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1. Introduction

A geometrical construction of manifolds on the figure-eight knot appeared originally in
Thurston’s lectures [22]. He constructed a hyperbolic three-dimensional manifold by gluing
faces of two ideal tetrahedra. The manifold obtained in this way is homeomorphic to the

complement of the figure-eight knot in the three-dimensional sphere S3. In addition, this
manifold has a complete hyperbolic structure.

We define the three-dimensional Euclidean cone-manifold [11] to be the complete metric
space obtained as the quotient of (possibly non-compact) geodesic 3-simplices in the three-

dimensional Euclidean space E3 by an isometric gluing of faces in such a fashion that the
underlying topological space is a manifold. In this case, the metric structure around each edge
is defined by the cone angle, which is equal to the sum of the dihedral angles corresponding
to the identified edges. We define the singular set of the cone-manifold to be the closure
of the set of edges whose cone angle is not equal to 2π . By definition, on the complement
of the singular set, the constructed space has a Euclidean structure. Analogously, we define
spherical and hyperbolic cone-manifolds. A cone-manifold is said to be an orbifold if the
cone angles are equal to 2π/n for an integer n ∈ N.

Let C(2π/n) be an orbifold whose singular set forms a figure-eight knot, and whose
cyclic isotropy group has order n ≥ 1. It is well known [3, 9, 22], that the orbifold C(2π/n) is
spherical for n = 2, Euclidean for n = 3 and hyperbolic for n ≥ 4. In [8] Hilden, Lozano and
Montesinos constructed a family of three dimensional cone-manifolds C(θ) whose underlying
space is the three-dimensional sphere and whose singular set is the figure-eight knot. They
showed that the cone-manifold obtained is hyperbolic for θ ∈ [0, 2π/3), Euclidean for θ =
2π/3 and spherical for θ ∈ (2π/3, π]. They also calculated geometrical parameters for the
fundamental polyhedra and volume formulas for complicated cone manifolds. The question
of the existence of spherical structure for θ > π was left open.
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In [7] it was shown that the Fibonacci manifolds are n-fold cyclic coverings of the three-
dimensional sphere branched over the figure-eight knot. This generated interest in the Fi-
bonacci manifolds. In a paper of Helling, Kim and Mennicke [6], fundamental polyhedra
were constructed for the Fibonacci manifolds with even indexes. The authors proved the
arithmeticity of the groups for the corresponding Fibonacci manifolds for n = 4, 5, 6, 8, 12.
In a paper of Vesnin and the second named author [20], the isometry group of the Fibonacci
manifolds was calculated. In [23] Mednykh and Vesnin calculated the volumes of the hyper-
bolic Fibonacci manifolds.

The main goal of this paper is to construct the simplest possible fundamental polyhedron
for cone-manifolds C(θ), 0 ≤ θ < 4π/3 in the sense that it has just two pairs of piecewise
linear faces, identified by the isometries generating the holonomy group. Then the constructed
polyhedron is hyperbolic for 0 ≤ θ < 2π/3, Euclidean for θ = 2π/3 and spherical for
2π/3 ≤ θ < 4π/3. The construction is universal, that is a similar construction can be carried
out for any two-bridge link or knot. Its geometrical parameters can be found as the roots of an
algebraic equation which is the sequence of the main relation in the group. This construction
is found below in the second Section. This construction was first performed in [15].

The third Section of the work is devoted to calculations of the volumes of the cone-
manifolds in hyperbolic and spherical spaces. Some more complicated formulae were ob-
tained for special cases by Kojima [13].

In the fourth and final Section we prove that cone-manifolds on the figure-eight knot
have spherical structures for 2π/3 < θ < 4π/3 and that these inequalities are the limiting
values. That is, for θ = 2π/3 the spherical structure degenerates to a Euclidean structure and
for θ = 4π/3 the cone-manifold C(θ) singular set becomes a degenerate singular knot with
two vertices of valency four and four arcs joining the vertices. We note that our approach is
general and can be applied to other two-bridge links and knots.

The authors’ interest in geometrical structures on the figure-eight knot was initiated by
J. H. Przytycki during the International Congress of Mathematicians ICM’82 in Warsaw in
August, 1983.

2. The construction of the fundamental set of the cone-manifoldsC(θ)

2.1. The fundamental set of the spherical cone-manifoldC(π). Denote by S3 the

three-dimensional sphere. Let us consider a lens L bounded by two spherical planes in S3

with dihedral angle π
5 . Choose 10 points on the line (circle) of intersection of these planes

Pi , i = 0, . . . , 9 such that the spherical distance between Pi and Pi+1 (i mod 10) is equal
to π

5 . Draw the line P0Pp on the bottom of the lens and the line P2P7 on the top of the lens
(See Figure 1).

