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Maximal Determinant Knots
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Abstract. The Kauffman bracket approach is used to give estimates on the size of the determinant (and this
way also on the coefficients of the Jones and Alexander polynomial) of a link of given crossing number, or equiva-
lently on the number of spanning trees of planar graphs with given number of edges. Properties of the knots and links
with maximal determinant for given crossing number are investigated.

1. Introduction

If ∆L denotes the (1-variable) Alexander polynomial of a link L ↪→ S3 [Al], then
det(L) = | ∆L(−1) | is the order of the homology group H1(DL) (over Z) of the double

branched cover DL of S3 over L (or 0 if this group is infinite) and carries the name “deter-
minant” because of its expression (up to sign) as the determinant of a Seifert [Ro, p. 213] or
Goeritz [GL] matrix. This group carries much interesting information on the link (in particular
on sliceness [Ro], chirality [HK, St], and unknotting number estimates [We]).

In [St4] we began the investigation of the question how much the coefficients of the
various link polynomials can grow on knots and links of given number of crossings, and
showed how via the Kauffman state models [Ka2, Ka3] the problem for the Jones [J] and
Alexander [Al] polynomial to be equivalent to this for the determinant. We also found that
the maximum will be realized by alternating knots/links. The quest for better estimates of
this maximum and studying the properties of the links attaining it will make a substantial part
of this paper. In this regard, several questions (suggested by computational results) will be
formulated, and partially solved.

Most of our results admit direct graph theoretic translations. They will imply certain
properties of planar graphs with maximal number of spanning trees for a given number of
edges. Graphs with the maximal number of spanning trees have been independently studied
by Kelmans and Chelnokov [K, K2, KC]. Their results (and methods) are quite different, since
they consider graphs with a fixed number of vertices and relatively high number of edges, most
of which are therefore not planar.
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2. The determinant of alternating diagrams

2.1. Estimates for the determinant. Via the relation ∆(−1) = V (−1) to the Jones
polynomial V (see [J2, §12]) the determinant provides a bridge between the classical Alexan-
der polynomial and its successors [BLM, F&, Ka, J], whose nature is rather combinatorial,
and it is one of the little topologically understandable information encoded in these more re-
cent invariants. On the other hand, this opens combinatorial approaches for calculating the
determinant.

One such approach, which is particularly nice for alternating diagrams, was given by
Krebes [Kr] using the Kauffman bracket/state model for the Jones polynomial. (Alternating
diagrams are those, in which any strand passes crossings alternatingly over-under.)

If D is an alternating link diagram, then consider D̂ ⊂ R2, the (image of) the associated
immersed plane curve(s). Then det(D) is equal to the number of ways to splice the crossings

(self-intersections) of D̂

(1)

so that the resulting collection of disjoint circles has only one component (a single circle; such
choices of splicings are called in [Kr] monocyclic states).

To any alternating link diagram one can associate its checkerboard graph (see [Ka, DH,
Kr, St, Th]). In general the checkerboard graph is a planar graph (that is, equipped with a
planar embedding), with possibly multiple edges. It is defined up to duality (corresponding to
the switch between black and white regions in the checkerboard coloring). Any such graph is
the checkerboard graph of some alternating link diagram. The operations in (1) correspond to
contraction and deletion of an edge in the checkerboard graph.

In [St4, theorem 3.2], we showed via the skein relation for the Jones polynomial that for
a diagram D of c(D) crossings, n(D) components, and maximal bridge length d(D) (see [Ki]
for latter’s definition), we have∣∣V (D)

∣∣
1 :=
∑
2k∈Z

∣∣ [V (D)]t k
∣∣ ≤ 5c(D)−d(D)2n(D)−1 ,

where [V ]t k is the coefficient of tk in V . Simple experiments reveal that this bound is not
particularly sharp.

The first observation towards an improvement was that using Krebes’s approach, we have

LEMMA 2.1. With the above notation,∣∣V (D)
∣∣
1 ≤ 2c(D)−1 .

This inequality is of more practical use, since D may have several components, and d(D)

is in general small compared to c(D).
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PROOF. Let D′ be the alternating diagram obtained from D by changing crossings.
Then by Kauffman’s bracket, we have

| V (D) |1 ≤ det(D′) .

If we resolve any c(D′) − 1 crossings in D′ in some arbitrary way, then for the last one there
is at most one splitting so as the circle picture to have only one component, so that the result
follows. �

Although this lemma already gives (at least in practice) a better estimate, we can push it
even a little further. In the theorem below an arborescent diagram is one with Conway basic
polyhedron 1∗ [Co], or alternatively, a diagram whose checkerboard graph is series-parallel.
The following constant will be of major importance throughout the paper.

DEFINITION 2.1. Let δ ≈ 1.83929 be the inverse of

δ−1 = −1

3
− 2

3
3
√

17 + 3
√

33
+

3
√

17 + 3
√

33

3
≈ 0.543689 ,

the real positive zero of f (x) = x3 + x2 + x − 1.

THEOREM 2.1. 1) There exists a constant C > 0 such that for any link diagram D

of c(D) crossings

det(D) ≤ C · δc(D) . (2)

2) If D is an arborescent diagram, then

det(D) ≤ Fc(D)+1 , (3)

with Fi denoting the Fibonacci numbers (defined by F1 = 1, F2 = 1 and Fn = Fn−1 + Fn−2

for n > 2). Moreover, the inequality is sharp, that is, there are relevant diagrams for which
equality holds.

PROOF. We start with the second part. Let

da
n := max { det(D) : D arborescent of n crossings } .

An arborescent diagram always has a clasp, a fragment of the type

whose resolution (switching one of the crossings, and eliminating the two crossings by a
Reidemeister II move) preserves arborescency. When splicing one of the crossings in the
clasp, one of the two resulting diagrams has a kink, so that only one of the splicings of the
second crossing can give a circle picture with only one component.

