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Abstract. The relationship between mixed multiplicities of arbitrary ideals in local rings and Hilbert-Samuel
multiplicities was solved by Viét in [8]. In this paper, we extend some important results of Viét in [8, 9, 10, 11] to
modules. We build the concept of (FC)-sequences of modules and use this notion to study reductions of ideals with
respect to modules, mixed multiplicities of modules and multiplicities of Rees modules.

1. Introduction

Throughout this papelA, m) denotes a Noetherian local ring with maximal idesl
infinite residue fieldc = A/m; M a finitely generatedd-module with Krull dimension
dmM =d > 0.

Let J be anm-primary ideal and /1, I, ..., I;) be a set of ideals oA such thatl =
I1 - - I, is not contained in/AnnM. Set

M
a:b°°=U(a:b"); M*:W and q:dImM*
M -

n>0

Then using the same argument as in the proof of Proposition 3.1 of Viét [8], we have that
there exists a positive integersuch that the Bhattacharya function [2]

; Jt e LM
A g

is a polynomial of degreg — 1 for all values of, n1, no, ..., ng > u.
Now, we write the terms of total degrge— 1 in this polynomial in the form

ldo+1] lda] 1,y nongt o ng
B(I’l,l’ll,...,l’ls)z Z EA(JO ’Il ’...’I‘Ys;M)doldl!"'ds!’

do+d1+...+d3 :q—l
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thene (Jdot+1], I{dﬂ, A Is[ds]; M) are non-negative integers and are called the mixed mul-
tiplicity of the set of idealsJ, I, . . ., I;) with respect taVf of the type(do + 1, d1, . . ., ds)
(B(n,n1, ..., ns) is called the Bhattacharya polynomial [2]).

It has long been known that mixed multiplicity is an important object of algebraic geom-
etry and commutative algebra. In the case that local rings, first, Risler and Teissier in 1973
showed that mixed multiplicities of twa-primary ideals are multiplicities of an ideal gen-
erated by elements chosen sufficiently generally [4]. Rees in 1984 proved that each mixed
multiplicity of a set ofm-primary ideals is the multiplicity of a joint reduction of them [3]. In
general, the relationship between mixed multiplicities of a set of arbitrary ideals and Hilbert-
Samuel multiplicities was solved by Viét in 2000 [8]. In answer to this problem, he built a
sequence of elements calledC)-sequence. The results of Viét in [8, 9, 10, 11] showed
that (FC)-sequences carry the important information on mixed multiplicities and reductions
of ideals ...

The aim of this note is to show that one can extend many results of Viétin [8, 9, 10, 11]
to modules. Although most of the argument of [8, 9, 10, 11] can apply to modules, there are
some critical places which have to be dealt with.

The important key to statements and proofs of our results is the concefBiCpf
sequences in modules. As in [8], the proof of the existenc@-6f-sequences in modules
is based on our generalized Rees’ Lemma (Lemma 2.2, Section 2).

This paper is divided into 4 sections.

In Section 2, first, we construct the concept(BC)-sequences in modules. Next, we
show a lemma called generalized Rees’ Lemma (Lemma 2.2) and use this lemma to prove the
existence of weakFC)-sequences (Proposition 2.3). Last, we get a result concerning reduc-
tions of ideals with respect to modules: maximal wékk:)-sequences of modules generate
generalized joint reductions of ideals with respect to modules (Theorem 2.9).

In Section 3, we link the mixed mutiplicities of modules and Hilbert-Samuel multiplicity
via (FC)-sequences of modules. Main results of this section are Theorem 3.4, Theorem 3.6.

In Section 4, as applying the results on mixed multiplicities of Section 3, we establish
multiplicity formulas of Rees modules with repect to arbitrary ideals (Theorem 4.2). In partic-
ular, we get interesting results concerning multiplicities of Rees modubespfmary ideals
(Theorem 4.3, Theorem 4.4).

2. (FC)-sequences of modules

In this section, first, we build the concept@fC)-sequences in modules and show some
important properties ofFC)-sequences. Last, we use these sequences to study reductions of
ideals with respect to modules.

We now turn to the definition ofFC)-sequences of modules.

DEFINITION 2.1. LetU = (I1,..., 1) be a setof ideals oft suchthatl = I1--- I

. : : M :
is not contained inVAnnM. SetM* = R We say that an element € A is an
M -
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(FC)-element ofM with respect tdJ if there exists an ideal; of U and a positive integer;
such that
(FCl) o x el \ml; and

ni ng ¥ * __ ni—1 gni—1nip ng g%
L= IM NxM™ =xI;" - L7 1 Ii+1 e I M

for all n; > n; and all non-negative integets, ..., n;_1, nj4+1, . . ., is.
(FC): Op:x S0y

M
(FG) - dim<7> =dimM* — 1.
xM : [

We callx a weak{FC)-element of\f with respect td’ if x satisfies the condition&Cy)
and(FCy) with respect tdJ.

. — M
Letxs, ..., x; be asequence ih. Foreach =0,1,...,r—1,setM = ———;
(x1, ..., x;) )M
_ A _ _ _ _ ) -
A= ﬁ andly = 1A, ..., I; = I,A. Letx; 1 denote the image af 1 in A. Then
X1, .00, Xi
(i) x1,...,x; is said to be anFC)-sequence oM with respect toU if x;1 is an
(FO)-element ofMf with respecttaly, ..., I;) fori =0,1,...,t —1.
(i) x1,...,x is called a weakFC)-sequence oM with respect toU if x;11 is a

weak<{FC)-element ofMf with respecttaly, ..., I;)fori =0,1,...,t — 1.

The following lemma will play a crucial role for showing the existence of wéaky-
sequences.