LEMMA 1. Let S and T be spherical isometries which identify faces of the lens L in
the following way:

S : Q1P5P6 · · · P0 → Q1P5P4 · · · P0
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FIGURE 1. The fundamental set L of the spherical cone-manifold C(π).

T : Q0P2P1 · · · P7 → Q0P2P3 · · · P7

then
(i) the group 〈S, T 〉 is a discrete group of isometries of the sphere S3 and has the

following presentation:
〈S, T | S2 = T 2 = (T S)5 = 1〉

(ii) the lens L is a fundamental set for the group 〈S, T 〉
(iii) the orbifold S3/〈S, T 〉 is isomorphic to C(π).

PROOF. The statements (i) and (ii) are immediate consequence of the Poincare’s poly-
hedron theorem [4]. We verify the statement (iii).

To show that the orbifold S3/〈S, T 〉 coincides with the orbifold C(π) consider the two-

fold covering M of S3/〈S, T 〉 branched over the union of lines P0P5 and P2P7. The funda-
mental group of this covering is given by the kernel of the epimorphism φ : 〈S, T 〉 → Z2 =
{0, 1} defined by φ(S) = 1 and φ(T ) = 1. The group Ker(φ) is the cyclic group of order 5
generated by T S. The fundamental set of this group is the lens space L

⋃
S(L) formed by L

and S(L) identified along the bottom hemisphere of L.
Denote the poles of the lens L ∪ S(L) as North = Q0, South = S(Q0), and set

Vi = P2i , i = 0, . . . , 5 and V5 = V0. Then the isometry T S = T S−1 acts on the set L∪S(L)

in the following way: the triangle SouthViVi+1 is identified with the triangle NorthVi+2Vi+3

for every i = 0, . . . , 4. Hence, M is the standard lens space L(5, 2). The orbifold S3/〈S, T 〉
is obtained as a factor space of M = L(p, q) by means of involution S and, hence, coincides
with the orbifold C(π) [10]. �

2.2. The fundamental set of the Euclidean cone-manifoldC(2π/3). The aim of
this Section is to show that the orbifold C(2π/3) on the figure-eight knot has the fundamental

set in the Euclidean space E3 shown in Figure 2 which is topologically similar to the funda-
mental set of the orbifold C(π) in the sphere shown in Figure 1.
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FIGURE 2. The fundamental set of the Euclidean cone-manifold C(2π/3).

FIGURE 3. The axes of elliptic elements S and T in the Euclidean space.

More precisely, we shall describe an algorithm for the construction of the fundamental
set P for the figure-eight orbifold which effectively works in every space of constant sec-
tional curvature. With slight modifications this algorithm can also be used to construct the
fundamental set of any 2-bridge link orbifold.

Since the cone-manifold C(2π/3) is the orbifold, it is possible to consider it as the quo-

tient space of E3 by the action of an isometry group.
It was shown in [22] that the orbifold C(2π/3) can be obtained as a quotient space

E3/〈S, T 〉, where 〈S, T 〉 is the group generated by two rotations S and T of order
three whose axes are shown in Figure 3 and are given by lines [(0, 0, 0), (1, 1, 1)] and
[(−1, 0, 0), (0,−1, 1)] respectively.
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We use the following properties of the isometries S and T :

S(−1, 0, 0) = (0,−1, 0) , S(0,−1, 1) = (1, 0,−1) ,

T S(−1, 0, 0) = (0, 0, 1) , T S(0,−1, 1) = (−1, 1, 2) .

Consider the half-turns b and e about the lines

(−1/2,−1/4, 0) + k(1, 0, 1) , (−1/4,−1/4,−1/4) + k(1, 0,−1) .

One can easily verify the following properties of the isometry b:

bSb−1 = T , b2 = 1

and e:

eS = se , eT = te , e2 = 1 , be = eb ,

where s = S−1 and t = T −1. Consider the element T ST st . It has an axis that is the
image of the axis of rotation of T under the transformation T S. So this axis coincides with
the line [T S(−1, 0, 0), T S(0,−1, 1)] = [(0, 0, 1), (−1, 1, 2)]. Thus to find the fundamental
polyhedron let us denote by P1 the point of intersection of the axes b and T ST st . By direct
calculation one can find that P1 = (1/4,−1/4, 3/4). All other vertices of the fundamental
polyhedra can be obtained in the following way:

P3 = T −1(P1) , P7 = S−1(P3) , P9 = S−1(P1) ,

P5 = T −1(P9) , P6 = e(P1) , P2 = e(P7) ,

P4 = e(P9) , P8 = e(P3) , P0 = e(P5) .

