by exactly

one. ThenPv is also an eigenvector ofC(d)
n and therefore must be a multiple ofv because

λ is simple. Thus,(v1, . . . , vn−1, vn)
T = µ(v2, . . . , vn, v1)

T for some real numberµ �=
0. By repeated substitution we getv1 = µv2 = µ2v3 = · · · = µn−1vn = µnv1 so that
necessarilyµn = 1. For alln ∈ N we see thatµ = 1 yields the eigenvector(1, . . . , 1)T ,
which corresponds to the degree of regularity. For evenn we getµ = −1 as a second possible
solution and the vector(1,−1, 1,−1, . . . )T as eigenvector candidate. It is readily checked
that for evend the candidate is an eigenvector forλ = 0 whereas for oddd it is an eigenvector
for λ = −2.

3.3. The nullity of C
(d)
n . Having determined when a circuit distance power is singu-

lar, the next step is to ask for the nullity, i.e. the dimension of the null space or kernel of the
graph.

THEOREM 9. For givenn, d ∈ N let g := gcd(n, d) andh := gcd(n, d + 1). Then,

dim kerC(d)
n = 0

for d ≥ [
n
2

]
, and

dim kerC(d)
n =




g − 1 if ord(2, d + 1) ≥ ord(2, n),

g + h − 1 if ord(2, d + 1) < ord(2, n) and 2 � |d ,

g + h − 2 if ord(2, d + 1) < ord(2, n) and 2|d

for d <
[

n
2

]
.

PROOF. For d ≥ [
n
2

]
the graphC(d)

n is the complete graphKn so thatC(d)
n is non-

singular [3]. Letd <
[
n
2

]
. According to [5] the column vectors of the matrix

F ∗ = n− 1
2 (ω(i−1)(j−1))i,j=1,...,n ∈ Cn×n ,

which is the conjugate transpose of the so-called Fourier matrixF ∈ Cn×n, constitute a
complete and universal set of complex eigenvectors for every circulant matrixM of ordern .

In order to determine the nullity ofC(d)
n we therefore need to count all valuesr that fulfil the

condition of Theorem 5 (note that every suchr yieldsλr = 0 by Theorem 4).

CLAIM 1. There exist exactlyg − 1 values ofr (with 1 ≤ r < n) such that a solution
l ∈ N0 exists fordr = ln.

Sincegcd( n
g , d

g ) = 1 we see that the equationr d
g = l n

g has solutionsl ∈ N0 and

1 ≤ r < n if and only ifr = j n
g with integerj satisfying1 ≤ j ≤ g − 1.
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CLAIM 2. Let ord(2, d + 1) < ord(2, n). Then there exist exactlyh values ofr (with
1 ≤ r < n) such that a solutionl′ ∈ N0 exists for2(d + 1)r = (2l′ + 1)n.

First note thatn
h

is even so thatgcd( d+1
h

, n
2h

) = 1. It follows that the equationr d+1
h

=
(2l′ + 1) n

2h
has solutionsl, r ∈ N0 exactly forr = j ′ n

2h
and2l′ + 1 = j ′ d+1

h
with odd integer

j ′ satisfying1 ≤ j ′ < 2h (note thatd+1
h

is odd).

CLAIM 3. Let ord(2, d + 1) ≥ ord(2, n). Then2(d + 1)r = (2l′ + 1)n is not solvable
with 1 ≤ r < n andl′ ∈ N0.

Since n
h

is odd it follows thatgcd(2d+1
h

, n
h
) = 1. Consequently, 2r d+1

h
is even and

(2l′ + 1) n
h

is odd so that we cannot solve2r d+1
h

= (2l′ + 1) n
h
.

CLAIM 4. Let ord(2, d + 1) < ord(2, n). If d is even, thenr = n
2 is the only integer

1 ≤ r < n such that simultaneous solutionsl, l′ ∈ N0 can be found for the equationsdr = ln

and2(d + 1)r = (2l′ + 1)n. If d is odd then none suchr exists.

From Claims 1 and 2 it follows that necessarilyj1
n
g = (2j2 + 1) n

2h
for integersj1, j2

satisfying 1≤ j1 ≤ g − 1 and 0≤ j2 ≤ h − 1. Equivalently,j12h = (2j2 + 1)g must hold.
Assume thatd is even. Sincen is necessarily even it follows thatg is even, too. But

gcd( g
2 , h) = 1 yields thatj1 must be multiple ofg2 , hence we obtain valid solutionsj1 = g

2

andj2 = h−1
2 . This yieldsr = n

2 .
Assume thatd is odd. Theng must be odd as well so thatj12h = (2j2 + 1)g cannot be

solved.
In order to finish the proof of the theorem it now suffices to combine the above

claims.

Obviously, Corollary 7 also follows directly from Theorem 9.

4. Conclusion

Based on a well-known formula for the calculation of the spectrum of a circulant graph

we have derived explicit conditions for the singularity of a circuit distance powerC
(d)
n , de-

pending on the order of 2 as a divisor ofn andd + 1. We have generalized the result that
the simple eigenvalues of a circuit are contained in the set{−2, 2} by showing that the simple
eigenvalues of circuit distance powers are contained in{−2, 0, 2d}. Finally, we have presented

a theorem on the nullity ofC(d)
n .
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