LEMMA 2.2 (Generalized Rees’Lemma)Let (A, m) be a Noetherian local ring with
maximal ideal m, infiniteresidue field k = A/m. Let M be a finitely generated A-module and
U=(I1,...,1;) beasetof idealsof A. Let ¥ be a finite set of prime ideals non containing
Iy---I;. Thenforeachi = 1, ..., s, thereexistsan element x; € I; \ m/;, x; not contained
inany primeideal in X', and a positive integer k; such that

Iil o Iir,- . ISrsM Nx;M = xi]]r-i . Iirrlllirifllir_fizl . Isr‘ M

for any r; > k; and all non-negativeintegersri, ..., ri—1, rit1, .-, s.
PrROOFE  Set
RU)= @ 1*-1pta and MUY= @ It IPMite 1
1. Fs€EZ Pl ls€Z
where(r1, . .., ty) is a set of indeterminates amlﬂ = Aforr; <0. ThenR(U) is a Noether-

ian graded ring and/ (U) is a Noetherian gradegl(U)-module. Seti; = tfl, e Uy = t;l.
Itis easily seen that; - - - us is a non-zero-divisor i (U). By the corollary of Lemma 2.7
in [3], the set of prime associated wighy - - - u,)" M (U) is independent o and so is finite.
We divide this set into two subset&i, consisting of those containings; andS, those that
do not.
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FromI; /mI; is a vector space over the infinite fidlcand the set&’, &, are both finite,
we can choose; € I; \ m/; such thaty; is not contained in any prime ideal belongingXo
andx;#; is not contained in any prime ideal belonging3g.

Set

Wy ug)"MWU) : x;t;

M, =
(w1 ug)"MU)

We will show thatM,, is annihilated by(Z;#;)" if N is sufficiently large. IfP e Assg 1y (My),
then there existg € (u1---uy,)"MU) : x;t; such thatP = (u1---us)"MU) : z. Since
x;t; € P, we haveP € G,. Consequently/;#; is contained inP. This implies thatl;s; is
contained in,/Anng ) (M,). Sincel; is finitely generated, there exists an integéer> 0
such that

(L)Y € Anngy (M) .

In addition, M,, is a finitely generated gradeRl(U)-module, this implies that if; is suffi-
ciently large then any element &1, of degreg(ry, ..., ry) is zero.
Now, let B(M) denote the submodule &1 (U) consisting of all finite sums:

Z Cror 3t - 10, Where ey o € ;M N IH - 1M .

ThenB(M) has a finite generating set consisting of elements of the febpny* - - - 15*, where
b; € M. We can find an integer such that

r ri—1,ri—1 riz1
(ul"'us)qbitll"'t,'l_lti’ ti-l:l ”'t;‘ e MU)

for all elements;;b;t;* - - - £5*. Hence
B(M) C x;t; M(U) : (uy---ug)? .
Suppose thatr;* - - - 1;* € B(M), wherez € x;M N I;*--- I;* M. We have

(ug-- -us)qztil s tzs = xitiw,

wherew is a homogeneous elementMf(U) whosei-th degree equal tg — ¢ — 1. By the
first part of the proofw will belong to (u1 - - - us)? M (U) for sufficiently larger;. Since the
generating set oB(M) is finite, we can choose a positive integeisuch that ifr; > k;, then
w € (ug---ug)?MU). Hencew = (u1 - - - us)?w’ for w’ € M(U). Note that

Is

(1 ug)dzet -1l = xitjw, (ug---us)zet -1 = xiti(uy -+ - us)?w’.

Since(uy - - - us)? is a non-zero-divisorzzy* - - - 1" = xjt;w’ and sozryt - - - 15" € x;t; M(U).

Therefore,z € x;I;* - -+ Il.rfllll.”'_lll.rj:ll ... I*M. Hence ifr; > k;, then

NMOIE - ISM C oI L T I M S M0 I I M
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for all non-negative integers, ..., ri_1, ri+1, ..., s. That means for ang > k;, we get
ry r g ri—1yri—=1yriqa r
I IPM O M o= xdyt - LT M
for all non-negative integers, ..., ri—1,rit+1, ..., s.
The proof is complete. [ ]

The following proposition will show the existence of wedke)-sequences.

PropPOSITION 2.3. Let (I1,..., 1) bea set of idealssuchthat I = I1--- I is not

contained in /AnnM. Thenforanyl <i < s, there exists a weak-(FC)-element x; € I;
with respect to (11, ..., Iy).

M . . . .
PROOE SetF = Assy <W> Since! is not contained i AnnM, we have
M -

F # . Itis easily seen thaf is finite and” = {P € Ass(M) | P 2 I}. By Lemma 2.2,

foreachi =1, ..., s, there exists an element € [; \ m/; such thaty; satisfies the condition
(FCp) andx; ¢ P forall P € F. Sincex; ¢ P forany P € F, x; also satisfies the condition
(FCy). Hencex; is a weak¢FC)-element ofM with respect tq /1, .. ., Is). [ |

(FO)-sequences in modules have some important properties as follows.

PROPOSITION 2.4. Ifx e I; isaweak-(FC)-element of M with respectto (11, ..., I;),
then
LY IS MOxM = x Iyt ey (2.2)
for all sufficiently largenz, .. ., ny.

PROOF Sincex satisfies the conditiotFC,), we have
(It I M 40y : 1) N (xM 4Oy - I°) = xIj*t- - 1,.”"*1. I M 4+ (Opp 2 1)

or ]i’l e ISMNO (M 40y I®) 4+ Oy 2 I®) = xlfl e ]lflf_l...[;’sM+(0M - ) for
all sufficiently largens, ..., ng. Since

LY I MO XM 4 Oy : 1) S I 1M 0 (xM 4 Oy - 1) + (O 2 1)
andx Iy 1M M Oy s 1%°) S I I M N xM A+ Oy 1), it follows that
XIS M Oy I = [ IS M N XM+ (O )
for all sufficiently largens, . . ., ns. Therefore,

XIS M Oy )N I M

1

=1 IPMNOxMA4 Oy I)N I 1M
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for all sufficiently largens, ..., n,. By Artin-Rees lemmaQy : 1) N If*--- [["M =
0y for all sufficiently largens, . .., ny. Hence we get (2.1) for all sufficiently larga, . . .,
. [ |

In the case that m-primary ideals, we have the following interesting result.