Define the points Q0, Q1 to be the points of intersection of the axis e with the axes S, T

respectively.
Hence, we have the following coordinates for the vertices of the fundamental polyhedron:

Q1 = (−1/4,−1/4,−1/4) P5 = (−3/4,−3/4,−3/4)

Q0 = (−3/4,−1/4, 1/4) P6 = (−5/4,−1/4,−3/4)

P1 = (1/4,−1/4, 3/4) P7 = (−5/4, 1/4,−1/4)

P2 = (−1/4,−3/4, 3/4) P8 = (−3/4, 3/4,−1/4)

P3 = (−1/4,−5/4, 1/4) P9 = (−1/4, 3/4, 1/4)

P4 = (−3/4,−5/4,−1/4) P0 = (1/4, 1/4, 1/4)

Consider the polyhedron P(2π/3) formed by the vertices Pi , Qj , the edges PiQj , PiPi+1

and the faces PiPi+1Qj , where i = 0, . . . , 9, j = 0, 1 and P10 = P0. It is more convenient
to consider the non-convex polyhedron P(2π/3) as a curvilinear polyhedron with ten vertices
Pi , i = 0, . . . , 9, twelve edges PiPi+1, i = 0, . . . , 9, P0P5, P2P7 and four curvilinear faces:

Q1P5 · · · P0 , Q1P0 · · · P5 , Q0P7 · · · P2 , Q0P2 · · · P7 .

It is easy to see that each of these curvilinear faces consists of five triangles.
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REMARK. The curvilinear polyhedron thus described is combinatorially equivalent to
the spherical polyhedron shown in Figure 1. As in the spherical case the lines [P0, P5],
[P2, P7] are fixed by the elements S and T respectively. Using the transformation x →
4x + (2, 1, 0), x ∈ E3 one can easily find more convenient coordinates for vertices of the
polyhedron P(2π/3):

Q1 = (1, 0,−1) P3 = (1,−4, 1) P7 = (−3, 2,−1)

Q0 = (−1, 0, 1) P4 = (−1,−4,−1) P8 = (−1, 4,−1)

P1 = (3, 0, 3) P5 = (−1,−2,−3) P9 = (1, 4, 1)

P2 = (1,−2, 3) P6 = (−3, 0,−3) P0 = (3, 2, 1)

Now we will show that the constructed polyhedron P(2π/3) is a fundamental set for

the group 〈S, T 〉 in E3. We first check the conditions of the Poincare theorem and define the
presentation of the group 〈S, T 〉. For this define the interior dihedral angles between adjacent
faces occurring in the polyhedron. We have:

cos( � P3P4) = cos( � P8P9) = 7

9
, � P0P5 = � P2P7 = 2π

3
,

cos( � P0P1) = cos( � P1P2) = cos( � P2P3) = cos( � P4P5) =

= cos( � P5P6) = cos( � P6P7) = cos( � P7P8) = cos( � P9P0) =
√

2

3
.

In such a way the conditions of the Poincare theorem are fulfilled and the following
statement is true.

TABLE 1

Edge cycle Sum of angles Relation

in group

P2P7
2π
3 T 3 = 1

P0P5
2π
3 S3 = 1

P5P6, P6P7, P7P8, P8P9,

P9P0, P0P1, P1P2, P2P3, 2π sT StstST st = 1

P3P4, P4P5

Q1P6, Q1P4 2π Ss

Q1P7, Q1P3 2π Ss

Q1P8, Q1P2 2π Ss

Q1P9, Q1P1 2π Ss

Q0P6, Q0P8 2π T t

Q0P5, Q0P9 2π T t

Q0P3, Q0P1 2π T t
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FIGURE 4. Tetrahedra T1 and T3 in the Euclidean situation.

THEOREM 2. Let S and T be Euclidean isometries which identify curvilinear faces of
the polyhedron P(2π/3) in the same way as in Lemma 1. Then

(i) the group 〈S, T 〉 is a discrete subgroup of isometries of the space E3 and has the
following presentation:

〈S, T | S3 = T 3 = sT StstST st = 1 〉
(ii) the polyhedron P is a fundamental set for the group 〈S, T 〉

(iii) the orbifold E3/〈S, T 〉 is isomorphic to C(2π/3).