Thus

da
n ≤ da

n−1 + da
n−2 ,
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which, together with the trivial correctness for c(D) = 1, 2 by induction establishes the
inequality (3). The sharpness of the inequality follows from considering the rational links
Ln = C(1, 1, . . . , 1︸ ︷︷ ︸

n times

) (here we use Conway’s notation [Co]). To see that det(Ln) = Fn+1 is

an easy calculation with iterated fractions.

The argument for the first part is analogous. Let1

d∞
n := max { det(D) : D link diagram of n crossings } . (4)

Then either D has a clasp, or a triangle

. (5)

Then the above argument modifies to show that

d∞
n ≤ d∞

n−1 + d∞
n−2 + d∞

n−3 (n > 2) , (6)

and thus d∞
n can be estimated by (a multiple of) Tribonacci numbers (whose defining recur-

sion is the equality in (6) and hence) whose rate of growth is δ. �

REMARK 2.1. 1) We have the explicit expression

Fn = 1√
5

[(
1 + √

5

2

)n

−
(

1 − √
5

2

)n]
, (7)

so that for arborescent diagrams (2) holds with the smaller base

√
5 + 1

2
≈ 1.61803 instead

of δ ≈ 1.83929.
2) The constant C in (2), the way that it comes from the estimate (6), can be certainly

effectively calculated, but it does not appear appropriate to do so. The standard way is to apply
partial fraction decomposition to the generating (rational) function, obtaining an expression
involving the (powers of the) zeros of the denominator polynomial. (Such formula is rather
unpleasant since for a cubic equation these zeros are difficult to express.) Moreover, C can
be successively improved by noting that (6) will hardly be sharp in general. Writing down the
first values of d∞

n we have

n 0 1 2 3 4 5 6

d∞
n 1 1 2 3 5 8 16

We see that (6) is sharp for n = 6, but not for n < 6 (because a diagram of n < 6 crossings
has a clasp, so that we have the simplified recursion d∞

n ≤ d∞
n−1 +d∞

n−2), and it will certainly
not be for high n. Thus one can start the iteration on the right of (6) with higher and higher
1 The unnaturally appearing superscript ∞ is used for conformity with notation which will be introduced later.
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values of n and (proportionally) smaller initial data, obtaining a sequence of constants C with
decreasing numerical value but increasing arithmetical complexity . . . However, it is worth
remarking that, because of connected sums, in every case C = 1 must validate (2).

2.2. Links with maximal determinant. Again it appears appropriate to make an ex-
periment how good the bound is compared to the actual values of dn. In [St4, §4] we made
such an experiment, where we replaced c(D) by span V (D) − 1. (Here the span of V is
the difference between minimal and maximal power of t in the monomials of V.) This led to
a picture dominated by non-alternating knots of small span V . Thus here we consider only
alternating knots and links of given crossing number.

For what follows it will be helpful to make some definitions.

TABLE 1. The knots Kn for n ≤ 16 and some of their data (from left to right): cross-
ing number, knot identifier, determinant, fiberedness, clasp-freeness, flype-
freeness, achirality, invertibility, signature, existence of alternating braid rep-
resentation, braid index.

DEFINITION 2.2. Let S ⊂ N. Then define

dS
n = max { det(D) : n(D) ∈ S, c(D) = n } ,

where n(D) is the number of components of D, and let KS
n be a link attaining the maximum.

Set

Ki
n := K

{i}
n , K∞

n := KN
n , Kn := K1

n,

di
n := d

{i}
n , d∞

n := dN
n , dn := d1

n

(and compare to (4)).

This definition already contains a question.
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QUESTION 2.1. Is KS
n unique for all S and n?

In all special cases I checked it was so. However, it is not clear in general. For what
follows let us avoid any possible ambiguity by choosing one fixed maximizing link for each n

and S. The properties of KS
n we will state below will be valid whatever choice of KS

n is made,

that is, they hold for all knots/links that could be chosen as KS
n .

With this understanding, we point out the following important fact remarked in [St4].

THEOREM 2.2. KS
n is alternating for each n and S.

As tabulation (up to crossing numbers sufficing to give some more concrete picture) are
available only for knots, we made a more serious calculation only for S = {1}. The knots
Kn for n ≤ 16 are listed in Table 1, together with the indication of (lack of) some specific
properties and, beside their determinants dn, some other classical invariants. (The genera are
not included; their behaviour will be clarified later.) The last 6 knots, which are not given in
Rolfsen’s tables [Ro, appendix], are drawn on Figure 1. They are numbered according to the
tables in [HT]. (See [HTW] for an account on the tabulation of knots.)

FIGURE 1. The knots of 11 to 16 crossings with maximal determinant.

The meaning of the properties “flype-free” and “clasp-free” is as follows (for the defini-
tion of flypes, see [MT, MT2]).

DEFINITION 2.3. A knot or link is called flype-free, if there is no essential flype ap-
plicable on its alternating diagram, that is, by [MT, MT2], it has only one alternating diagram

(modulo moves in S2).
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DEFINITION 2.4. A knot or link is called clasp-free, if there is no (possibly trivial)
sequence of flypes making any of its alternating diagrams to have a clasp. This is equivalent
to being a polyhedral link in the sense of Conway [Co].

Table 1 reveals several striking coincidences and leads to some (possibly too optimistic,
but at least to some extent justifiable) conjectures. Although sufficient experimental data is
not available for links, it appears that similar phenomena occur there as well.

