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Abstract. We give a characterization of Mdbius transfation by use of Apollonius points introduced by
Haruki and Rassias [2]. Our result is stronger than theirs.

1. Introduction

In their paper [2], Haruki and Rassias introduced a concefpoli onius pointsfor three
distinct pointsz1, z2 andzsz in the complex planez € C is called an Apollonius point afs,
22, 23 if

lz1—z2l 1z3— 2| =lz2—2z3| - lz1 —z| = |z3 — z1| - |[z2 — 2] -

Itis easy to see that this equation is equivalent to

1+ V/3i

5 (1.1)

[z1,22; 23, 2] =

where the left hand side is the anharmonic rati@i0t2, z3 andz. Namely, by definition,

{1—423 Z22—2%

[z1, 22 23, 2] = )
I3—Z32 T—1Z21

Thus there are generally two Apollonius points f@f z2 andzz; one inside the circle through
71, z2 andzz, and the other outside the circle.

Haruki and Rassias have proved thatomplex analytic univalent function w = f(z)
which preserves Apollonius points must be a Mébius transformation. Here we say thay
preserves Apollonius points jf(z) is an Apollonius point off (z1), f(z2), f (z3) whenever,
is an Apollonius point ot1, z2, z3. We extend this result and will prove the following.

THEOREM. Let U ¢ C beadomainand f: U — C be a Cl-mapping (may not
necessarily be complex analytic). If f preserves Apollonius points, then f isa Mobiustrans-
formation or its conjugate.
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2. Functionswhich preserve an anharmonicratio

In this section we will prove the following theorem from which together with (1.1) The-
orem in Introduction follows immediately.

THEOREM 2.1. Let 2 € C\ R benot areal number. Suppose f: U — Cisa C1-

mapping such that [f(z1), f(z2); f(z3), f(za)] = A if [z1,22;23,24] = A. Then f isa
Mobius transformation.

The proof of Theorem 2.1 is divided into two steps. One is the following.

PROPOSITION 2.2. Let A € C\ R benot a real number. Suppose f: U — Cisa

C'-mapping such that [ f(z1), f(z2); f(z3). f(z4)] = X if [21,22: 23, 24] = A. Then f is
complex analytic.

The latter half is the following.

PROPOSITION 2.3. Suppose A € C\ {0,1}, and f: U — C isa complex analytic
function such that [ f(z1), f(z2); f(23), f(za)] = A if [21,22:23,24] = A. Then f isa
M&bius transformation.

PrROOF OFPROPOSITION2.2. Chooseu, b, ¢, d € C such thata, b, ¢ € R and
[a, b; c,d] = A. The condition thak is not real means that is not real. Letz € U and
t € C\ {0} be small enough so that+ ta, z + tb, z + tc, z + td € U. We remark that
[z +ta,z 4+ th; z + tc, z + td] = A. From the Taylor development,
fz+1ta) = f(2)+ 0. f(@)ta+ 0. f(2)ia + o(t) .
Hence we have
[f(z+1ta), f(z+1th); f(z+10), f(z+1td)]
% f@ta=0)+3. (i@ -0 % f@tb—d) +3f(ib—d)
A f(@tc—b)+ 3, f(2)I(c—b) 8, f(2)i(d —a)+ 0, f(2)i(d —a)
Sincea, b andc are real, we obtain
[f(z+1ta), f(z+1D); f(z+1c), f(z+1td)]
@ f@)r+ 3. f(2)D)(a —c) @ f@)1 + 3. f (Db — (0 f ()td + 3 f (2)id)
@ f@t+ 0. f(@D(c—b) (B f(td + 9, f()id) — 3. f ()t + 0. f(2)Da
z[mbﬂg@f@nd+@f@yq}+oay
0 f ()t + 9, f (2)t

From the assumption we see that the first term must convergeyass to 0 and hence be
equal tox = [a, b; ¢, d]. That is, we have

+o(t) .

+o(t)

0. f(@)td + 9, f()id 4
O f@r 40, f(f
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This impliesd, f (z) = 0 becausd # d. Thus f satisfies the Cauchy-Riemann equation.

PROOF OFPROPOSITION2.3. Chooser, b, ¢, d € C such thafa, b; c,d] = A. The
conditionir # 1 impliesa # b andc # d. The formula (11) of Ahlfors [1] says that for a
complex analytic functiory

[f(z4+ta), f(z+1th); f(z+1tc), f(z+1td)]
=la, b; c,d] (1+ %(a —b)(c — d)Sf(Z)t2 + O(IZ)) )

whereSf is the Schwarzian derivative g¢f defined as

" 7\ 2
Sf:f__§(f_> '

froo2\f
Therefore[ f(z + ta), f(z + tb); f(z + tc), f(z 4+ td)] = A yieldsSf(z) = 0. This implies
that f is a linear fractional function. O
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