Another approach to the proof of Theorem 2 can be obtained by the following scheme.
Note that the fundamental polyhedron P(2π/3) can be decomposed into ten tetrahedra Ti =
Q0Q1PiPi+1, i = 0, . . . , 9. It is easy to verify directly computing the lengths of the edges
of P(2π/3) that the tetrahedra T1, T2, T4, T5, T6, T7, T9 are congruent to each other and the
remaining two tetrahedra T3 and T8 are congruent to each other too. Let us denote the angles
and lengths of the edges of the tetrahedra T1, T3 as shown in Figure 4.

Then we have the following system of equations:


sin γ
2 = x

2h

sin δ = x
√

3
2h

γ + 4δ = π

h2 = z2 − ( x
2 )2

x
2y

= tgδ√
3

x2 + y2 = z2

(1)

Up to similarity the system (1) has a unique solution. The polyhedron mentioned above

corresponds to x = 2
√

2 and θ
2 = π

3 .
This scheme can be realized also for construction of the fundamental set of the 2-bridge

link orbifolds and cone-manifolds in the spherical and hyperbolic cases.

2.3. The fundamental set of hyperbolic and spherical cone-manifoldsC(θ). We
note that the topological structure of the fundamental set for the orbifold C(π) in the spherical



452 ALEXANDER MEDNYKH AND ALEXEY RASSKAZOV

space and of the fundamental set for the orbifold C(2π/3) in the Euclidean space are the
same. Now the main idea is to construct a fundamental set for the cone-manifold C(θ), 0 ≤
θ < 2π/3 in hyperbolic space and C(θ), 2π/3 < θ < 4π/3 in spherical space of the same
topological type. Thus, after the identification of the faces of the fundamental polyhedron we
shall have a cone-manifold whose singular set is the figure-eight knot and whose underlying

space is the three-dimensional sphere S3.
This Section will be divided into two parts. In the first part we just suppose that the above

mentioned polyhedron P(θ) exists in the hyperbolic space H3. In such a way it is possible
to obtain a system of equations for the dihedral angles and the lengths of the edges of this
polyhedron and show that these solutions are sufficient for constructing the polyhedron. In the
second part the fundamental polyhedron for the spherical cone-manifolds will be constructed.

Suppose that the corresponding fundamental set P(θ) is already realized in the hyper-
bolic space. Identifying faces of the P(θ) by the isometries S and T we have that polyhedron
P(θ) consists of ten tetrahedra which are each congruent to T1 or T3. Assume that equalities
for the angles and the lengths of the edges of the tetrahedra T1 and T3 in the hyperbolic case
are similar to the equalities in the Euclidean case. Then, by replacing the Euclidean relations
between angles and lengths by the hyperbolic ones we have the following system of equations:



sin γ
2 = sh x

2
sh h

sin δ = sh x sin θ
2

sh h

γ + 4δ = π

ch h = ch z
ch x

2

coth y th x
2 = ctg θ

2 tg δ

ch z = ch x ch y

(2)

Solving the system of equations (2) directly, we get that it is equivalent to the algebraic
equation of order seven with respect to the variable u = cos 2δ

(Y + 4u4p2)((1 − u)2(2 − p2) − (1 + u)Yp2) (3)

= 4u2(1 − u)(2 − p2)(Y + 2u2p2)2

Where

Y = 1 − u − 4u2p2 (4)

u = cos 2δ (5)

p2 = 2 sin2 θ

2
(6)
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Equation (3) is equivalent to the following equation:

(2u2p2 + 2u − 1)(u + 1/2)(u − 1)(4u2p2 + u − 1)(u + p2 − 1) = 0 (7)

We are interested in the following factor of the equation (7):

2u2p2 + 2u − 1 = 0 (8)

In this case

ch x = 1

2up2
, (9)

ch h = √
2(1 + ch x) cos

θ

2
, (10)

ch z = (1 + ch x) cos
θ

2
, (11)

ch y = 1 + ch x

ch x
cos

θ

2
, (12)

γ = π − 4δ . (13)

All other factors of (7) u + 1/2 = 0, u − 1 = 0, 4u2p2 + u − 1 = 0, u + p2 − 1 = 0,
with a few exceptions in the case of multiple roots lead to degenerate geometrical situations.
Solving the equation (8) we have

u = cos 2δ =
−1 +

√
1 + 4 sin2 θ

2

4 sin2 θ
2

, (14)

REMARK 1. Formula (14) to determine the dihedral angle δ is also valid in the Eu-
clidean case (θ = 2π/3) and in the spherical case (θ > 2π/3).