CONJECTURE 2.1.
1) Kn is fibered for n 
= 5.
2) Kn is clasp-free for n ≥ 8.
3) Kn is flype-free for n 
= 7.
4) Kn is invertible for odd n and −achiral for even n.
5) σ(Kn) ∈ {−2, 0, 2}, where σ is Murasugi’s signature.
6) Kn is (the closure of) an alternating braid except for n = 5, 12.
7) Kn is prime.
8) Kn is unique (up to mirroring and orientation).

Note that there is some causality between the various properties. For, example alternating
braids are fibered. On the other hand, evidence for other such relations from the common knot
tables can be misleading. It may appear at first glance, for example, that clasp-free alternating
knots are fibered, too. However, this is not always true. The simplest example of a clasp-free
alternating non-fibered knot is 134695.

In the following we initiate the investigation of some of the observed phenomena – flype-
freeness, clasp-freeness and primality, and give some relations between properties of dn and
such of Kn. We defer the discussion of the braid index of Kn towards the end of the paper,
after braids are considered in more detail.

2.3. Properties of maximal determinant links. We will be able to obtain the most
precise results on clasp-freeness. We begin with the following statement.

THEOREM 2.3. Let S = {1} or S = ∞. Then KS
n is clasp-free for infinitely many

values of n. More specifically, for S = ∞, every subset of N of the form {x, x + 2, x +
4, . . . , x + 160} contains at least two such n.

The proof of theorem 2.3 initiates from some more conditional, but still self-contained
properties of Kn related to such of dn.

PROPOSITION 2.1.
a) If dn > max(3dn−2, dn−1 + 2dn−3), then Kn is clasp-free.

b) If for S = {1} or S = ∞ we have dS
n > dS

l dS
n−l for any 1 < l < n − 1, then KS

n is
prime.

c) If for S = ∞ we have dS
n > 3dS

l dS
n−l−1 for any 1 < l < n−2, then KS

n is flype-free.

d) If for S = ∞, dS
n > min(3dS

n−2, d
S
n−1 + 2dS

n−3), then KS
n is clasp-free.
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PROOF. a) Assume Kn has a clasp, i.e.

Kn =

Then splicing of the one crossing in the clasp gives a knot and a 2 component link.

(9)

CASE 1. The diagram (a) in (9) represents the knot and (b) the (2 component) link.
Then (a) contributes at most dn−2 to dn. The diagram (b) has a mixed crossing (unless it
is split in which case it has zero determinant), whose two splicings give again knots, so the
contribution is at most 2dn−2.

CASE 2. The diagram (b) is the knot and (a) the link. Then (b) contributes at most
dn−1 and (a) contributes after splicing a mixed crossing at most 2dn−3.

b) This is straightforward from the multiplicativity of the determinant under connected
sum and the result of Menasco [Me].

c) Assume that Kn is not flype-free, in particular a diagram of K = Kn is of the form

(10)

with c(T ), c(U) > 1. Let the two possible closures of a tangle be denoted as follows:

With this notation (10) can be written as

K = 1, T ,U ,
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where ‘1’ is the 1-tangle and the comma operator denotes tangle sum in the Conway [Co]
sense. Let

Kr(T ) := det(T )

det(T̂ )
∈ Q̃ = Z × Z/(p, q) ∼ (−p,−q)

be Krebes’s invariant [Kr]. It provides a convenient formalism to calculate determinants of

certain tangle sums. By Krebes’s calculus we have with the “fraction” addition ⊕ on Q̃,

det(Kn)

∗ = Kr(1, T ,U) = ±1

1
⊕ ± det(T )

det(T̂ )
⊕ ± det(U)

det(Û)
.

Comparing the numerators we obtain

dn = det(Kn) = ±(det(T ) + det(T̂ )
) · det(Û) ± det(T̂ ) det(U) ≤ 3dn−l−1dl ,

with l = c(T ).
d) Use the inequality dS

n ≤ dS
n−1+dS

n−2, following from resolving a crossing in a clasp,
and

dS
n−1 ≤ 2dS

n−2 ,

following from splicing any arbitrary crossing in an n − 1 crossing link diagram. �

We now prove several, mostly unconditional, inequalities between the dS
n .

LEMMA 2.2.
1. d1

n+1 ≥ d1
n .

2. dk
n ≤ 2dk−1

n−1 for k > 1.

3. d1
n ≤ d1

n−1 + d2
n−1.

4. d∞
n+3 ≤ 7d∞

n .

5. d1
n+2 ≤ 5d1

n .

6. d1
n+3 ≤ 11d1

n.

7. d∞
n+1 ≤ 2d∞

n .

8. If K∞
n+2 is not clasp-free, then d∞

n+2 ≤ 3d∞
n .

9. If K∞
n+3 is not clasp-free, then d∞

n+3 ≤ 6d∞
n .

PROOF.
1. Replace a crossing in K1

n by a clasp such that the resulting diagram is again
a diagram of a knot K ′. Then K ′ has n + 1 crossings and that det(K ′) ≥ det(K) follows by
splicing one of the 2 crossings in the clasp.

2. This follows directly from splicing any mixed crossing in Kk
n . (If such does not

exist, then Kk
n is split, and has zero determinant, which is impossible.)

3. This follows directly from splicing any crossing in K1
n .



82 ALEXANDER STOIMENOW

4. This follows by splicing the 3 crossings on the edges of a triangle (5) in K∞
n+3. One

of the resulting 8 diagrams has a split loop.
5. We have from parts 1, 2 and 3

d1
n+2

3≤ d1
n+1 + d2

n+1
3, 2≤ d1

n + d2
n + 2d1

n

2,1≤ 5d1
n .

6. Follows as part 5, but applying parts 2 and 3 once more, before applying part 1.
7. This is trivial.
8. This follows from proposition 2.1, part d).
9. Use parts 7 and 8.

�

We now come to the proof of theorem 2.3.