PROPOSITION 2.5. Let U = (11, ..., 1) be a set of m-primary ideals. Then there
exists a weak-(FC)-sequence x1, . .., x4 in U?:l I; withrespectto U. And if x1, ..., xs isa
weak-(FC)-sequencein Uj’zl I; with respect to U, then x1, . . ., x4—1 isan (FC)-sequencein
UZ, I; with respect to U.

M . .
PROOF Setl =11---I;andM* = TR By Proposition 2.3, there exists a weak-
M -

(FC)-elementx; € Uf-lzl I; with respecttd/. From d = dimM = ht(/ + AnnM /AnnM) >
0 andl = I1---1; ism-primary, it is easily seen that dim* = dim M. We will show that

dim(M/x1M) =d — 1.
Sincex; satisfies the conditiotFCy), x1 is a non zero-divisor idf*. Thus, we have
dim(M*/x;M*) =dimM* —1=d — 1.
It follows that
d—1 < dmM/x1M) < d.

If dim(M/x1M) = d, thenx; belongs to some minimal prime ideal of Ag$. This
implies thatx is a zero-divisor ilM* (contradiction). Therefore, diW/ /x1M) = d — 1. By
induction, there exists a wegkC)-sequencesy, ..., xg in Uj’zl I; with respect td/. And if
X1, ..., x4 IS @a weak¢FC)-sequence irUj’zl I; with respect tdJ, then

d|m( M >=d|m|: M/(Xl,...,X[)M i|
(X1, ..., x)M : I*® (L, - )M - 1®)/(x1, . )M

. M
—dim( M) =
(-xlv ] .X'[)M

forall t+ < d. Hencexy,...,x4—1 is an(FC)-sequence oM in U?:l I; with respect to
U. [ |

PROPOSITION 2.6. LetU = (I1,..., 1) beaset of ideals. Assumethat x € I; isa
weak-(FC)-element of M with respect to U. Then there exists an integer ¢ such that

[Ifl---ls”SM:xA]ﬂIfl---If---IS"SMzIfl---ll»”"_l---ls”sM

foralln; >c, j=1,...,s.
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PROOFE Setl = I1---I;. By Proposition 2.4 and Artin-Rees lemma, there exists an
integerc such that

n s _gn ni—1 ni—Llynit1 N
I ISMOxM =xIyt - DT M

and(Oy : I®) NIt I¢ - [;"M = Oy forallnj > ¢, j=1,...,s. Consequently, we
have
(It M xAIN I IS IS M
= [ IMNxM) :xAIN LY I IS M
= TS M x AT IS IS M
=T S M Oy XN I M
Ct e T M 40y I NI IS M
=TS M Oy IO NI I M

zlfl...]ﬂi—l...lgsM

1

foralln; >¢c, j=1,...,s. Hence

[I{'l---IS”SM:xA]ﬂIfl---If---IfszIfl---l-"i_l---IS”SM

1

foralln; >c, j=1,...,s. ]

It is easily seen that i is m-primary ideal and arbitrary ideal, then § : (J1)*® =
Op : I®and xM : (JI)® = xM : I*°. This factimmediately gives the following result.

LEMMA 2.7. Let(I1,...,1I,) beasetofidealssuchthat/ = I --- I, isnot contained
in~AnnM and J1, ..., J; bem-primary ideals. Suppose that x € I; be an (FC)-element of
M with respect to (J1, ..., Js, I1, ..., Is). Then we can replace the condition (FCy) by the
condition

Opr:x C 0y I

and the condition (FCz) by the condition

dim<L> = dim<L> —1.
xM : I>® Op i I®

Viétin [11] gave the concept of generalizednbreductions of ideals in local rings. This
notion is a generalization of joint reductions of Rees in [3]. Now, we extend generalized joint
reductions of ideals in [11] to modules as follows:
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DEFINITION 2.8. Letly,..., I, beideals. A set ofidealsq, ..., J;) such thaty; C
Ii,i=1,...,t <siscalled a generalized joint reduction&f . . ., I; with respect taV if

1 1 n
ety = ZJ, ARy S

for all largens, .. ., ny.

The relationship between maximal wedk<)-sequences and generalized joint reduc-
tions was determined by Theorem 3.4 of [11] in local rings. We extend this result to modules
by the following theorem.

THEOREM 2.9. Let I1,...,1I, beidealssuchthat I = I1---1I; is not contained in
~/AnnM and J be an m-primary ideal. Suppose that

S1=(x12, ..., xmm) € 1
= (x21,...,x2) € Iz
S = (X1, - -,ti) cr
and x11, ..., X1, X21, ..., X240, ..., X¢1, - . ., Xgp 1S @ Maximal weak-(FC)-sequence of M in

(Ji_1 Ii withrespect to (J, I1, .. ., I;). Then the following statements hold.
(i) Foranyk <t, wehave

1, M N Lty = Z A ety

for all largens, ..., n.
(i) 1,...,3; isageneralized joint reduction of I3, ..., I; with respect to M.