REMARK 2. We note from (14) that δ = 1
2 arccos u and

0 < δ <
π

4
. (15)

Hence, γ = π − 4δ satisfies

(0 < γ < π) . (16)

Inequalities (15) and (16) are very important in our case. Taken together with the con-
dition 2γ + 8δ = 2π they give us that the ten tetrahedra T0, . . . ,T9 forming the polyhedron
P(θ) have mutually disjoint interiors.

Check the Poincare theorem conditions for the fundamental group of orbifold C(θ). Let
us consider P(θ) as curvilinear polyhedron with edges P0P5, P2P7, PiPi+1, i = 0, . . . , 9,
and with four curvilinear faces

Q1P5 · · · P0 , Q1P0 · · · P5 , Q0P7 · · · P2 , Q0P2 · · · P7 .
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Then under the action of the group 〈S, T 〉 the polyhedron P(θ) has exactly three edge cy-
cles. Two of them, P0P5 and P2P7, correspond to the identification of faces Q1P5 · · · P0,
Q1P0 · · · P5 and Q0P7 · · · P2, Q0P2 · · · P7. The third edge cycle PiPi+1, i = 0, . . . , 9 has as
its sum of angles 2γ + 8δ = 2π and corresponds to the relation sT StstST st = 1.

And as a result we have the following theorem:

THEOREM 4. For all 0 ≤ θ < 2π/3 the polyhedron P(θ) is fundamental for the
hyperbolic cone-manifold C(θ). The holonomy group of the cone-manifold C(θ) is generated
by isometries S and T , which identify curvilinear faces of the polyhedron P(θ) in the same
way as in Lemma 1.

In particular, for θ = 2π/n, n ∈ N the cone-manifolds C(θ) are orbifolds and the
following theorem holds:

THEOREM 5. Let S and T be hyperbolic isometries which identify curvilinear faces of
the polyhedron P(2π/n), n ≥ 4 in the same way as in Lemma 1.
Then

(i) the group 〈S, T 〉 is a discrete isometry group of the space H3 and has the following
presentation:

〈S, T | Sn = T n = S−1T ST −1S−1T −1ST S−1T −1 = 1〉
(ii) the polyhedron P is a fundamental set for the group 〈S, T 〉

(iii) the orbifold H3/〈S, T 〉 is isometric to C(θ), θ = 2π/n, n ≥ 4.

It is interesting to compare the values of angle δ of the polyhedra P(2π/n) for different
n (Table 2). We recall that for n = 2 the P(2π/n) is realized in the spherical space, for n = 3
in the Euclidean space and for n > 3 in the hyperbolic space.

Consider the spherical case. For 2π/3 < θ < 4π/3 the following theorem holds.

THEOREM 6. For all 2π/3 < θ < 4π/3 the polyhedron P(θ) is fundamental for the
spherical cone-manifold C(θ). The holonomy group of the cone-manifold C(θ) is generated

TABLE 2

n p2 u δ

2 2 0.30901 360

3 1.5 0.33333 35.26430

4 1 0.36602 34.26460

5 0.690983 0.39915 33.42460

6 0.5 0.41421 32.76520

7 0.376510 0.43028 32.25710

8 0.29289 0.44262 31.86440

9 0.23395 0.45217 31.55830

10 0.19098 0.45965 31.31170

∞ 0 0.5 300
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by the isometries S and T , which identify curvilinear faces of the polyhedron P(θ) in the same
way as in Lemma 1.

The proof of this theorem is based on the fact that in the spherical space the geometrical
parameters of tetrahedra T0, . . . ,T9 can be found from the spherical analog of system (2):



sin γ
2 = sin x

2
sin h

sin δ = sin x sin π
n

sin h

γ + 4δ = π

cos h = cos z
cos x

2

ctg y tg x
2 = ctg π

n
tg δ

cos z = cos x cos y

(17)

Hence, as above, we have the following equation with respect to the variable u = cos 2δ:

2u2p2 + 2u − 1 = 0 .

Thus,

u = cos 2δ =
−1 +

√
1 + 4 sin2 π

n

4 sin2 π
n

(18)

cos x = 1

2up2
, (19)

cos h = √
2(1 + cos x) cos

θ

2
, (20)

cos z = (1 + cos x) cos
θ

2
, (21)

cos y = 1 + ch x

ch x
cos

θ

2
, (22)

The remaining part of the theorem can be proved in the same way as in Theorem 4.

