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Abstract. Theblock number BI(M) introduced in our previous paper isanew topological invariant of aclosed
orientable 3-manifold M which estimates a combinatorial complexity of M just like the Heegaard genus HG (M).
In our previous paper, we have shown an inequality HG (M) < BI(M) for any M # S2 x SL. In this paper, we
will show that BI(M) = HG(M) for any M with HG(M) = 2 and moreover that B/(M) < 4 for any M with
HG(M)=3.

1. Introduction

As a new topological invariant, we have introduced the block number for an orientable
closed 3-manifold M, denoted by BI(M), in[2]. The block number is defined through aDS-
diagram with E-cycle(see[5]). In[2], we have shown that the block number BI(M) dominates
theHeegaard genus H G (M) forany M +# S2x S1. Besidesthis, we have exhibited some other
properties of the block number, for examples, BI(S2 x S1) =0, BI(S3) = 1, BI(L(p, q¢)) =
HG(L(p,q)) =1, Bl(M) = HG(M) = 2 for a Seifert fibered space M having the 2-sphere
$2 as its base manifold and three exceptional fibers. An interesting problem that remains to
be considered iswhether HG (M) = BI(M) forany M # §2 x S1, 3.

In this paper, we focus on the rel ation between the block number and the Heegaard genus
for an oriented closed 3-manifolds. We will give a sufficient condition for BI(M) = HG (M)
in 83. Howeverinthecase of HG(M) = g > 3, it seemsto be difficult to see if any manifold
M have a Heegaard diagram of genus g which satisfies our sufficient condition. In 84, by a
technique of DS-diagrams which does not need the sufficient condition in 83, we make sure
that aDS-diagram induced from any Heegaard-diagram with genus 2 can be deformed into the
one with E-cycle whose block number is 2, that is, we will show the following main theorem
of this paper.

THEOREM 1. BI(M) = HG(M) = 2 for any orientable closed 3-manifold M with
HGM) = 2.

Applying the same method as our proof of Theorem 1, we obtain BI(M) < 4 for any M
with HG (M) = 3in 85. However it seemsto be difficult to show whether BI(M) = HG (M)

Received October 8, 2004; revised February 24, 2005



118 MARIKO ENDOH

]

FIGURE 1.
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for any M with HG (M) > 3. We will investigate what is the difficulty for proving BI(M) =
HGM) =3.

The next section, 82, is devoted to review some definitions and some basic properties of
the block number which we need in this paper.

2. Prdiminariesand definitions

The notion of fake surfaces, DS-diagrams, and DS-diagrams with E-cycle were intro-
duced by H. lkeda ([3]5]). In this section, we shall review these concepts, and define the
block number for an orientable closed 3-manifold.

2.1. Fakesurfaces, simple spines and DS-diagrams. A finite 2-dimensional poly-
hedron P is called a closed fake surface, if any point has a neighborhood homeomorphic to
an open subset of

R2x {0DU R x {0} x Ry)U {0} x Rx R_) C R®,

that is, the shape of a neighborhood of a point x € P is one of the three types shown in
Figure 1.

A closed fake surface P is naturaly stratified as V(P) C S(P) C P, where V(P) is
afinite set of points, called vertices, which play the role of 0 in the above subset of R3, and
S(P) isthe singular set which consists of the points playing the role of (¢, 0, 0) or (0, 7, 0).
A connected component of P — S(P) is called aface of P, and a connected component of
S(P) — V(P) iscaled an edge of P. In this paper, we assume that a face of a closed fake
surfaceis an open 2-disk, and an edge is an open arc.

If a closed fake surface P is embedded in a closed 3-manifold M, so that M — P is
homeomorphic to an open 3-ball B3, then we call P asimple spine of M. For asimple spine
P of aclosed 3-manifold M, cutting out along P, we obtain a 3-ball B2 with a gluing map
on its boundary $? = 9B2. We can formulate this situation as the following definition of a
DS-diagram.

DEFINITION 2.1.1. Atriple A = (G, f, P) iscalled aDS-diagramif

(1) G isa3-regular graph embedded in the 2-sphere 52,

(2) P isaclosed fake surface,

(3) f isaloca homeomorphism from S2 onto P such that f~1(S(P)) = G and
f~Y(V(P)) = Vi, where Vg isthe set of the vertices of the graph G, and
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(4) #fl(x) = 4forany x € V(P), #f 1(x) = 3forany x € S(P) — V(P), and
#f~1(x) = 2forany x € P — S(P).

Let B® be a 3-ball with the boundary 9B% = $2. For a DS-diagram A = (G, f, P),
gluing 3B° by the map f, we get a closed 3-manifold M (A) = B3/f with a simple spine
P = S§?/f of M(A). An element of Vg is called a vertex of A, a connected component
of $2 — G iscaled aface of A and a connected component of G — Vg is called an edge
of A. For aface o of P, f~1(o) consist of exactly two faces o+ and o~ of A such that
flot) = f(67) = 0. Wesay that o isaspouse of o F, respectively.

We always assume that the closed 3-manifold M = M (A) represented by a DS-diagram
Aisorientable.

2.2. DS-diagrams with E-cycle and E-data. A cyclec = {E1, E2,---, E,} of a
graph G is asequence of edges E; (E; # E; if i # j) such that the closure of Uj E;isa
simple closed curve.