PROOF The proof of (i): Using induction ok < . Fork = 1, we will show that
(11, - x1)M O I = (g, ) BT sty

for all largens, ..., ny by induction oni < m. Fori = 0, the result is trivial. Suppose that
the result is true fof — 1 > 0. As the next step, we will prove that the result is also true for
i <m. SetN = (x11, ..., x15-1))M : I*°. Sincex1y, ..., x1; iS a weakéFC)-sequence of
M in Iy with respect tdJ, I, ..., Iy),

M4+ NN AP T 4 Ny = e T M e N
for all largeny, ..., ns. Therefore,

(vu M+ N) O Ity
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=t st M 4 N)Y O (e M+ N)
— IfH'l L IS”SJrlM N (xy 1111152+1 . I;lerlM +N)

=g sty sty AN,

for all largeny, ..., ny. By Artin-Rees lemma, we have
gttty N < Bt st M 0 (g, - xaG-1)M
for all largeny, ..., ns;. By inductive assumption,
M AN C (g, xR sty
for all largeny, ..., ny. Consequently,
L mTIMAN = (g, xgo) Py
for all largeny, ..., ny. Hence we get

M + Ny Nt sty
= xu [ L2 I (v, xR 1M
= (x11, ... ,xll-)lfllgﬁl Ity
for all largensy, ..., ny. By Artin-Rees lemma,

(x1;M + N) N [fl+l. .. [S"S'H'M = (x11,...,x1)M N 1111+1. - IS"5+1M

for all largeny, ..., ns. Thus,
(11, o )M O I TN = (g, L ) IR sty
for all largeny, ..., ny andi < m. From this it follows that
1 1
(xX12, ..., x)M N 1f1+ c ITIM = (xgy, ...,x1m)1f11§2+ sty
or

1M N I]'_l1+l L I;ls+lM — 311f1]£12+1 . I;ls+lM

for all largensy, ..., ns. The resultis proved far = 1.
Suppose that the result has been provedcfer1. As the next step, we claim that the
resultis true fok. Setft = (31, ..., Jxk—1)M : I°°. By Artin-Rees lemma, we have

1 1 ~ ~
UTRW AR (R Y el (RN (A A NN S Y )
and

O+ My n sty s M N (3, SO M
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for all largens, ..., ny. Hence

1 1 N N
nn 1f1+ "’IsnSJrlM = Ifl-‘r "'ISnSJrlMﬂ (81, ..., Sk—1)M

and
O+ My N sty = sty N (S, 30M (2.2)
for all largeny, ..., ns. By the resultis true fok = 1,
O+ M) N P TIM y = e T M 4
for all largens, ..., ny. From the above facts, we get

M+ F\‘s‘kM)mflJrl...]g:JrlM = If1+1’”Igs+lle(m+SkM)m(l]’_ll+l"'[35+1M+m)
= 1f1+1 . ]snerlM N (Sklf”l' » I]:lk . IS"SJrlM £
= S e ey
= TsklflJrl e Ilfk . 15'%+1M + 81, ., Sk—)M N I{’”l o IS”‘HM 2.3)

for all largeny, . . ., ny. By inductive asumption applied {@ — 1), we see that

k—1
O SeM Ay =Nty (2.4)
j=1

for all largens, ..., ny. Hence by(2.2), (2.3) and(2.4), we get

k
1 QMO Iy = Yt re sty
j=1
for all largeny, ..., n;.
The proof of (ii): Sincex1y, ..., X1m, ¥21, ..., X2, - . ., X11, . . ., Xzp IS @ Maximal weak-

(FO-sequence oM in U;_, I; with respecttaJ, I1, ..., Iy). Hence by Proposition 2.3, we
have

Bt st C (3, .., 30M

for all largeny, .. ., ny. By applying the part (i), we get (ii).
The proof of Theorem 2.9 is complete. ]

In the case that all ideals ane-primary, we have the following collorary.

COROLLARY 2.10. Let1ly,...,I; bem-primaryideals, whered = dimM > 0. Then
thereexistsa set of elementsxi, ..., x4, wherex; € I; suchthatx1, ..., xg isajoint reduction
of I1, ..., I; with respect to M.
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PROOFE By Proposition 2.3, there exists a maximal wa&lG)-sequence, .. ., x4
with respect to(/1, ..., 1), wherex; € [;. Hence by Theorem 2.9, we get Corollary
2.10. [ |

3. Mixed multiplicities of modules

In this section, we will give some important results on mixed multiplicities of modules
by using the concept @FC)-sequences. Most of all results are based on extending the results
of Viétin [8, 9, 10, 11] to modules.

By applying the argument as in [8, Proposition 3.1] to modules, we get the following
proposition.

ProPOSITION 3.1. Let (I1,..., 1) bea set of idealssuchthat I = I1--- I is not

. . . . M
contained in vANnM and let J bean m-primary ideal. Set M* = N Then
M -

i 1! JUL LM I M iiently Targe
A Jtesm) A JrHL L M y 1arg

n,ni,...,ns.
(i) ea(Uor pfl T ) = ettt pR T e,

To establish the relationship betweerixed multiplicities of modules and Hilbert-
Samuel multiplicities, we need the following lemma.

LEMMA 3.2. Let(I,...,1I,) beasetofidealssuchthat/ = I; --- I isnot contained

in ~/AnnM and let J be an m-primary ideal. Set M* = and ¢ = dimM*. Then

Op : I®
the following statements hold.

(i) ea(tottl g0 O ary £ 0 and eq(sot Y [0 10 Ay = e
M*).
(i) If ht(/ + AnnM/AnnM) > 0, then e, (st [0y Ay = ey
M).

PROOF  The proof of (i): By using the argument as in [8, Lemma 3.2], we have

e(J; 1"M*) = ea(J1, 1% 1190 ) (2.5)

J}lo]]’fl . I;lsM
Jrotlpte I M
for all values ofng, n1, ..., ns; > u. Consider the exact sequence

0— I"M* > M* - M*/I"M* — 0.

whereu being an integer such thm( ) is a polynomial of degreg — 1

Sincel! is not contained iR/AnnM, there exists an elemente I* such that is a non-zero-
divisor in M*. Therefore,

dim(I“M*) = dimM* > dim(M* /1" M*) .
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Hence by [1], we have

e(J; I"M*) =e(J; M*). (2.6)

By (2.5) and(2.6), we get (i).
The proof of (ii): Consider the exact sequence

0-0y:I®°—>M-—> M"=0.