3. Schläfli formula and volumes of the cone-manifoldsC(θ)

Essentially, all the known results about volumes in the spherical and hyperbolic space
either are contained in papers of Lobachevsky [14] and Schläfli [21] or based on the ideas of
these papers. Among numerical papers on this subject we note papers of Coxeter [2], Kneser
[12], Milnor [18] and Vinberg [24]. In particular, Schläfli established the formula of volume
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differential, depending on the differentials of angles in the spherical n-dimensional space.
Coxeter and Kneser established the formula in the hyperbolic space.

In three-dimensional space the results of these investigations can be represented by the
theorem:

THEOREM 7 (Differential Schläfli formula). For a convex polyhedron in a space of
constant curvature k, the angles of which depends on some set of parameters analytically, the
volume V, the lengths �i of edges and the corresponding dihedral angles αi are linked to each
other by the following relation [18, 24]:

kdV =
∑

i

�i

2
dαi . (23)

We apply Theorem 7 to calculate the volumes of the cone-manifolds C(θ) to the polyhe-
dron constructed in the previous Section. First we make some remarks. As mentioned above,
it is possible to divide the polyhedron P(θ) into the ten tetrahedra T0, . . . ,T9. We note that
from the polyhedron’s construction, the sum of the dihedral angles θ0, . . . , θ9 corresponding
to the edges P0P1, . . . , P9P0 is equal to 2π , and the lengths �θi of the edges are equal to �0.
Hence, we have: ∑

i

�θi dθi = 0 . (24)

Actually, ∑
i

�θi dθi =
∑

i

�0dθi = �0

∑
i

dθi = 0 .

Similar arguments are correct for the other set of edges forming incident cycles (i.e. pairwise
equivalent under the identification of the polyhedron’s faces and producing as their sum the
angle 2π). Thus, the differentials of incident angles are not a part of the final formula. Except
for the edges forming incident cycles, the polyhedron has just two non-incident edges P0P5

and P2P7 with the same length � and dihedral angle θ . So, the differential of volume is equal
to

kdV = 1

2

∑
i

�idθi = 1

2
�dθ + 1

2
�dθ = �dθ . (25)

We find the explicit expression for � and V as functions of θ in the hyperbolic and spherical
spaces.

In the hyperbolic case, from formulas (8–12) we have

ch
�

2
= cos

θ

2

√
4 sin2 θ

2
+ 1 , (26)

and

ch� = 1 + cos θ − cos 2θ . (27)
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Then, taking into account that k = −1, we have

−dV = 1

2
arcch(1 + cos θ − cos 2θ)dθ (28)

and for all 0 < θ, θ̃ < 2π/3

V (θ) = −
∫ θ

θ̃

arcch(1 + cos θ − cos 2θ)dθ + V (θ̃) . (29)

For angle θ̃ → 2π/3 from left we have that lenghts of edges PiPi+1, (i mod 10) and P0P5,
P2P7 of the polyhedron P(θ) are equal to zero. Actually, chx → 1, chy → 1, chz → 1.
Then V (θ̃) → 0 for θ̃ → 2π/3.

Finally, for the limiting situation in formula (29) we have the following theorem:

THEOREM 8. The hyperbolic volume of the cone-manifold C(θ), 0 < θ < π/3 is
represented by the formula:

V (θ) =
∫ θ

2π
3

arcch(1 + cos θ − cos 2θ)dθ . (30)

We note, that a more complicated version of this formula, obtained from (29) as θ → 0,
can be found in [13].

In the spherical case the situation is more specific. Formulas (18)–(22) allow us to calcu-
late Y = cos � in the following way: Y = 1+cos θ−cos 2θ . Then � = ± arccos Y +2πk, k ∈
Z. Thus, we need just to define the sign and value of k. Now we show that this choice depends
on the angle θ . More exactly, the following lemma holds:

LEMMA 9. For the fundamental polyhedron P(θ)

(i) for 2π/3 < θ ≤ π , � = arccos Y , and for π < θ < 4π/3, � = 2π − arccos Y .
(ii) for θ = 4π/3 the singular set of the cone-manifold C(θ) degenerates to a general-

ized knot with two vertices, pairwise joined by four arcs (Figure 8).

PROOF. We observe the evolution of the tetrahedra T1, T3 for 2π/3 < θ ≤ π . The
functions cos x, cos y and cos z on the interval 2π/3 < θ ≤ π are decreasing functions. Thus,
the functions x, y and z are expressed by the main branch of the arccosine increase and

FIGURE 5. The tetrahedra T1 and T3 for 2π/3 < θ ≤ π .
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FIGURE 6. The tetrahedra T1 and T3 for π < θ < 4π/3.