PROOF OF THEOREM 2.3. Let K be a knot or link of n = c(K) crossings. Then d∞
n ≥

det(K), and d∞
n+k ≥ d∞

k · det(K) for any k because of connected sums with K . Therefore,

d∞
k+2n ≥ det(K)2d∞

k . Assume now l of the links K∞
k+2,K

∞
k+4, . . . ,K

∞
k+2n have a clasp. Then

by parts 7 and 8 of lemma 2.2 we have

d∞
k+2n ≤ 3l4n−ld∞

k .

On the other hand

d∞
k+2n ≥ det(K)2d∞

k .

Thus det(K)2 ≤ 3l4n−l , or

n
√

det(K) ≤ 2n
√

3l4n−l = 2

(√
3

2

)l/n

.

Thus

l ≤ n · ln n
√

det(K) − ln 2

ln
√

3 − ln 2
. (11)

It is clear that this to give a non-trivial estimate, one must have n
√

det(K) >
√

3. This,
unfortunately, is not the case for knots of ≤ 16 crossings, and we need to look at more
complicated examples. Luckily, however, the determinant can be computed via the Seifert
matrix in polynomial time. A package for this using braid representations was written by
S. Orevkov for MATHEMATICATM [Wo]. Using it I found the closed 81 crossing alternating
10-string braid

K =
(̂ (

σ1σ3σ5σ7σ9σ
−1
2 σ−1

4 σ−1
6 σ−1

8

)9)
(12)

(with σi being, as usual, the Artin generators), where det(K) = 24743382596536452489, and

hence µK := det(K) · 3−c(K)/2 ≈ 1.17503.
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Putting this into (11) gives a right hand-side of integer part 79, so the result follows for
S = ∞.

Now let S = {1}. If for almost all n the knot Kn had a clasp, then

dn ≤ max (3dn−2, dn−1 + 2dn−3) ,

coming from part a) in proposition 2.1, shows dn ≤ C · √
3
n
. (The zero of 2x3 + x − 1 on

[0,∞) close to 1/2 is higher than 1/
√

3, so that the higher rate of growth comes from the first
alternative in the maximum.) This contradicts the existence of the above example (12). �

We remark that the inequality da+b ≥ dadb implies that d̃ := lim
n→∞

n
√

dn exists and that

lim
n→∞

n
√

dn = sup
K

c(K)
√

det(K) ,

where the supremum is taken over all (alternating) knots K . Thus we have

COROLLARY 2.1.
√

3 <
81
√

2.474338 · 1019 ≈ 1.7355032 ≤ lim
n→∞

n
√

dn ≤ δ .

We should also point out that the lower bound for d̃ can be successively improved by
finding knots K with higher value of c(K)

√
det(K), and for this purpose calculating the de-

terminant of appropriate more and more complicated knots. This will be done in §4, thus
improving theorem 2.3 for S = ∞, and showing that at least 2/9 of all K∞

n are clasp-free.

QUESTION 2.2. Is d̃ = δ, or d̃∞ := lim
n→∞

n
√

d∞
n = δ ?

REMARK 2.2. If we have a knot K of k crossings with µK > 1 and know dn for
n < k, then we can obtain an explicit (upper) estimate depending on ε > 0 of the smallest

number n0 with n
√

dn >
√

3 + ε for any n > n0. If (this estimate on) n0 is sufficiently small,
it can be used to prove the clasp-freeness of Kn for almost all n. There is little hope to be able
to proceed this way, though. Indeed, it does not seem feasible to calculate dn for n larger than
about 20, while µK > 1 occurs only for rather complicated knots. For example, for

K =
(̂ (

σ1σ3σ5σ7σ9σ
−1
2 σ−1

4 σ−1
6 σ−1

8

)7)
,

we have µK = 0.98 . . . , although it already has crossing number 63.

REMARK 2.3. Similarly to (11), parts 9 and 4 of lemma 2.2 show that

l ≤ n · ln n
√

det(K) − ln 3
√

7

ln 3
√

6 − ln 3
√

7
(13)

for the number l of elements x in sets of the form {a, a+3, . . . , a+3(n−1)} with K∞
x clasp-

free (and n = c(K)). However, the problem to find a knot K with c(K)
√

det(K) >
3
√

6 ≈ 1.81

is still computationally inaccessible, even if 3
√

6 < δ. So (13) is of little practical use as of
now.
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In the knot case (S = {1}), I was unable to prove an analogon of parts 8 and 9 in lemma

2.2, such that ‘
√

3’ in (11) could be replaced by a quantity still below δ. Thus, I have no direct
estimate of the frequency of clasp-free Kn so far.

Another property of the Kn follows from the work we have done in [St5], which rewards
us with an easy proof of a growth statement for the genera g(Kn) of the Kn (see [Ga]).

THEOREM 2.4. g(Kn) → ∞. More exactly, for any ε > 0 we have g(Kn) ≥ log8+ε n

for n large enough.