It is easily seen that AggM) = Ass4(0y : 1%°) U Assq(M*) and Ass (0 : I°) N
Assy (M*) = @. From these facts and note thath# AnnM /AnnM) > 0, any prime ideal
P € Assy(0y : I°°) is a non-minimal element in Ag$M). This follows that

dim(Oyp : I®) < dimM =dimM*.
By [1], e(J; M*) = e(J; M). Hence by (i), we get

ea(J1, 1010 My = e(1; M¥) = e(J; M).

g
The proof of Lemma 3.2 is complete. [

Now, from the above results and applying the argument as in [8, 9, 10], we can extend
the results in [8, 9, 10] to modules.

The following proposition is an important result to establish the relationship between
mixed multiplicities and Hilbert-Samuel multiplicities. Moreover, this proposition also char-
acterizes the length of maximal we&k€)-sequences in modules.

PROPOSITION 3.3. Let J be an m-primary ideal and (I3, ..., I;) be a set of ideals
suchthat I = I --- I is not contained in VANNM. St U = (J, I1,...,15). Then the
following statements hold.

(i) Ifx eI;isan (FC)-element of M with respect to U, then

[kj]

—1
eA(J[k(H’l]’ I][_kl], e Ij [k_, ]

o A My = e (ot Tk

where k; isa positive integer and M = M/xM.
(i) 1f eq(shotll gkl I1oary £ 0, then for any j such that k; > 0, there
existsan (FC)-element x € I; with respect to U.

(iiiy 1f eq(sthot 2 gl Bl oAy 2 0and xq, .. x (F = k14 - 4 k) isa
weak- (FC)-sequence with respect to U consisting of k1 elementsof 11, ..., k, elements of I,
then x1, ..., x; isan (FC)-sequence with respect to U .

(iv) Letx,...,xr beaweak-(FC)-sequencein U;_; /; with respect to U. Then

dim M <dim —M
<(x1,...,xf)M : 1<>°> = <0M : 100) -/

with equality if and only if x1, ..., x s isan (FC)-sequence with respect to U.




MIXED MULTIPLICITIES OF MODULES OVER NOETHERIAN LOCAL RINGS 337

(v) Foranyl < j <s, thelength of maximal weak-(FC)-sequencesin I; with respect
to U isaninvariant.

(vi) Letxi,...,x,isamaximal weak-(FC)-sequencein U;_,I; with respect to U. If
ht(1 + AnnM/AnnM) = h > O,thenh < p and x1, ..., x;—1 is an (FC)-sequence with
respectto U.

: M . — M
PROOF The proof of (i): Set* = ——; ¢ =dmM*; M = — and
P (i) 0y 1% 9 TS
. — M
N =0y : I*®. Itis easy to see thal" ~ —— Forall largen, ny, ..., ng , we have

xM : I®

I ST NI M A (M 1)
JrEL JURLIL LM (oM 1)

_ gLt LM +xM+ N
A\ I M+ (M A xM A N) N M 1))

By Artin-Rees lemma/" I]* - -- I[* M N (xM : I*°) C xM for all largen, na, ..., n. Thus,

Jr M I M+ xM 4+ N
g ) T A\ U M M N

=1A( J't - M4 N >

J"+1If1"'I;lSM+(XM+N)m(J"Ifl---IS”SM.q_N)

=1A( "t M+ N )
Jn+l]f1'.’I;l5M+xjnlfl'.'I;lj_l"‘l_;lsM—i—N

JUT LM+ N
T M+ N

z <J"+11f1...1;“M +xJm It ...1;”‘1...1;“M4r N)
—lA

Jn+l]1’1...];’5M+N

Jﬂ[fl . I;lsM*
= lA J”+1I]r_ll . Isns M*

nj

xjnlfl"‘l,' *l...[;’sM+N >

nj—

4«
Rt LM AN O I

:lA ]n+1]f1»~];lsM*

Lo LM+ N)

nj

XIM LT M N )

_1A< .
(I M+ N) O --1}“ o IM 4+ N)YN(xM + N)
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n:

-1 )
J"]{ll...lsnsM* xjnlflmljf L ISM N
ANV e

) L R
xJh Ij

Jnlilllg:M* x]n[fl...[;?jil...[g-‘M*
=1 )=l )

J"+llfl . I;%M* xJ”+11fl . I"’_/*l. . I;’SM*
J

for all largen, n1, ..., ns. Sincex is a non-zero-divisor idf*, it follows that

]”[1’1...]',”_1...]5”3']\4* x]ﬂ]i’l...l’,lf_l...[;’sM*
)

JnHlpi ij’f_l...[;’sM* gL 1;11'_1...15”6']‘/1*

Hence

Jnlnl"'I;lSM* Jﬂ[”l[!l\M* J"[nl...[l?jil...[g-‘M*
i 1 =1y 1 .y 1 J

S n B 1
J"+1li’1---15”~M J"+1Ill---IS" M* Jn+11fl...1]',’-f o I M

for all largen, n1, ..., ns. Sincex is an(FC)-sequence oM with respect ta/, we have

X .

*

JUt LM
Jrp M
n,ni, ..., ns and the terms of total degree— 2 in this polynomial, i.e., the Bhattacharya
Jr M

—x

It can be verified thaZtA( ) is a polynomial of degreg — 2 for all large

polynomial of functior/ 4 < > is equal to the terms of total degrge- 2 in

Jn+l[fl e I
the polynomial
B(n,ny,...,nj,...,ng) —B(n,na,...,nj —1,..., nyg),
where B(n,n1,...,nj,...,ns) is the Bhattacharya polynomial of function
Jnlill I M
A(Jn+111’1 c IS M

>. The above facts show that

ea(Wortl gl IR by = e gttt Rl T k) )

The proof of (ii): Applying Proposition 2.3, for anysuch that; > 0, there exists a weak-
(FO)-elementx € I; with respect tdJ.