0 < x ≤ π

5
, 0 < y ≤ π

2
, 0 < z ≤ π

2
. (31)

Now we observe the evolution of tetrahedra T1, T3 for π < θ < 4π/3.
In this case, the functions x, y, z are expressed by the main branch of arccosine, functions

y and z increase, function x decreases and

0 < x ≤ π

5
,
π

2
< y ≤ π ,

π

2
< z ≤ π . (32)

The new parameters

x = arccos

(
1√

3 − 2 cos θ − 1

)
, (33)

y = arccos

(
cos

θ

2

√
3 − 2 cos θ

)
, (34)

z = arccos

(
cos

θ

2

(
1 + 1√

3 − 2 cos θ − 1

))
(35)

are continuous and depend on the parameter θ analytically. Let us calculate the length of �

depending on θ . We have:

� = 2y, where y = arccos

(
cos

θ

2

√
3 − 2 cos θ

)
.

Due to formulae

2 arccos y = arccos(2y2 − 1) , if y ≥ 0 ,

2 arccos y = 2π − arccos(2y2 − 1) , if y < 0 , (36)

in case of 2π/3 ≤ θ ≤ π we obtain

cos
θ

2

√
3 − 2 cos θ ≥ 0 , (37)

� = 2 arccos y = arccos(1 + cos θ − cos 2θ) . (38)
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If π < θ < 4π/3,

cos
θ

2

√
3 − 2 cos θ < 0 , (39)

� = 2 arccos y = 2π − arccos(1 + cos θ − cos 2θ) . (40)

Now we show, that the singular set of the cone-manifold C(θ) degenerates for θ = 4π/3.
Actually, for θ → 4π/3, cos x → 0. Therefore, the distance between the points Q0, Q1 goes
to zero and for θ = 4π/3 becomes the vertex of valency four. Thus, the figure-eight knot
turns into a singular knot in Birman’s terminology [1]. The detailed structure of the singular
set of the cone-manifolds C(θ) for θ = 4π/3 will be described in the fourth Section.

Using Schläfli formula we calculate the volume of cone-manifolds in the spherical space.
As before, taking into consideration that k = +1, we have

V (θ) =
∫ θ

θ̃

arccos(�)dθ + V (θ̃) , (41)

where � is defined by formulae (38) and (40), θ̃ and θ belong to the interval (2π/3, 4π/3). We
note, that for θ̃ → 2π/3 from formulae (18)–(22) x, y, z → 0, and, consequently, V (θ̃) → 0.
Hence,

V (θ) =
∫ θ

2π
3

arccos(�)dθ . (42)

Consider the two cases.
If 2π/3 < θ ≤ π , then � = arccos(1 + cos θ − cos 2θ) and

V (θ) =
∫ θ

2π
3

arccos(1 + cos θ − cos 2θ)dθ . (43)

In particular, for θ = π we have V (π) = π2/5. It is an obvious consequence of the fact that
the two-fold covering of the π-orbifold is the Lens space L(5, 2), which is the 5-fold covering
over the three-dimensional sphere. Recall, that the volume of the three-dimensional sphere is

equal to V ol(S3) = 2π2.
If π < θ < 4π/3, then � = 2π − arccos(1 + cos θ − cos 2θ), and

V (θ) =
∫ θ

2π
3

�dθ

∫ π

2π
3

�dθ +
∫ θ

π

�dθ

= π2

5
+

∫ θ

π

(2π − arccos(1 + cos θ − cos 2θ))dθ

= 2π(θ − 0.9π) −
∫ θ

π

arccos(1 + cos θ − cos 2θ)dθ . (44)

Thus we have the following theorem:
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THEOREM 9. The spherical volume of the cone-manifold C(θ) is given by the follow-
ing formulae:

V (θ) =
∫ θ

2π
3

arccos(1 + cos θ − cos 2θ)dθ , if 2π/3 < θ ≤ π , (45)

V (θ) = 2π(θ − 0.9π) −
∫ θ

π

arccos(1 + cos θ − cos 2θ)dθ , if π < θ < 4π/3 . (46)

We note, that as obtained in [8], the spherical structure exists on the cone-manifold C(θ)

only for 2π/3 < θ ≤ π .

4. The cone–manifold structure’s degeneration

We start this section from the following remark. Consider the two edges P0P1 and Q0Q1

of the tetrahedron T0. They trace the shortest distance between the axes of the elliptic elements

S, T and S, T ST S−1T −1. The method of identifying the faces of the polyhedronP(θ) allows
us to conclude that these edges correspond to the two tunnels of the figure-eight knot, shown
in Figure 7. Note that the arcs Q0P1, Q0P0, Q1P0 and Q1P1 divide the singular set of the
cone-manifold into four parts with lengths �/2.

