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Abstract. In this paper, we study the Mordell-Weil ranks of elliptic curves defined over the maximal abelian
extension of the rational number field, assuming several conjectures on the Hasse-Weil L-functions. We prove that
an elliptic curve defined over an abelian field with odd degree has infinite rank over the maximal abelian extension
of the rational number field. This result gives affirmative evidence for ‘the largeness’ (in the sense of Pop) of the
maximal abelian extension of the rational number field.

1. Introduction

In the arithmetic of elliptic curves, Mordell-Weil groups are very important objects. Let
E be an elliptic curve defined over a number field K . If K ′ is a finite extension over K ,
E(K ′) is a finitely generated abelian group by Mordell-Weil’s theorem. But if K ′ is an
infinite algebraic extension over K , E(K ′) may be finitely generated and sometimes not.

Let Q ab be the maximal abelian extension of Q. We consider an elliptic curve E defined

over Q ab. Then E is defined over some finite abelian extension K over Q. We study

E(Q ab) = ⋃
K⊂L⊂Q ab, [L:K]<∞E(L) and conjecture the following.

CONJECTURE 1. rankZE(Q ab) = ∞.

As background for this problem, we will explain Pop’s theory. In [1], Pop introduced the
notion of large fields and proved the following theorem.

THEOREM 1 (Pop). Let F be a field. Assume the following conditions
(1) F is hilbertian,
(2) F has cohomological dimension 1,
(3) F has countably infinite order,
(4) F is large.

Then the absolute Galois group of F is isomorphic to the free group with countably infinitely
many generators.
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Shafarevich’s conjecture asserts that the absolute Galois group of Q ab is isomorphic to

the free group with countably infnitely many generators. It is well-known that Q ab satisfies

the conditions (1)–(3) in Theorem 1. Therefore if Q ab is a large field, Shafarevich’s conjecture

follows. We are interested in whether Q ab is large or not, which is an open problem.

DEFINITION 1 (Pop). Let F be a field. F is a large field if and only if F satisfies the
following two conditions which are equivalent.

(1) For any smooth curve C defined over F , C(F) �= ∅ implies �C(F ) = ∞.
(2) For every integral variety X defined over F , X(F) �= ∅ implies that X(F) is Zariski

dense in X(F̄ ).

Thus if Q ab is large, we have the following.

CONJECTURE 2. If C is a smooth curve defined over Q ab and C(Q ab) �= ∅, we have

�C(Q ab) = ∞.

To begin with, in the case that the genus of C is 0, clearly this is true. Next we proceed
to the case that the genus of C is 1 and C has a rational point, namely the case that C is an

elliptic curve. Let E be an elliptic curve defined over Q ab. We would like to know whether

the order of E(Q ab) is infinite or not. It is known by a theorem of Ribet ([2]), that its torsion

part E(Q ab)tors is a finite abelian group. Concerning the Mordell-Weil rank over large fields,
we know the following by Tamagawa.

PROPOSITION 1 (Tamagawa). Let E be an elliptic curve defined over a field K of
characteristic 0. Assume that K is a large field. Then we have rankZE(K) = ∞.

We prove this proposition in the last section. By this proposition, the largeness of Q ab

implies Conjecture 1. Note that if E is defined over Q it is easy to check Conjecture 1.

Because we know that rankZE(Q quad) = ∞ where Q quad is the compositum of all quadratic
extensions over Q. (For example, see[3].)

Hence, if Q ab is large, Proposition 1 implies Conjecture 1. The main result in this paper
is the following.

THEOREM 2. Let E be an elliptic curve defined over a finite number field K . As-

sume for any quadratic character χ ∈ ̂Gal(KQ ab/K) that the Hasse-Weil L-function
L(E/K,χ, s) admits an analytic continuation to the whole complex plane and satisfies
the functional equation, and assume that the weak Birch and Swinnerton-Dyer conjecture
is true. (See Conjectures 3, 4 and 5 in Section 2.) Then if at least [K : Q] is odd,

rankZE(KQ ab) = ∞.

From this we get affirmative evidence for the largeness of Q ab assuming several conjec-
tures on the Hasse-Weil L-function.