_ — M — .
SetM = M/xM andM™ = ———. ThenM" ~ —— . By (i), we have
Og : [ XM ;%
l ( J"Ifl"'l.;lsﬁ* > l < Jn[fl...[S”:M* ) ; < J"I{ll...[;"il...[SnSM* >
A — | =Ia —la —
JnRL M LI M Jrp Ve
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for all largen, n1, . .., ny. Sincee4 (Jkot1l Il[kl], e I}k"], IRy 20 andk; > O,
JUE LM :

o —— | is a polynomial of degregy — 2 for all large
Jrpt M

it follows that I4 (

n,ni,...,ng. Thus,

. M R
d|m(4) —dimi =g~ 1.
xM : I>®
Hencex is an(FC)-element ofM with respect tdJ.
The proof of (iii): We will prove (iii) by using inductionon= k1 +- - - +k,. Fort = 1,
the result was proved in the part (ii). Assume that the result is true-fot > 0. As the next

step, we claim that the result is true forSincek1 + - - - + k; > 0, there existg such that
k; > 0 and an(FC)-elementx; € I; with respect td/. By (i), we have

ea(gor gl gkl )

= el gl TR MM # 0. 2.7)
Letxp, ..., x; denote the images ab, ..., x; in A/(x1), respectively. Theno, ..., x;
is a weak¢FC)-sequence aff /x1 M with respecttdJ, I1, ..., Iy) of t—1 elements im /(x1)

consisting of; elements of1, ..., (k; — 1) elements of ;, ..., ks elements of;, where
J=JA/(x1); [ =1L.A/(x), i=1,...,s.

By (2.7) and inductive assumptiafy, . . ., X; is an(FC)-sequence o8/ /x1 M with respect to
(J, I, ..., Iy). Consequentlyy1, . . ., x; is an(FC)-sequence oM with respect td.
The proof of (iv): Assume that is a weak¢FC)-element ofM with respect tdU.

_ — M — .
SetM = M/XM arl(j!‘4>'< = m Then 1‘4>'< ~ W By (|), we have
R X :
, Jﬂ]fl]!lxﬁ* ; Jﬂ]]’-llI;lsM* ; J”[flljn]_l[;l‘M*
<Jn+llf1"’I;l5M*)_ (Jn+llf1];1‘M*>_ (]’H_llfl"'I;lj_l-.-I;lsM*)

It M
for all largen, n1, ..., ny. Thus’lA(Jn+11n1 — I’“M*> is a polynomial of degreg g — 2
1 K
for all largen, n1, ..., ny. Hence
dimM" =dim| —— | < dimm* —1.
xM : I>®

From the above facts and by using induction, we get (iv).

The proof of (v): By (iv), the length of any maximal we&k<C)-sequence irf; with
respect taJ is finite. Sincel is not contained in/AnnM and Proposition 2.3, there exists a
weak{FC)-elementx; e I; with respect taJ.
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— — M — M
SetM = M/x1M and M = ————. ThenM" ~ —— . Assume that
Oﬁ 2 [® x1M : I®
x1, ..., xp is a maximal weak¥C)-sequence irf; with respect toU. Then there exists a

positive integer such that
1) lA( J”Ii’l _ I;lSH_* ) lA( J”Ii’l LM ) lA( J”[fl _ ];’SM_>
JrHip. m") I M ’ JL M
are polynomials for alk, n1, ..., n; > u.
(2) Foranyn; > u,we have

n'/...

—x
(It
4 Jurlpp .. Ij’,’-f LM

n nj

<J“1fo~11.j~'15”M*) Z<Ju1f...1j _1...1SuM*>

Ju+l]l'4...];1j...]SuM* Ju+l]1u"'1;1j_1"’lsuM*

(3) Foranyn; > u,we have

nj % nij -
<‘]“[f...[jf...[s“M )ZA( ]“]]’f...[jf...[S“M)
Ju+l]f...];lj ...QM* ]M+1]]"_4...[;1j VM

Fix u, let P(u,n;) andQ(u, n;) denote the polynomials in an indeterminateof functions
(J“If---lr-lj---ls"M*) (J“If---l’-lj---ls"ﬁ*
a

J J
Jutlpe. .. 1;1' o IE M Jutlpu. .. 1.;11' VM
Setr = degP(u,n;). SinceQ(u,n;) = P(u,n;j)—P(u,n; —1),degQu,n;) =t—1.

We will show thatp = ¢t + 1. The proof is by induction on

Fort = 0, by (2) and (3), we have

l ( J“If'ul;lj'ulsuﬁ* )_ ( J”If"'l;lj"'lsuﬁ )_0
Ju+11f...171...jsuﬁ* ]u+l]:’f...];lj...]SuM '

), respectively.

It implies that/ is contained in/AnnM. Thereforep =1 =1+ 1.
Suppose that the result has been proved ferl > 0, we will show that the result is
true fort. From degQ(u,n;) =t — 1 andxy, ..., X, is a maximal weakfC)-sequence

of M with respect toU = (J, I1,..., I;), wherexa, ..., %, the images ofy, ..., x, in
A/(x1), respectively, and = J.A/(x1); I1 = I1.A/(x1), ..., Iy = I;.A/(x1). By inductive
assumption, we get

p—1=degQu.nj))+1=0¢-D+1=rt.

