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Abstract. In this note, the real analyticity of the solutiofts non-linear elliptic equations will be proved by
the method of Friedman [5] and Kato [7] using Faa di Bruno’s formula.

1. Introduction

In 1904, the analyticity of the solutions fdltiptic equation of two independent variables
was shown by Bernstein [2]. In 1939, Petrowskii [12] proved such analytic property for
elliptic system of partial differential equations of any order by the method of continuation
into the complex domain. After that, Friedman [5] has shown the same result by the method
of real functional analysis.

In this paper, we shall show the analytycof the solutions of the non-linear elliptic
equations of the second order by a simple method of cut-off functions introduced by Kato [7]
combined with the method used by Friedman [5]. We shall also use Faa di Bruno's formula [3]
as a basic tool. We shall describe some definitions and main Theorem in 82. In 83, we shall
describe the real analytic property of the composite function by the method of majorant series
using Faa di Bruno's formula. 884 and 5 are devoted to the proof of the main theorem by
applying Kato’s method of cut-off functions [7] and Friedman’s method [5], where classical
method of majorant series and Faa di Bruno’s formula for the estimation of the composite
functions turned out to be very efficient.

2. Notations, definitions and the result

DEFINITION 2.1. A partial differential equation

F(x,u,Vu,V?u) =0 (2.1)
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is said to be elliptic if

oF
Z (e, u,uj, uje)lice #0, ¢ e R\ {0} (2.2
m ou ji
where we putt; = 9ju, ujr = 0;0ku (j,k=1,...,n).

THEOREM. If F(x,u, Vu, V2u) = 0isellipticin £, F(x, ¢) is real analytic in a
domain D C R (u = (n+ 1)(n +2)/2) andu € C*(£2), then u isreal analyticin £2.

DEFINITION 2.2. Let f(x), F(x) be real analytic functions in an interval
I = {|x — xo| < a} expressed by the power series:

f) =) filx—x0), F(x)=) Fjx—xo) .
j=0 j=0

Then we callF (x) a majorant off (x) if
|fj|§F1 (jzovls"')'

PROPOSITION 2.1. Let f € C°°(I) for someopeninterval 1. Thefunction f isin fact
in C®(1) if and only if, for each xg € I, there are an open interval J, withxg € J C I, and
constants C > 0 and A > 0 such that the derivatives of f satisfy

1fP 00l < Cj1al, Vxeld.
Letx = (x1,x2,...,xn) € R" andp = (ua, p2, ..., um) € Z+, whereZ, denotes
the set of non-negative integers. Set
p! = palual - !,
lnl = p1+p2+--+ pm s
Xt =g

e l¥ = |xg [ xal 2 - o P

m

() = l_[ Xy = l_[ [xj(xj =1 (xj —u; + D],

j=1 j=1
()=
n n!
oM oML gH2 gHm

axk Bxfl 8x§2 axhm

We write C®(G) the set of real analytic functions defined on an open subs#tR”.
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3. Composite functions of Real Analytic Functions

Differentiation of composite functions is known as Faa di Bruno’s formula. We refer to
[3], [8], [11], [13] etc. The description in this section is due to [81.3, Krantz-Parks, 8].

LEMMA 3.1 (Formula of Faa di Bruno).Let I be an open interval in R and suppose
that f € C°°(I). Assumethat g takesreal valuesin an open interval J such that g(J) C I
andthat g € C*°(J). Thenthe derivativesof 2 = fog aregiven by

(@8] (2) k1 (n) kn
)y — ) g7 (x) g9 (x) g™ (x)
B0 =Y et e (S )(2 (e

wherek = k1 + k2 + - - - + k,, and the summation is taken over all k1, ko, .. ., k, for which
k14 2ko + - - - + nk, = n.

LEMMA 3.2. For each positive integer n and real number R,

k! k -1
= RF=RQA+R)"
Zkllkz!mkn! 1+ 5

holds, where k = k1 + ko + - - - + k,, and the sum s taken over all k1, ko, . . ., k,, for which
k14 2ko + - - - + nk, = n.

