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Abstract. We give a characterization of Möbius transformation by use of Apollonius points introduced by
Haruki and Rassias [2]. Our result is stronger than theirs.

1. Introduction

In their paper [2], Haruki and Rassias introduced a concept ofApollonius points for three
distinct pointsz1, z2 andz3 in the complex plane.z ∈ C is called an Apollonius point ofz1,
z2, z3 if

|z1 − z2| · |z3 − z| = |z2 − z3| · |z1 − z| = |z3 − z1| · |z2 − z| .
It is easy to see that this equation is equivalent to

[z1, z2; z3, z] = 1 ± √
3i

2
, (1.1)

where the left hand side is the anharmonic ratio ofz1, z2, z3 andz. Namely, by definition,

[z1, z2; z3, z] = z1 − z3

z3 − z2
· z2 − z

z − z1
.

Thus there are generally two Apollonius points forz1, z2 andz3; one inside the circle through
z1, z2 andz3, and the other outside the circle.

Haruki and Rassias have proved thata complex analytic univalent function w = f (z)

which preserves Apollonius points must be a Möbius transformation. Here we say thatf
preserves Apollonius points iff (z) is an Apollonius point off (z1), f (z2), f (z3) wheneverz
is an Apollonius point ofz1, z2, z3. We extend this result and will prove the following.

THEOREM. Let U ⊂ C be a domain and f : U → C be a C1-mapping (may not
necessarily be complex analytic). If f preserves Apollonius points, then f is a Möbius trans-
formation or its conjugate.
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2. Functions which preserve an anharmonic ratio

In this section we will prove the following theorem from which together with (1.1) The-
orem in Introduction follows immediately.

THEOREM 2.1. Let λ ∈ C \ R be not a real number. Suppose f : U → C is a C1-
mapping such that [f (z1), f (z2); f (z3), f (z4)] = λ if [z1, z2; z3, z4] = λ. Then f is a
Möbius transformation.

The proof of Theorem 2.1 is divided into two steps. One is the following.

PROPOSITION 2.2. Let λ ∈ C \ R be not a real number. Suppose f : U → C is a

C1-mapping such that [f (z1), f (z2); f (z3), f (z4)] = λ if [z1, z2; z3, z4] = λ. Then f is
complex analytic.

The latter half is the following.

PROPOSITION 2.3. Suppose λ ∈ C \ {0, 1}, and f : U → C is a complex analytic
function such that [f (z1), f (z2); f (z3), f (z4)] = λ if [z1, z2; z3, z4] = λ. Then f is a
Möbius transformation.

PROOF OFPROPOSITION2.2. Choosea, b, c, d ∈ C such thata, b, c ∈ R and
[a, b; c, d] = λ. The condition thatλ is not real means thatd is not real. Letz ∈ U and
t ∈ C \ {0} be small enough so thatz + ta, z + tb, z + tc, z + td ∈ U . We remark that
[z + ta, z + tb; z + tc, z + td] = λ. From the Taylor development,

f (z + ta) = f (z) + ∂zf (z)ta + ∂̄zf (z)t̄ ā + o(t) .

Hence we have

[f (z + ta), f (z + tb); f (z + tc), f (z + td)]

= ∂zf (z)t (a − c) + ∂̄zf (z)t̄(ā − c̄)

∂zf (z)t (c − b) + ∂̄zf (z)t̄(c̄ − b̄)
· ∂zf (z)t (b − d) + ∂̄zf (z)t̄(b̄ − d̄)

∂zf (z)t (d − a) + ∂̄zf (z)t̄(d̄ − ā)
+ o(t) .

Sincea, b andc are real, we obtain

[f (z + ta), f (z + tb); f (z + tc), f (z + td)]

= (∂zf (z)t + ∂̄zf (z)t̄)(a − c)

(∂zf (z)t + ∂̄zf (z)t̄)(c − b)
· (∂zf (z)t + ∂̄zf (z)t̄)b − (∂zf (z)td + ∂̄zf (z)t̄ d̄)

(∂zf (z)td + ∂̄zf (z)t̄ d̄) − (∂zf (z)t + ∂̄zf (z)t̄)a
+ o(t)

=
[
a, b; c,

∂zf (z)td + ∂̄zf (z)t̄ d̄

∂zf (z)t + ∂̄zf (z)t̄

]
+ o(t) .

From the assumption we see that the first term must converge ast goes to 0 and hence be
equal toλ = [a, b; c, d]. That is, we have

∂zf (z)td + ∂̄zf (z)t̄ d̄

∂zf (z)t + ∂̄zf (z)t̄
= d .
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This implies∂̄zf (z) = 0 becaused �= d̄. Thusf satisfies the Cauchy-Riemann equation.�

PROOF OFPROPOSITION2.3. Choosea, b, c, d ∈ C such that[a, b; c, d] = λ. The
conditionλ �= 1 impliesa �= b andc �= d. The formula (11) of Ahlfors [1] says that for a
complex analytic functionf

[f (z + ta),f (z + tb); f (z + tc), f (z + td)]

= [a, b; c, d]
(

1 + 1

6
(a − b)(c − d)Sf (z)t2 + o(t2)

)
,

whereSf is the Schwarzian derivative off defined as

Sf = f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

.

Therefore[f (z + ta), f (z + tb); f (z + tc), f (z + td)] = λ yieldsSf (z) = 0. This implies
thatf is a linear fractional function. �
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