PROOF. That g(Kn) → ∞ follows by [St5, theorem 3.1], because det(K) grows only
polynomially in c(K) for alternating knots K of fixed genus. The specific growth statement
comes from an estimate of this polynomial from [St3]. We derived such an estimate in [St3,
theorem 3.1]. We showed for K alternating that

det(K) ≤ max
1≤d ′≤dg(K)

[
Cc(K)

d ′

]d ′

, (14)

where C > 1 is some constant, and dg(K) can be defined by

dg := min

{
i ∈ N : lim sup

n→∞

∣∣An,g
∣∣

ni
= 0

}
, (15)

with

An,g := { K alternating, g(K) = g , c(K) = n } . (16)

We also use the fact proved in [St5] that

dg = O(8g) . (17)

Assume now that there is a sequence {ni} and an ε′ > 0 with g(Kni )/ log8(ni) ≤ 1 − ε′.
Then

nε′′
i � 8g(Kni

) (18)

for any ε′′ ∈ (1 − ε′, 1).
We have that the maximal value of

fn(d
′) =
( n

d ′
)d ′

for d ′ ∈ (0, d] is attained for d ′ = min
{
d,

n

e

}
(where e = 2.71828 . . . ), and for d ≤ n/e

the function fn is monotonously growing. Because of (18) for i large enough the former
alternative in the maximum applies, and (14) and (17) give

det(Kni ) ≤
[

C ni

8g(Kni
)

]C ′8g(Kni )
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for some constants C and C′. Using (18) we find

det(Kni ) ≤ (C ni)
C ′nε′′

i . (19)

But because of ε′′ < 1 we have C′ nε′′
i (ln ni + ln C) � C′′ni for any C′′ > 0. Exponentiating

this and using (19) shows that {det(Kni )} grows subexponentially, a contradiction. �

3. Determinants of alternating braids

3.1. Alternating 3-braids. Originally the examples K8 = 818 and K10 = 10123 sug-
gested to consider for the proof of theorem 2.3 for S = 1 more closely the sequence of the

closures of the alternating 3-braids ̂
(σ1σ

−1
2 )k . Although these braids closely fail in giving the

desired examples, they can be used to give an estimate for arbitrary alternating 3-braids.
Define certain numbers ck using Fibonacci numbers:

ck = F2k + 2
k−1∑
i=1

F2i . (20)

LEMMA 3.1. det
( ̂
(σ1σ

−1
2 )k
) = ck.

PROOF. Consider the 2 uppermost crossings of (σ1σ
−1
2 )k , the ones from the last factor

in the power.

Splicing the uppermost one as gives the rational link C(1, 1, . . . , 1︸ ︷︷ ︸
2k−1

), whose determinant as

we mentioned is F2k . Splicing the uppermost crossing as and the second uppermost one as

gives, after deleting the kink from the lowermost crossing, a rational link C(1, 1, . . . , 1︸ ︷︷ ︸
2k−3

)

with determinant F2k−2. Finally, splicing both crossings as , gives (σ1σ
−1
2 )k−1 and then

the result follows by induction from (20). �

COROLLARY 3.1. If β is an alternating 3-braid, then det(β̂) ≤
(√

5+1
2

)c(β̂)

, with the

inequality in general sharp up to an additive constant.
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PROOF. We use that any β ∈ B3, except for the ones in the lemma, have a clasp.
Splicing one of the crossings in the clasp, we obtain a 3-braid with one crossing less and a

rational link. The contribution of the rational link of c(β̂) − 2 crossings to det(β̂) is estimated
by part 2) in theorem 2.1 from above by

1√
5

(
2√

5 + 1

)
·
(√

5 + 1

2

)c(β̂)

+ C (21)

for some fixed constant C. The determinant of the spliced braid is estimated by induction on

c(β̂) by

(
2√

5 + 1

)
·
(√

5 + 1

2

)c(β̂)

.

Now

2√
5 + 1

+ 1√
5

(
2√

5 + 1

)
= 2√

5
< 1 . (22)

Therefore, starting the induction for c(β̂) large enough to compensate the constant C in (21)
by the strict inequality in (22), and checking the initial cases directly, one is done. �

REMARK 3.1. The links of the form ̂
(σ1σ

−1
2 )k have been considered previously, no-

tably in [JP] (at least in the knot case 3 � k). There it was observed that for odd k (for

which the knots are also called “turks head knots”), the braid ̂
(σ1σ

−1
2 )k is of the form ββ,

where β is obtained from β ∈ Bn by the map σ±1
i �→ σ∓1

n−i . Hence ̂
(σ1σ

−1
2 )k is strongly

+achiral, i. e., admits an embedding into R3 fixed by the (orientation-reversing) involution
(x, y, z) �→ (−x,−y,−z), such that this involution additionally preserves the orientation of
the knot/link. By the result of [HK] (stated and proved only for knots but true by the same

argument also for links2), such knots/links have as Alexander module a double A⊕A, so that
in particular the Alexander polynomial, and hence the determinant, is a square. This, together
with lemma 3.1, shows knot-theoretically that ck is a square for odd k. The numbers ck are
discussed also in [St].

3.2. Alternating braid powers. For general strand number, the results on 3-braids,

and more specifically on the powers of σ1σ
−1
2 , generalize followingly.

THEOREM 3.1. Let βi ∈ Bn be alternating braids of fixed strand number n.

1) Then λ{βi } := lim sup
i→∞

c(βi )
√

det(β̂i) ≤ δ .

2 except in the case, when the Alexander module is not (completely) torsion, which is, however, trivial, as then the
Alexander polynomial vanishes
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2) Moreover, if βi = βi are powers of some fixed braid β, then λβ := λ{βi } is the norm

of a (possibly complex) algebraic number of degree ≤ Cn, where Cn = 1

n + 1

(
2n

n

)
is the n-th

Catalan number.

For the proof of theorem 3.1 we need a technical lemma.

LEMMA 3.2. Let λ1, . . . , λl (l > 1) be distinct unit norm complex numbers and
{aj,n}∞n=1 for j = 1, . . . , l be sequences with |aj,n| ≥ ε for some ε > 0 and all j, n, and

aj,n+1

aj,n

−−→
n→∞ 1 .

Then the sequence sn :=
l∑

j=1

aj,nλ
n
j does not converge (in particular, not to 0).

PROOF. Assume sn → s for some s ∈ C. If

Mn :=



1 · · · 1
a1,n+1
a1,n

λ1 · · · al,n+1
al,n

λl
a1,n+2
a1,n

λ2
1 · · · al,n+2

al,n
λ2

l

...
. . .