PROOF  We takef (y) = andg(x)_l . Itis immediate that

1= R(y D
h(x) = fog(x) = m. Since all these functions are also geometric series, we have for
ly—1 < 1/R, |x| < 1/(R + 1):

o0

FM=Y Ro-17 gx=) .

j=0
So we have:

1 [e%e} o 0 o
— JyJ _ Jyi+l
hix) = 1R+ 1)x (R T Dx E: 14+ R)/x ;:0(14- R)’ x

o0
=14+> RA+ R/,
j=1

Evaluating f andh aty = 1 andx = 0, we find thatf)(1) = j!R/, ¢®(0) = k!, and
A (0) = n!R(1+ R)"1, from which the lemma follows. [

We now apply the previous two lemmas together with the proposition of the rate of the
growth of derivatives to study compositions of real analytic functions:
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PROPOSITION 3.3. Supposethat f(y) isreal analyticinanopeninterval y € I inR,
that is

supl fP(y) < CA/jI (j=0,1,2,...)
yel

and g(x) isreal analyticin an openinterval in yo = g(xo), g(J) C I inR,

suplg’ ()| < DB/j! (j=0,1,2,...).

xeJ

Then the composite function 2 (x) = fog(x) isalso real analytic and the following estimates
holds:

. A ;
suplhY (x)| < 1+DAB)j! (j=0,12,...).
erpI Wl = 757 @+ DB jE )

PROOF By Lemma 3.1 we have

; n! gD\ (PN 9@\
h()(x):Zkllkz!mk,,!f(k)(g(x))( 1 ) ( 21 ) ( ! )

wherek = ki + ko + --- + k, and the sum is taken over alk, ko, .. .k,, for which
k1 + 2ko + - -+ 4+ nk, = n.
So we can estimate

suplh™ (x)] < )

'CAkk!(DB)kl(DBZ)kZ .o (DB™kn

oy kilko! - - - ky,
= CB"n'Z LD"A"
L kilko! - k!
CDA
= CDAB"(1+ DAY 1n! = 1+ DA)B)"n!
1+ V' n 1+DA((+ )B)"'n

Thush(x) satisfies the standard estimates thatgniee it to be a real analytic function.

LEMMA 3.4. Let ¢(x) be real analytic in an open set 2 C R”. Then there is a
majorant of ¢ (x) in a neighborhood of each x° € 2.

PROOF By the parallel transformation of thewordinate, we assume, without loss of

generality, thak® € §2 is the origin. For smalt > 0 and(az, a2, ...,ap)(a; > 0), thereis a
rectangleQ = {|x;| <a; +e(j = 1,...,n)} whereg is analytic.p(x) = )" cyx*. Putting
M = maxp |¢(x)| andag = maxasy, ..., a,}, we have

lco| < a_a .

We have the estimate for the coefficients

[ca| < Tl

0
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This shows that the following function is a majorant §or

w2 S @) (06

ax dn

Using ‘g—!' > landay*---ay" > ag“‘, we see that the following functio@ is a majorant for

@.

00 k
®(x) =M2(xl+x2+'”+x")

k=1 0
M

xl+...+xn

T w

1

For Q1 = {|x1 + - - + x| < ag}, we have

@ |e|!
sup [8%p(x)| < MW'
xeQ1 (10

We have the estimates for the composite function of several variables by using
Proposition 3.3 and Lemma 3.4.

PROPOSITION 3.5. f(y) is real analytic in a region 0 C R* and g1(x), ¢g2(x),
.., gu(x) arereal analyticin aregion S C R". (g1(x),..., gu(x)) € Q for x € S, that
is, g(S) C Q. Furthermore the following estimates hold

supld“ f(y)| < CA¥al!,  supla®g;(x)| < DB |a]!.
yeQ xes

Then h(x) = f(g(x)) = (f o ¢g)(x) isreal analytic in a neighborhood of the origin and we
have the following inequalities

DupA
sup|9®h(x)| < ————1a|!((L+ DA)B)!! .
o 1+ DA
PrROOF By Proposition 3.4/ (y) has a majorant

C
1-AG1+-+yw

F(y) =

and estimated by

supla® £ (y)| < C(nA)a!.
yeQ



276 YOSHIAKI HASHIMOTO

By Proposition 3.4, we also have a majorant §o€x)

G =%

heret = x1 +x2 + - - - + x,. So we have the estimate

supld®gi(x)| < DB!|a|!.

xes

We have a majorant (G (x)) for f(g1(x), ..., gu(x)) and we have the estimates fotx) =
(fog)(x)