Due to the results of the previous sections, the lengths P0P1 and Q0Q1 are equal to x

and can be obtained from the formula:

cos x = 1√
3 − 2 cos θ − 1

for θ from interval 2π/3 < θ < 4π/3. As it was mentioned above, for θ → 4π/3, we have
cos x → 1, and then x → 0. It means, that the singular set of the cone-manifold C(θ) for
θ → 4π/3 becomes the degenerate knot shown in Figure 8.

FIGURE 7. The tunnels P0P1 and Q0Q1 of the figure-eight knot.
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FIGURE 8. The singular set of G(θ).

The singular knot is a graph with two vertices, pairwise joined by four edges. All the
edges have the same length �/2 = π . The cone angle around each edge is equal to θ = 4π/3.
Denote by G(θ) the cone-manifold with singular set shown in Figure 8 and cone angle θ .
Then we have the following statement:

LEMMA 10. The cone-manifold G(θ) is realized in spherical space for all π < θ ≤
2π and has the spherical volume equal to 2(k − 1)π2, where k is defined by equality θ = kπ .

PROOF. Consider the sphere S2(θ, θ, θ, θ) with four conic points. It can be obtained by
gluing together two spherical squares Q(θ/2) with angles θ/2 along their common boundary.

Consequently, for all π/2 < θ/2 ≤ π it is realized in two-dimensional spherical geometry S2.

Consider cone K(θ) over S2(θ, θ, θ, θ). Obviously it can be realized in spherical geometry

S3 and represents the half of the cone-manifold G(θ). More precisely, G(θ) is doubled K(θ),

obtained by mirror reflection in the boundary ∂K(θ) = S2(θ, θ, θ, θ).
We calculate the volume of the cone-manifold G(θ). For this purpose we imagine K(θ)

as a union of two cones over the square Q(θ/2). Since the ratio of the square’s area to the

area of the sphere S2 is equal to (2θ − 2π)/4π = (k − 1)/2, we have

V ol(K(θ)) = (k − 1)

2
V ol(S3) = (k − 1)π2 , (47)

then

V ol(G(θ)) = 2V ol(K(θ)) = 2(k − 1)π2 . (48)

Note, that for θ = π the considered cone-manifold G(θ) is realized in Euclidean geometry

E3 and has an infinite volume. For θ = 2π , G(θ) coincides with the three-dimensional sphere

S3 and has volume 2π2.
To conclude this Section, we will prove the following theorem:

THEOREM 11. The limit of the volumes of the cone-manifolds C(θ) for θ → 4π/3 is
equal to the volume of the cone-manifold G(4π/3):

lim
θ→4π/3

V ol(C(θ)) = V ol(G(4π/3)) .
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FIGURE 9. The fundamental polyhedron P(4π/3).

To prove the theorem it is sufficient to prove the convergence of fundamental polyhedra.
Show, that we can choose as the fundamental polyhedron for the cone-manifold G(4π/3) the
polyhedron obtained from P(θ) for θ → 4π/3. Actually, for θ = 4π/3 the points Q0, Q1

and Pi , i = 0, . . . , 9 belong to just two points: Q = Q0 = Q1 and P = P0 = P1 = · · · = P9.
Moreover, the axes of elements S and T belong to circles, crossing P and Q. The fundamental
set is bounded by two interior and two exterior semiplanes. The two exterior planes intersect
in axis of element S, the two interior planes intersect in the axis of element T . In Figure 9
the fundamental polyhedron P(4π/3) of the cone-manifold G(4π/3) is shown bisected by a
plane into two parts.

Thus, the singular set of the limit cone-manifold consists of two vertices, pairwise joined
by four arcs. After identifying the faces of the limit polyhedron under the action of the isome-

tries S and T we have the whole space S3. Consequently, we have the coincidence of the
geometrical parameters of the polyhedron P(θ) with the geometrical parameters of the cone-
manifold G(4π/3) fundamental polyhedron.

Now the statement of the theorem follows immediately from the equation:

lim
θ→4π/3

V ol(C(θ)) = lim
θ→4π/3

(
2π(θ − 0.9π) −

∫ θ

π

arccos(1 + cos θ − cos 2θ)dθ

)

= 13π2

15
−

∫ π

2π/3
arccos(1 + cos θ − cos 2θ)dθ = 2π2/3

= V ol(G(4π/3)) .
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