...
a1,n+l−1

a1,n
λl−1

1 · · · al,n+l−1
al,n

λl−1
l

 ,

then

Mn

 a1,nλ
n
1

...

al,nλ
n
l

 −→
 s

...

s

 ,

and Mn converge to a Vandermonde matrix, which is not singular, so that ||M−1
n || is bounded.

Therefore, in particular
{
(a1,nλ

n
1, . . . , al,nλ

n
l ) : n > n0

}
must lie in some ε′-ball for n0

large enough. But |aj,n| ≥ ε shows that these components stay outside of some neighborhood
of the origin, and

ai,n+1λ
n+1
i

ai,nλ
n
i

−→ λi 
= 1

for some i gives a contradiction for ε′ small enough. �

PROOF OF THEOREM 3.1.
1) This is clearly a consequence of corollary 2.1.
2) Let βi be n-strand braids and SDn be the Kauffman algebra of [Ka, definition 3.5]

with the special parameter A = √−1 (so that a separate loop trivializes). It can be shown
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TABLE 2. The table for the pairing < , >3.

(see [Ka, theorem 4.3]) that SDn is generated by the Cn loop-free diagrams connecting two
rows of n + n points on bottom and on top by n non-intersecting arcs. For example for n = 3
we have the following 5 elements:

(23)

The dimension of SDn is therefore at most Cn. These diagrams also form a basis, as was
proved in the study of meanders in theoretical physics and as will be explained next.

A meander (see [DGG]) is a topological type of the union of transversely intersecting

circles smoothly embedded in S2. We require that there is a circle x, such that all circles
y 
= x intersect x, but any two circles y1,2 
= x do not intersect each other. We will draw x as
a dashed line, and assume it passes through ∞. We call the other circles loops.

Define a pairing (or binary quadratic form) on SDn by

(24)

For example < , >3 is given by the Table 2. It suffices to know that < , >n is non-degenerate
on the above Cn elements. This follows from an explicit expression for its determinant, see
formula (5.18) in [DGG].

The multiplication in SDn is given by stacking up, and possibly setting the resulting
diagram to 0 if it has a loop. For example

Associate to β =
m∏

j=1

σ
(−1)

ij

ij
∈ Bn a linear operator φβ

SDn � x
φβ�−→ x

m∏
j=1

(1 + sij ) ∈ SDn ,
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with

φβ can be decomposed (at least over C) into eigenvalues λi and Jordan box spaces Vi . Fix a
Jordan basis of φβ . (As φβ has integer coefficients in some rational basis of SDn, the Jordan
basis can be chosen to lie in some degree ≤ Cn extension of Q.)

From now on consider only those Vi which are not completely killed by the C-linear
extension of the map

Consider the Jordan basis decomposition of Id = 1 ∈ SDn∣∣∣∣ ∣∣∣∣ ∣∣∣∣ · · · ∣∣∣∣ = l∑
i=1

xi + x , xi ∈ Vi ,

with χ(x) = 0 .

Since

0 
= det(β̂) = det(1̂ · β) = χ(1 · β) = χ(φβ(1)) ,

there exists a 1 ≤ i0 ≤ l with xi0 
= 0 and λi0 
= 0. Among these eigenvalues λi0 , pick up
those λ′

1, . . . , λ
′
l′ of maximal norm µ := |λ′

i |, and let V ′
i be the Jordan box space of λ′

i , and

x ′
i = xi′ for λi′ = λ′

i .

Let d ′
i := dim V ′

i for 1 ≤ i ≤ l′, and d ′ := l′
max
i=1

d ′
i . Then each x ′

i has a contribution to

det
(
β̂k
)

of the form

d ′
i∑

j=1

ci,jPi,j (k) (λ′
i )

k−d ′
i+j = P̃i (k)λ

′k
i ,

for some ci,j ∈ C (the coefficients of x ′
i in the Jordan basis of V ′

i ), and polynomials Pi,j (k) ∈
Q[k] with deg Pi,j ≤ d ′

i , and

P̃i (k) =
d ′
i∑

j=1

ci,j Pi,j (k) (λ′
i )

j−d ′
i ∈ C[k] ,

with deg P̃i ≤ d ′
i . Without loss of generality, add up all P̃i for equal λ′

i , reindex towards the

end, and then discard all i for which P̃i = 0. Then we have
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det(β̂k) =
l′∑

i=1

P̃i (k) λ
′k
i + O((µ − ε)k) (25)

for some 1 ≤ l′ ≤ l, λ′
i 
= λ′

j for i 
= j , and 0 
= P̃i(k) ∈ C[k] (with deg P̃i ≤ d ′). If we

show now

lim sup
k→∞

k

√
det(β̂k) = lim sup

k→∞
k

√∑
i

P̃i (k) λ
′k
i = µ ,

we are through, as λ′
i is the root of a polynomial with rational coefficients of degree Cn.

If l′ = 1, then the claim is straightforward from (25). Otherwise it follows from lemma

3.2 by rescaling, setting n = k and aj,n := P̃j (n). �

The combination of both statements in theorem 3.1 also suggests

COROLLARY 3.2. Any eigenvalue λ of φβ for any β ∈ Bn satisfies |λ| ≤ δc(β).

PROOF. Although a dominating eigenvalue of φβ may have a Jordan space killed by
taking the determinant of the usual braid closure, there will often be a (linear combination of)
other closure(s) under which not the whole Jordan space is killed (and then for these exotic
closures the same argument will apply). That such a closure indeed exists is a consequence of
the non-degeneracy of the pairing < , >n in (24), as previously explained. �

REMARK 3.2. I owe M. Khovanov the above reference to the paper [DGG]. Table
2 shows easily < , >3 to be non-degenerate, and I checked it previously by computer for
n = 4, . . . , 10. It is also an easy exercise to see that < T1, . > 
≡ 0 if T1 is a single diagram,
as one can always find a diagram T2 with T̂1T2 = ©. However, the argument does not extend
in an easy way to arbitrary linear combinations of diagrams, and the proof of non-degeneracy
is certainly quite non-trivial.