CDupA
sup|d®h(x)| < —————((1+ DuA)B)|a|!.
plo“h(x)| < 1+D/LA(( + DuA)B) ™o

xeS

4. Proof of Main Theorem, |

For simplicity we denoté®®u = 3'*/u. We also denote&y + 1-times derivatives which
contain with two different directions including; by 3V d;u. Without loss of generality we
prove the following inequality in a neighborhood of the origin. peét) be aC3° (w)-function
whichis equal to 1 in a neighborhood of 0. We shall prove the real analyticitypginduction
on|«|. By assumptiorF satisfies the analyticity conditidre. F € C®(w x ')

1093 3y F Gl ooy < DBYNL. (4.0

where the derivative is taken with variablés, n) = (x,¢, ¢, ). We suppose that
u € C*®(w) and satisfies

o™ dN ull gm(wy < CANNY. (4.2)
Then we shall show that the inequality (4.2) holds forahe 1 derivatives of the typé" d;u.
LEMMA 4.1. Let f, g € H"(w) andm = [5] + 1. Then we have
Ifgllm < C1ll fllmllgllm (4.3)
where C; isa constant which does not depend on f, ¢. (cf. [1]).
LEMMA 4.2. Ifu € HJ'"2(£2), then

108 ullm < Il At (4.4)

for any multi-index g8, |8] = 2

Differentiating the equation (2.1) with respectig we have

OF  p o O +Xn:F 02w _
0Xk Maxk =t i 0x;0xg — Hij 0x;0x; 0x -
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where we pub;d;u = u;;, 0;u = u;. Subtracting the first 3 terms from the both sides, we get
n 2 n
a ou ) du du IF
Y Ry (o) = =Y B () = R - 2
= 7 0x;0x; \ 0xg . 7 0x; \ dxg oxy  0xk
i,j=1 j=1
DifferentiatingN times, we have the following equality:
n
> Fuy0i0; V) = VG
i,j=1

here we denotéV+1G in the right-hand-side the terms which contain the derivativesaff
orderN + 2, at most. PuttingVu,.j = a;j, we have

> aij(@9;0;(0 )y = 0V G — Y (@i (x) — i (0030, (0" ) .
ij
By the ellipticity condition (2.2), we take a change of variables at the origin and we have
ANy = 0N G =Y (@i (x) — @;j(0))3;9; (0N hu) . (4.5)
By multiplying pN*+1, we have
A(pN+18N+1u) — ,ON+1(8N+1G) _ ZPN+1(&U (x) — ﬁij(O))aiaj(3N+lu)
=D 2N + D (@ep)p" 9N )
— D 2N+ D(@F0)p" 9N
- Z 2(N + DN @2p)pN LoV 1y . (4.6)

By multiplying the parametrix of\ and integrating i, we can estimate¥+19¥ 1y in the
following.

We use the notation = [x — y| = \/(xl —y1)24 -+ (x, — yp)2 andS, = the area

of the surface of thea-dimensional unit sphere which is equal%.

LEMMA 4.3. Thefundamental solution for the Laplace operator A is given by

1
—logr n=2,
p(x,y) = d
—;rz_” n>3.
(n—2)S,

We then have

Conr ™27 (x; —yi)(xj —yj) i # ],

1 ./QD()C, y) Cn <nr_"_2(xi _ yi)2 + I"_”> I = j .
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HereC, = 5= ifn =20r C, = ¢ ifn # 2. Sinced;dkp(x, y) is a homogeneous function of
order —n and

/ 0j0kp(x,0dx =0
|x]=1
fori # j, theoperatorsu — Kjju = [u(y)(v.p. 3;0;¢(x, y))dy are bounded operators in

L2. (cf. [9]).