In Section 2, we explain conjectures we assumed to be true in Theorem 2. We prove
Theorem 2 in Section 3.
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2. Several conjectures

In this section, we state several conjectures mentioned in Theorem 2. Namely, the an-
alytic continuation, the functional equation, and the weak Birch and Swinnerton-Dyer con-
jecture for L(E/K,χ, s), where E is an elliptic curve defined over a number field K and

χ ∈ ̂Gal(K ab/K) is a quadratic character. Here the L-function is the infinite product of the
local L-functions defined by means of the characteristic polynomials of the Frobenius auto-
morphisms acting on the l-adic Tate module for E twisted by χ . Namely, the L-function is
defined by using

W = (Ql ⊗Zl
Tl(E)) ⊗Ql

(Ql ⊗Q Mχ) ,

where Mχ is the one-dimensional Q-vector space on which Gal(K̄/K) acts via χ . We note

that W is isomorphic to Ql⊗Zl
Tl(Eχ), the Gal(K̄/K)-module obtained from the l-adic Tate

module for Eχ which is the twist of E by χ . Thus we may identify the local factors of
L(E/K,χ, s) with that of L(Eχ/K, s).

Let v be a finite place of K coprime to l, let Iv ⊂ Gal(K̄/K) be the inertia subgroup at
v, and let Frobv be the Frobenius automorphism at v. The local L-function at v is defined by

Lv(Eχ, s) = (det(1 − qv
−sFrobv |WIv ))

−1 ,

where qv is the order of the residue field at v. We put

L(E/K,χ, s) =
∏

v∈M0
K

Lv(Eχ, s) ,

where M0
K = {finite places of K}. This product converges and gives an analytic function for

all s with Re(s) > 3/2. We define the complete L-function

Λ(E/K,χ, s) = NK/Q(NEχ )s/2(2(2π)−sΓ (s))[K :Q]L(E/K,χ, s) ,

where NEχ is the conductor of Eχ . We state conjectures on Λ(E/K,χ, s).

CONJECTURE 3 (Analytic continuation). Λ(E/K,χ, s) admits an analytic continua-
tion to the whole complex plane.

CONJECTURE 4 (Functional equation). Suppose that Conjecture 3 is valid. Then we
have the functional equation

Λ(E/K,χ, s) = W(Eχ/K)Λ(E/K,χ, 2 − s) ,

where W(Eχ/K) is the root number and W(Eχ/K) = ±1.

Assume that Conjectures 3 and 4 are valid. We write the power series expansion around
s = 1

Λ(E/K,χ, s) =
∞∑

n=k

an(s − 1)n ,
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where k = ords=1L(E/K,χ, s).
Comparing the leading terms of the functional equation, we have the following equation

W(Eχ/K) = (−1)ords=1L(E/K,χ,s) .

Finally, we state the weak Birch and Swinnerton-Dyer conjecture which asserts the rela-
tion between analytic and algebraic quantities for Eχ .

CONJECTURE 5 (weak Birch and Swinnerton-Dyer conjecure). Suppose that Conjec-
ture 3 is valid. If L(E/K,χ, 1) = 0, then rankZEχ(K) > 0.

3. Proof of Theorem 2

In this section, we shall prove Theorem 2. Throughout this section we assume Conjec-
tures 3, 4 and 5 in the previous section. Let E be an elliptic curve defined over a number

field K with conductor NE . Let L/K be a quadratic extension and χ ∈ ̂Gal(K ab/K) be the
corresponding character with conductor Nχ . We assume that Nχ is relatively prime to NE .
We write simply W(E/K) for W(Eχ/K) if χ is the trivial character. We use the following
relation between W(Eχ/K) and W(E/K).

PROPOSITION 2 ([4] Corollary of Proposition 10). We have

W(Eχ/K) = sign(χ)χ(NE)W(E/K) .

Here, sign(χ) is defined as follows. We view the quadratic character χ as a Hecke
character

χ =
∏

v∈M0
K∪M∞

K

χv ,

where χv is the character of Kv
× whose order is at most 2 and M∞

K = {infinite places of K}.
Then we define

sign(χ) =
∏

v∈M∞
K

χv(τ ) ,

where τ is the complex conjugation. Namely,

sign(χ) = (−1)�{v∈M∞
K |v:real place which is not decomposed in L} .