4. Spanning trees in planar graphs

4.1. Determinant and spanning trees. It the following it will be useful to pass over
from alternating diagrams to their checkerboard graphs.

DEFINITION 4.1. Let for a graph G the number of its spanning trees be denoted by
s(G).

LEMMA 4.1. If D is an alternating diagram of link L, and G its checkerboard graph,
then det(L) = s(G).

This is a classical result (see e.g. [BZ]), a consequence of Kauffman’s state models for
the Jones [Ka2] and Alexander polynomial [Ka3]. It was discussed extensively in [St, MS]. In
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this paper, we mostly use the language of [MS], but do not repeat details to save space. Note,
however, that s(G) is written in [MS] as ∆G(1), and in [St] as t (G).

In [MS] we observed also that for an n-component link L, det(L) is odd if and only if L

is a knot (n = 1), and always 2n−1 | det(L). Thus now the question on the growth of dn and
d∞
n could be reformulated entirely in terms of graph theory:

PROPOSITION 4.1. d∞
n is the maximal number of spanning trees in a planar graph

with n edges (multiple edges allowed and counted by multiplicity). dn is the maximal odd
number of spanning trees in a planar graph with n edges.

Theorem 2.3 can be interpreted as:

PROPOSITION 4.2. For infinitely may values of n the planar graphs with n edges
and maximal number of spanning trees (or maximal odd number of spanning trees) have
no valence-two vertices and no multiple edges.

Further properties of the knots Kn are also related to properties of their checkerboard
graph. For example, the uniqueness and flype-freeness of Kn imply the uniqueness, up to
duality, of the graph Gn with n edges and dn spanning trees. The achirality and flype-freeness
of Kn imply that Gn is self-dual, and the achirality of Kn for itself by the result of [DH] that
Gn has a (possibly different) self-dual planar embedding.

4.2. Planar graphs with many spanning trees. We will use now the graph descrip-
tion of the determinant to improve the estimate in theorem 2.3 for S = ∞.

Since any link diagram can itself be considered as a planar graph (each crossing being
a vertex of valence 4), we can build a new link diagram of which the previous one (regarded
as 4-valent graph) is the checkerboard graph. It turns out that this procedure, when iterated,
is very good at generating diagrams with high determinant (or graphs with high number of
spanning trees), in particular if we start with a clasp-free diagram (4-valent graph with no
multiple edges). The simplest such diagram is this of the Borromean rings

Call this graph D0. Then one obtains Dn+1 from Dn by putting a vertex of Dn+1 to correspond
to an edge of Dn and connecting a vertex v of Dn+1 as follows:
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(Here the thick lines correspond to edges in Dn+1 and the thin ones to edges in Dn.) Some-
times Dn+1 is called the line graph of Dn. This procedure doubles the number of edges and
vertices. The determinant can still be effectively computed, even for relatively large number
of vertices.

LEMMA 4.2. Let D be an alternating diagram of n crossings. Then in D there is a
1 − 1 correspondence between crossings and bridges (all of length 1). Number n − 1 of
the n bridges in D in some way and define a matrix M = (mi,j )i,j=1,...,n−1 by setting for
i, j = 1, . . . , n − 1

mi,j :=


2 i = j ,

−1 i 
= j and bridges i and j meet,
0 otherwise .

(Here bridges i and j meeting means, without regard the order of i and j , that the crossing
overpassed by i is the underpass that marks one of the ends of j .) Then det(D) = det(M).

PROOF. This is a classical fact from knot theory. Basically M is a presentation matrix
of the Alexander module Λ(t) of D specialized at t = −1, hence its determinant is the order
of this group, which is det(D). Graph theoretically, this is a variant of the matrix-tree theorem
(see [MS]). �

Practical computations were possible for Dn with n ≤ 9, using MATHEMATICATM, and
their result can be briefly summarized in the following table, giving the number of digits of
det(Di), the CPU time for its calculation, and the number of crossings c(Di) and components
nci = n(Di) of Di . (Since calculating determinants has cubic complexity, the complexity of
det(Dn) is exponential in n with basis roughly 8. However, in practice the base is about 16,
since the number of digits in the integers gets doubled.)

i # digs det(Di) c(Di ) comp. CPU time nci

0 2 6 0 3
1 3 12 0 4
2 6 24 0 6
3 12 48 0.02′′ 8
4 24 96 0.28′′ 12
5 48 192 4.2′′ 16
6 97 384 1′12′′ 24
7 194 768 19′45′′ 32
8 388 1536 5h15′40′′ 48
9 777 3072 83h10′37′′ 64

Here Di is identified with its 4-valent (and not checkerboard) graph, that is, det(Di) =
s(Di−1) . (The determinants themselves are clearly too large to print directly, but we will
come back to their numerical values in the last section.)

We obtain the following estimates:

LEMMA 4.3. d∞
6·2i ≥ det(Di), d6·2i−nci+1 ≥ det(Di)

2nci−1 (where nci = n(Di)).
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PROOF. The first claim is trivial. The second one follows by applying nci − 1 times
part 2 in lemma 2.2. �

COROLLARY 4.1. d̃∞ = sup
k

k

√
d∞
k ≥ 6·2i√

det(Di),

d̃ = sup
k

k
√

dk ≥ 6·2i−nci+1

√
det(Di)

2nci−1 .