By the assumption of the derivatives given at first of this section, we can write
3;0N = 9,3,0V 1. The first term in the right-hand-side of (4.6) can be written by the fol-
lowing form:

PN L8,0,0V G = 8,0, (0N LN TIG) — (N + D)3, (g 0)0Y 9V 1)
— (N + 13, ((0,0)p" 9" 1G)
+ (N +DN@pp)0gp)p"N "tV G
+ (N + 1D (@,3,0)p" 0V 1G 4.7)

Multiplying ¢ and integrating om and takingH™ norm, we have the following estimate for
the first term in the right-hand-side of (4.7),

H / Kpgp" TN IG dy| = 1K pg(L+ (5" pNHLONAG|

m

< sup|K pgllloN+t1aN-1G|l,,
|E1=1

By using Proposition 3.5 and the assumption of the inductiom,are have

1~ CDuA
T

Did (1+ DrA)B)VN!. (4.8)

Since the 2nd term of (4.7) has the derivativepptheir supports are containeddnand
= 0 near the origin. By multiplyingp and integrating o, taking H™ norm, integrating
by parts and by the analyticity ¢f outside a neighborhood of the origin, we have the same
estimate as (4.8):

(N + )8, ((3,0) 0" 0N 72G), 9)lm = (N + DII{(Bg0) 0N 3V LG, 8,0) Im
< C(N + DII(3g0)0" 3" 1G||

CDuA Nl
< ——"" (A4 DuABNTYN + 1)
_1+DMA((+ wA)B)"TH(N + 1)
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We take(1+ DuA)B > 1. By the similar argument as abov!” norm of the 3rd, the 4th
and the 5th term have the estimates:

CDupA Na1l
—((1+ DuA)B N+ 1)!
1+DMA((+ nA)B)TTH(N 4+ 1)

Combining these inequalities, we have the estimate of the form
DuA

Ilm < ———

1+ DuA

We estimate the 2nd term on the right-hand-side of (4.6). As in the same calculation as
in (4.7), we have

(@ij (x) — @;j(0))3;0; (o LoV 1)

(N *19,0,0" G, 0) (L+ DpAYBYN YN +1)!

= 0;0;((@i; (x) — ai; (0)p" " *tu) @)
— 9;(@iai; )PV N Thu) — 9 ((9ai; () pV AN u)
+ (3:9ja1 (x) pN Ny
Multiplying ¢ and integrating o and takingH™ norm, the main term of these terms can be
estimated as follows.

1148:8; (@i (x) — a@i; (0) p™ 1N Lu), @) |l

Cll(@:j (x) — @ (0) (e Lo Lu)||,

IA

IA

C max|ai; (x) — @ (O)[I|(L+ D)™ pN TN Hufo + Lot
w

c@ ooy, + lot.

IA

Here we denote the terms l.o.t. the lower order terms to which we can apply the inductive
assumption. The last inequality is obtained by choosing the diametesofficiently small.
The other terms on the right-hand-side of (4.9) can be estimated by the same argument as in
4.7).

To estimate the third term and the 4th terms on the right-hand-side of (4.6), we use the
method as estimating the 3rd term and the 4th term of (4.7).

Considering these estimates, we then have

CDuA
||pN+18N8jI/l||m < C(8)||pN+18NajM||m + m((l-F D/LA)B)N-H-(N —+ 1)' .

From which we have

DuA
iy < —
j””m =1+ DuA
By taking the radius of the support of the cut-of function sufficiently small, we get the
estimate foraNaju. We note the proof carefully so thatl + DuA)B) is replaced by
(2n2 +5n +3)((1+ DA)B) ]

(L—C@E)lpN oV (L+ DpABN TN + D)1
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5. Proof of the Main Theorem, |1
We have the following equality by the same method as in §4:
Au=G(x,u,Vu,V2u) (5.1)

Differentiating both sides of the equation (5X)— 1 times with respect t®;, we have

8§V71Au = Bj.V*lG(x, u,Vu, Vzu)

a}’“u = —ajvflA’u + a}’*lG’(x, u, Vu, V2u) + (F,;; (x) — Fy, (0))8}’*114
whereA’ denotesA — aj?. Multiplying p(x)V+1 both sides, we have
pN+18]{V+1u _ _pN+13;v—1A/u n pN+18]{V—1G/(x’ w, Vi, V2u)
+ PN (Fy (0) = Fuyy (0)0) T

wherea}"lG/ does not contaiﬁ?’*lu. The terms in the right-hand-side except the last term

have the type estimated in 84. Hence we can use the assumption on the induction. The last
term in the right-hand-side has the estimate as in 84. Therefore we have the estimate

CDupA
e N huly < m((l + DpA)BN TN + D1+ C@)l oY N ully,

Taking the suppod so small thaC(e) < % we have

CDupA
Nty <2—""" (1+ DuA)BNTLN +1)!.
195 ullm =< 1+D/,LA((+ HAYB)"TH(N +1)
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