Suppose that K is a number field of odd degree. Let l be a rational prime unramified in K , and

let L = K(

√
(−1)

l−1
2 l). Then, if [K : Q] is odd and l ≡ 3 (mod 4), we have sign(χ) = −1,

since every real place is not decomposed and K has odd real places. Assume that NE is
factorized into the form

NE =
∏

v∈M0
K

pa(E/Kv)
v ,

where pv is the maximal ideal of the integer ring of Kv and a(E/Kv) is a non-negative integer

which is 0 for almost all v ∈ M0
K . Then
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χ(NE) = ∏
�v |NE

χv(Frobv, L/K)a(E/Kv),

where Frobv, L/K ∈ Gal(L/K) is Frobenius automorphism at v. Recall that if v ∈ M0
K is

decomposed in L, we have

χv(Frobv, L/K) = 1 .

LEMMA 1. Let K be a number field of odd degree. Let p1, . . . , pr be prime ideals of

K . Then, (1) there exist infinitely many quadratic extensions L over K contained in KQ ab

such that p1, . . . , pr are decomposed in L and no real place is decomposed in L. (2) there

exist infinitely many quadratic extensions L over K contained in KQ ab such that p1, . . . , pr

and all real places are decomposed in L.

PROOF. To prove the case (1) (resp. (2)), we consider a quadratic extension

K(

√
(−1)

l−1
2 l)/K , where l is a rational prime unramified in K such that l ≡ 3 (mod 4) (resp.

l ≡ 1 (mod 4)). Let pi be the characteristic of the residue field of pi . Since [K : Q] is odd, pi

is decomposed in K(

√
(−1)

l−1
2 l) if and only if pi is decomposed in Q(

√
(−1)

l−1
2 l). So it is

enough to take l such that p1, . . . , pr are decomposed in Q(

√
(−1)

l−1
2 l). This is possible by

Dirichlet’s arithmetic progression theorem. �

By this lemma, if [K : Q] is odd, there are infinitely many quadratic extensions

L⊂KQ ab such that χ(NE) = 1 and sign(χ) = −1 (resp. sign(χ) = 1) in the case (1) (resp.
(2)), where χ corresponds to L. Hence in each case of W(E/K) = ±1, using these charac-

ters, we have infinitely many quadratic extensions L⊂KQ ab such that W(Eχ/K) = −1.

Since we have an isomorphism

E(L) ⊗ Q∼=(E(K)⊕Eχ(K)) ⊗ Q

as Gal(L/K)-modules, we have rankZE(L) = rankZE(K) + rankZEχ(K).
By the remark in Section 2 followed after the statement of Conjecture 4, we have

W(Eχ/K) = (−1)ords=1L(E/K,χ,s) .

If W(Eχ/K) = −1, ords=1L(E/K,χ, s) is odd and hence positive since L(E/K,χ, s) is
holomorphic. Therefore, Conjecture 5 implies

rankZE(L) − rankZE(K) > 0 .

Let I be the set of quadratic characters χ ∈ Ĝal(KQ ab/K) such that W(Eχ/K) = −1.
Then I is an infinitely dimensional F2-vacter space by Lemma 1 and the remark fol-
lowed after Lemma 1. Take a basis I∗ of I . We take Pχ ∈ Eχ(K)\Eχ(K)tors for each

χ ∈ I∗. Then, {Pχ }χ∈I ∗ gives points of E(KQ ab) which are linearly independent. Hence

rankZE(KQab) = ∞. This completes the proof.
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4. Proof of Proposition 1

In this section, we prove Tamagawa’s result mentioned in Section 1.
Let K be a field of characteristic 0 and let E be an elliptic curve defined over K . Assume

that K is a large field. Let A be an abelian surface E×E. Fix an embedding A↪→Pn of A

into the projective space. Let X be a smooth hyperplane section of A with respect to the
projective embedding, passing through O∈A, which is a smooth, projective, connected curve
over K . Then it is known that the canonical morphism J→A is surjective, where J is the
Jacobian variety of X. In particular, we have genus(X) ≥ dim(A) = 2. Suppose that E(K)

is of finite rank, then Γ = A(K) is also. Now, by Raynaud’s theorem (Mordell’s conjecture),
X(K) = Γ ∩X is finite. This contradicts the assumption that K is large, since X(K) is
non-empty because O ∈ X(K).

REMARK 1. When char(K) > 0, Proposition 1 is still valid, if we assume that K is
not algebraic over the prime field Fp. (The above proof has to be slightly modified, though.)
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