With every new value for det(Di) we can thus continuously improve the estimate on
these suprema (columns 2 and 3 in the table below), and using (11) also the estimates on the

number of clasp-free links K∞
n in intervals of step 2 of length 6 · 2i (column 4, where l and

n refer to (11)). Finally we can show that at least 701/3072 (or about 2/9) of all K∞
n are

clasp-free (in the sense of Banach density).

i d̃∞ ≥ d̃ ≥ l/n ≤

0 1.5874 1.41421
1 1.64195 1.53746
2 1.69838 1.62687
3 1.73436 1.69267 47/48
4 1.75794 1.72884 86/96
5 1.77219 1.75412 161/192
6 1.78064 1.76751 310/384
7 1.78549 1.77699 605/768
8 1.78824 1.78194 1195/1536
9 1.78977 1.78562 2371/3072

The reason for increasingly better estimates is that the step from Dn to Dn+1 only creates new
4-gons in the graph complement, but no triangles, and the 8 triangles of D0 become more and
more distant as n increases. This heuristic, and some related conjectures, will be explained
also in the last section.

5. Some heuristics and problems

As the paper attempts the study of a relatively new type of problem, it is unfortunate, but
not surprising, that it opens many more questions than it can answer. At this stage we have
only partial progress on conjecture 2.1, and no tools to deal with some of the points raised
there. Hoping to whet the interest in further investigations, we conclude by mentioning two
further (likely related) problems.

5.1. Braid index. One such problem is that apparently the estimates in part 1) of
theorem 3.1 and in corollary 3.2 are not sharp. This is related to the following conjecture:

CONJECTURE 5.1. Only finitely many Kn have the same braid index b(Kn), or alter-
natively, lim inf

n→∞ b(Kn) = ∞.
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Albeit solving this conjecture appears of considerable difficulty with the present tools,
we give some heuristical motivation and approach to it, explaining its relation to some of our
previous problems.

The idea behind the conjecture is that the diagrams β̂i for braids βi of fixed strand num-
ber have either clasps or triangle regions (5) whose distance has an upper bound k = kl

depending only on the strand number l of the βi . (The distance is here the minimal number of
intersections of a path from the one region to the other with the plane curve of the diagram;
see also [St2].)

Let

Dl := { D : D is a diagram obtained by splicing crossings in a closed l-braid diagram } .

For fixed l, assume we can show that in Dl any diagram has a clasp, or there are paths of
bounded length ≤ k between triangles passing only through 4-gons. This means that, even in
the case there is no clasp, the sequence of crossings to splice can be chosen so that we splice
the corners of a triangle,

and after k steps we obtain a clasp. Therefore, letting

d̂n := max { det(D) : D is an n crossing diagram in Dl }
and applying

d̂n ≤ d̂n−1 + d̂n−2 + d̂n−3

recursively on each summand on the right, in depth k of the recursion we can in fact use the
simpler formula d̂n′ ≤ d̂n′−1 + d̂n′−2.

Thus d̂n ≤ d̃n for a linearly recurrent sequence {d̃n} with

d̃n =
k∑

i=1

aid̃n−i ,

and the Tribonacci numbers Tn (see equation (6) and explanation after it) satisfy

Tn =
k∑

i=1

a′
iTn−i

such that 0 ≤ ai ≤ a′
i and ai < a′

i for at least one i. Writing down the generating series of

d̃n and Tn, the denominator polynomials are f (x) =
k∑

i=1

aix
i − 1 and f1(x) =

k∑
i=1

a′
ix

i − 1



MAXIMAL DETERMINANT KNOTS 95

resp. On the positive real line, f and f1 have unique zeros zf and zf1 , which are the unique
zeros of minimal norm for these functions (use ai, a

′
i ≥ 0 and apply triangle inequality).

Now z−1
f1

= lim sup
n→∞

n
√

Tn = δ and z−1
f = lim sup

n→∞
n

√
d̃n, and because f1(x) > f (x) for

x > 0, we have zf > zf1 .
Thus there will be a sequence {δl} with δl < δl+1 < δ and possibly δl → δ such that in

part 1) of theorem 3.1, ‘δ’ can be replaced by ‘δl’ for l-strand braids {βi}. Then we need to
answer positively question 2.2. Finally, to control b(Kn), we must prove part 6) of conjecture
2.1 (at least for large n) and apply [Mu].

5.2. Large determinant examples. The next question concerns the examples in §4.
The determinants det(Di) can be given as follows:

i prime factorization of det(Di)

0 24

1 27 31

2 212 34

3 217 31 56 72

4 241 32 511 73

5 251 316 52 116 133 232 373 1273

6 2122 310 56 72 113 133 171 192 312 433 4213 42173 96613

7 2141 34 710 179 7692 42413 223913 427673 1958633 4835572 20721312 60467513 3552432793

8 2315 34 56 72 113 178 313 472 792 893 972 1576 5771 62712 206393 2913492 11599013

15796313 438632232 3239659104520993 2094439044149346013 37866631413067742593

9 ??

(The factorization for i = 9 was too hard to obtain, and would be too long anyway.)
Note, that these factorizations are strikingly non-generic—the largest prime factors have

only about 1/20 of the number of digits of their product, and almost all primes occur in higher
powers. (The only power that can be explained so far, and still to much smaller extent than it
occurs, is that of 2; see §4.1.)

QUESTION 5.1. Is there a closed formula for det(Di)? Can it be used to show that
6·2i√

det(Di) → δ ?

Note also that the diagrams Di have, like those of Kn for n = 12, . . . , 16 in figure 1, no
≥ 5-gonal regions (which for clasp-free diagrams is equivalent to having exactly 8 triangles).
So one may wonder whether this property holds generally (or at least generically) for KS

n , in
addition to flype- and clasp-freeness.
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