Hencep =1t + 1.
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The proof of (vi): Assume the contrary, that< 4. This follows that

I +AnNn(M/(x1,...,xp)M) 0
[ ANN(M/(x1, ..., xp)M) } g

. . . M - .
Thus, I is not contained in Ann(—). From Proposition 2.3, there exists
(x1,...,xp)M
x € Uj_1 I such thatxy, ..., xp, x is a weak¢FC)-sequence in_J_; I; with respect to
U. This contradicts thaty, ..., x, is a maximal weak¥C)-sequence oM with respect to

U. Thereforef < p. By (iv), we have

dim( M )gdim( M )—(h—l).
(X1, ..., xp—1)M : I® Opr : I®

I +Ann(M/(x1,...,xp—1)M)
Ann(M/(x1, ..., xp—1)M)

. M . M
dlm(—> _ d|m< )
(x1, ..., xp—1)M (X1, ..., xp—)M - I

M
Since ht/ + AnnM/AnnM) = h > 0, dimM = dim( )
Opr : I®

Since ht/ + AnnM/AnnM) = h, ht[ }> 0. Therefore,

Itis clear that

. M
d|m<—
(x1, ..., xp—1)M

From the above facts, we get

dim M =dim M h—1
((xl,...,xhl)leo")_ <0M:I°°>_( -b.

Hence by (iv)x1, . .., x;,—1 is an(FC)-sequence oM with respect tdJ.
The proof of Proposition 3.3 is complete. ]

>zdimM—(h—1).

By Proposition 3.3, Lemma 3.2 and applying the argument as in [8, Theorem 3.4], we
get the main theorem of this section as follows.

THEOREM 3.4. Let (I1,..., 1) beaset of idealssuchthat I = I --- I, is nhot con-

OM'I°°>ZQ>O'Let

ko, ..., kg be non-negative integers such that kg + k1 + - - - + ky = ¢ — 1. Then thefollowing
statements hold.

tained in /AnnM and J be an m-primary ideal. Assume that dim(

(i) eq(Jlhot1l I{kﬂ, o 1Y MY = e (g M) for any (FC)-sequence xa, ..., x;
with respect to (J, I1, ..., I) of t = k1 + --- + k, elements consisting of k; elements of
. M
I1, ..., ks elementsof I,, where M~ =

(X1, ..., x )M I
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(i) eq(skotll gkl T Ik 4y 2 0 and only if there exist -

A AP y if there exists an (FC)
sequence of M with respect to (J, I, ..., I;) of k1 + --- + ks elements consisting of k1
elementsof Iy, ..., ks elements of I;.

(i) The length of maximal (FC)-sequences of M in I; with re
spect to (J,I1,...,I;) is an invariant and this invariant is equal to
max(k; | ea (7o, rfl TR 2 0y,

(iv) Let p be the length of maximal weak-(FC)-sequences in I; with respect
to (J,I1,...,I;) and f the length of maximal (FC)-sequences in I; with respect to
J,I,....L),j=1...,s. Then f <p < gq.

From Proposition 3.3 and Theorem 3.4, we get an interesting result as follows.

PROPOSITION 3.5. Let (I1, ..., I;) bea set of ideals such that I = 71 --- I is not
contained in ~/AnnM and J be an m-primary ideal. Suppose that f is the length of maxi-
mal (FC)-sequences of M in I; withrespectto U = (J, I, ..., I;). Whenif p < f and
Y1, ..., Yp IS aweak-(FC)-sequence of M in I; with respect to U. Then yi,...,y, isan
(FC)-sequence of M in I; with respect to U.

In the case that it + AnnM/AnnM) > 0, we get the following result.

THEOREM 3.6. Let J beanm-primary ideal and (11, ..., I;) be a set of ideals such
that ht( + AnnM/AnnM) > O,where I = I1--- I;. Let ko, .. ., ks be non-negative integers
suchthat ko + k1 + - - - + ky = d — 1. Then the following statements hold.

(i) eatottl phl i pIkY o ary = ¢4 (J; M) for any (FC)-sequence xi, ..., x;
with respect to (J, Iy, ..., I;) of t = k1 + --- + ks elements consisting of k; elements of
M
(X1, .o x)M I
@iy Ift=ki+...+k; <htd +AnnM/AnnM), then

I, ..., k, elementsof I, where M~ =

ea(tkot gl L vy = e (03 M)
for any (FC)-sequence x1, . . ., x; with respect to (J, I1, ..., I) consisting of k1 elements of
— M
I, ..., ks elementsof I,, where M = ——— ——.
(X1, ..., x)M

(iiiy eq (ot gl pIkIoary £ 0if and only if there exists an (FC)-sequence
of M with respect to (J, I, ..., I;) of k1 + --- + k, elements consisting of k3 elements of
I, ..., ks, elementsof .

M
O : [

PROOF  SetM; = ThenM; ~ M". From Theorem 3.4, we immediately

get (i) and (iii).
The proof of (ii): By Theorem 3.4 (i),

eq(JRottl ikl T MY = o (J; M) = e(J; M)
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Itis clear that ht/ + AnnM /AnnM) > 0. Thus, applying Lemma 3.2, we have
e(J; ﬁ:) =e(J: M).
From the above facts, we get
a0t gtk kT vy = ea (03 M. m

From Proposition 3.3 (vi), Theorem 3.4 and Theorem 3.6, we have the following propo-
sition.

PrROPOSITION 3.7. Let (I1,..., 1) bea set of idealssuchthat I = I1--- I is not
contained in ~/AnnM and J be an m-primary ideal. Assume that ht(/ + AnnM/AnnM) =
h>0StU=(,I,...,I). Thenthefollowing statements hold.

(i) ka4 +k <h—1theney(skottl gl = ylkl oy 2o,

@iiy Ifxa,...,x isaweak-(FC)-sequenceof M withrespectto U of t = k1+- - -+ks <
h — 1 elements consisting of k1 elementsof I1, .. ., ks, elements of I, then

M
et ot o) = e (1 ).
R

4. Multiplicity of Rees modules

In this section, we show some results on the multiplicity of Rees modulesl hetan
ideal of A and finitely generated-moduleM. SetRy (1) = @, .o I"Mt" andRs(I) =
D,-o1"t", wherer is an indeterminate. We cally, (/) the Rees module dfandR4 (1) the
Rees algebra af. ThenR4 (1) is a Noetherian graded ring amk}, (/) is a finitely generated
gradedR 4 (1)-module. Now, we study multiplicities of Rees modules.

By applying Theorem 3.4, Theorem 3.6 and arguing as in the proof of Theorem 4.1 [8],
we get the following theorem.

THEOREM 4.1. Let J be m-primary and [/ be an ideal such that ht(/ +
AnnM/AnnM) = h > 0. Suppose that x1,...,xy isa maximal (FC)-sequence of M in
I with respectto (J, I). Then

(i) ea(JM=1 11 pr) =e<]; —) forall i <h—1.
(X1, ..., xi)
. . M
ii JE= i vy = e J: for h<i<f.
(i) e )= (X1, oo, Xi)M 2 [®° =i=f

(iiiy ea(Je=1 il pry £ Oifand onlyif i < f.

The following results are generalizations of Section 4 in [8] to modules.
First, from Theorem 4.1 and the results in [5] and [7], we get some multiplicity formulas for
Rees modules.
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THEOREM 4.2. Let J be m-primary and / be an ideal such that ht(/ +
AnnM/AnnM) = h > 0. Then

h—1

J,1t); Ry (1)) = <J' i ) f <J' . )
W10 Ry =3 el i g )+ el

i=0

for any maximal (FC)-sequence x1, ..., xr in I with respect to (J, 7).
PROOF Using the argument as in [5], we get

d-1
e((J, 11); Ry (D) =Y _ea(J¥=1, 11 M),
i=0
Now, applying Theorem 4.1 we get Theorem 4.2. ]

In the case that is m-primary, we haveh = ht(/ +AnnM /AnnM) = d. From Theorem
4.2, we get the following result.

THEOREM 4.3. Let [ and J bem-primary ideals. Then there exists an (FC)-segquence
X1, ..., Xx4—11n I with respect to (J, I) and

d-1 M
e((J,It); Ry (D)) = e(]; 4)
M ; (1, )M
PROOF Since ! is m-primary, by Proposition 2.5, there exists a maxiniaC)-
sequence o in I with respect to(J, I) consisting ofd — 1 elements. Next, the proof
is complete by applying Theorem 4.2. ]

Let Ry (11 denote®,, . ,=0lyt ... M1y .. .1, wherely = ... = I, = I and
11, ..., indeterminates. We calt); (1*1) the multi-Rees module df. In particular, = A
we call R4 (I¥1) the multi-Rees algebra df. It is easy to see that, (/) is a Noetherian
graded ring andk, (11¥1) is a finitely generated grade®l (1'*1)-module.

By an argument analogous to that used for the proof of Theorem 4.3 and Theorem 1.4
[7] and applying Theorem 3.6, we get the following theorem.

THEOREM 4.4. Let I and J bem-primaryideals. Let R = R4 (1)) and Ry, (1'*)) be
multi-Rees algebra of 7 and multi-Rees module of 1, respectively. Let R™ be the positively
graded part of R. Suppose that x1, ..., x4—1 isan (FC)-sequencein I with respect to (J, I).
Then

d-1 ,.
(i +s— 1) M
+y. [slyy — .
e(7 RO Ru (1) = Zi:O i — 1)! e(J’ (xl,...,xi)M)‘ -



MIXED MULTIPLICITIES OF MODULES OVER NOETHERIAN LOCAL RINGS 345

ACKNOWLEDGEMENT. We would like to thank Prof. Ryuji Tsushima for his help and

advices.
References

[1] A.AusLANDERand D. BuicHBAuM, Codimention and multiplicity, Ann. Matt68 (1958).

[2] P.B.BHATTACHARYA, The Hilbert function of two ideals, Proc. Cambridge. Philos. $8¢1957), 568-575.

[3] D.REEs Generalizations of reductions and mixed multiplicities, J. London. Math. 20d.984), 397—414.

[4] B. TEISIER, Cycles evanescents, sections planes, et conditions de Whitney, Singularities a Cargése (1972).
Astérisque, 7-8 (1973), 285-362.

[5] J.K.VERMA, Rees algebras and mixed multiplicities, Proc. Amer. Math. $&¢(1988), 1036-1044.

[6] J.K.VERMA, Rees algebras with minimal multiplicity, Comm. Algebid.(12) (1988), 2999-3024.

[7] J.K.VERMA, Multi-graded Rees algebras and mixed multiplicities, J. Pure Appl. AlgéBrél992), 219—
228.

[8] D.Q.VIET, Mixed multiplicities of arbitrary ideals in local rings, Comm. Algeb28&.(8) (2000), 3803-3821.

[9] D. Q. VIET, On some properties f~C)-sequences of ideals in local rings, Proc. Amer. Math. 38¢&.
(2003), 45-53.

[10] D. Q. VIET, Sequences determining mixed mutiplicities and reductions of ideals, Comm. AlG&h(E0)
(2003), 5047-5069.

[11] D. Q. VIET, Reductions and mixed multiplicities of ideals, Comm. Algel3&(11) (2004), 4159-4178.

Present Addresses:

NGUYEN TIEN MANH

DEPARTMENT OFMATHEMATICS, HUNG VUONG UNIVERSITY,
PHUTHO, VIETNAM,

DUONG QUOC VIET

DEPARTMENT OFMATHEMATICS, HANOI UNIVERSITY OF EDUCATION,
XUAN THUY STREET, HANOI, VIETNAM

e-mail: duongquocviet@bdvn.vnd.net