DEFINITION 2.2.1. Let A = (G, f, P) beaDS-diagram, ¢ be acycle of G (the un-
derlying space of the closure of the cycle e is denoted by the same letter ¢), and H+ and H~
be the connected components of $2 — ¢. The cycle e of the graph G is said to be an E-cycle,
if it satisfies that

(1) #en f~lx) =2 forany x € V(P),

(2 #en fl(x))=1 forany x € S(P) — V(P), and

(3) therestrictionof f onto H™* (or H™) isabijection.

There exists a DS-diagram which admits some different E-cycles. When we consider a
DS-diagram with E-cycle, we always assume that an E-cycle e is specified, and has a fixed
orientation. Moreover we assume that S2 on which the graph G is drawn is oriented, and
the component H+ of §2 — e of which the restricted orientation is compatible with e, that is
dHT = e (inthe oriented sense), is called the positive region. We represent a DS-diagram
with E-cycle by afour-tuple A = (G, f, P; e). Itisknown that any closed 3-manifold can
be represented by a DS-diagram with E-cycle ([5], [8]), and moreover it is known that, in the
orientable case, a DS-diagram with E-cycle defines a closed manifold (see [8] and [9]).

Let A = (G, f, P; e) beaDS-diagram with E-cycle, which is assumed to be given on
the unit sphere in R3. For each vertex v € V(P) of the spine P = aB3/f, there are exactly
two vertices vt and v~ of the graph G such that f(v™) = f(v™) = v, and v and v~ are
both on the E-cycle e. These two vertices are characterized by the condition

(x) UN(G—e) c H (or H™) for sufficiently small neighborhood U (in $2) of v*
(respectively v™).

Each vertex v € V (P) isclassified into the two cases (¢) or (r) shown in Figure 2 (cf. [8] and
[9]). We definethe code ¢ (v) sothat ¢ (v) = ¢ (or r) if v isthe vertex of type (¢) (respectively
(r))-
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FIGURE 3.

Suppose that V (P) consists of n pointsvy, v, - - -, v,. An E-data
E(A) = (¢, A(Q))

of A = (G, f, P;e) isapair of the code ¢ (v) for each vy € V(P) and the arrangement
A(A) of 2n points v,f onthe oriented circle St = e.

It is known that an E-data completely determines a DS-diagram with E-cycle, and there
are several methods for representing an E-data (see [8], [9], [10], and see aso [1]). In this
paper, we use arepresentation of an E-data by a coded sequence which isintroduced in [2].

ExAmMPLE 1. Let A = (G, f, P; e) bethe DS-diagram drawn in Figure 3, which has
four vertices V(P) = {a, b, ¢, d}. The codes of these verticesare ¢ (a) = ¢(¢) = ¢p(d) = ¢



DS-DIAGRAMS FOR 3-MANIFOLDS OF HEEGAARD GENUS 2 121

and ¢ (b) = r, and the arrangement .A(A) is given by a sequence
AA) ={aTbTb ¢ dTeta"d ™},
which indicates the cyclical order of the pointsin V(G) N e. Of course we may employ a

cyclicaly permuted sequence for representing the arrangement. The E-data £(A) can be
represented by the following coded sequence:

EA) = {athth e at et ataYy.

We call a consecutive (in the sense of cyclical order) sequence of symbolsin A(A) a
subword of an arrangement .A(A). If any symbol in asubword W has the signature + (or —),
then we call W a positive subword (respectively a negative subword).

DEFINITION 2.2.2. A maxima positive (or negative) subword of an arrangement
A(A) iscalled apositive block (respectively a negative block) of A(A).

For example, the arrangement .A(A) in Example 1 hastwo positive blocks W, = a b,
W, = d*c* and two negative blocks Wy = b=c¢~, W, = a~d~, and we can represent
A(A) as A(A) = Wi W3 W, W, . Also for a coded sequence we can define the notion of a
“subword”, a“positive subword” and a* negative subword”.

The block number of a DS-diagram with E-cycle of an orientable closed 3-manifold are
defined as follow.

DEFINITION 2.2.3. The block number b1(A) of a DS-diagram A with E-cycle is de-
fined to be the number of positive blocks included in the arrangement A(A).

2.3. Moves for E-data and block number of a 3-manifold. The moves for DS
diagrams with E-cycle, generators of the deformations of DS-diagrams with E-cycle which
preserve the represented manifold, were introduces in [9]. Here we will review those moves
in terms of the coded sequences for E-data.

DEFINITION 2.3.1 (Thefirstregular move R;). Let A be a DS-diagram with E-cycle
whose E-data £(A) includes three subwords W1 = a~¢bT¢, Wy = attxt¢ and W3 =
x~¢p~t. Then R; is defined to be a deformation changing A into A” with the E-data £(A”)
in which the subwords Wy (k = 1,2,3) are replaced by W, = b=, W, = a** and
W} = b~" respectively. By this move, a ¢ and b mutually exchange their places in the
coded sequence, and x*¢ are eliminated. Hence, for the spines P represented by A and P’
represented by A’, we have #V (P) = #V(P’) + 1.

DEFINITION 2.3.2 (Thesecond regular move Rp). Let A be a DS-diagram with E-
cycle whose E-data £(A) includes two subwords W1 = x ¢y~ (or y7x~¢) and Wp =
xHy*r (or ytxtt). Then Ry is defined to be a deformation eliminating these two subwords
W1 and W2. Hence, for two spines P represented by A and P’ represented by A’ = Ra(A)
obtained by the move R, we have#V (P) = #V (P') + 2.
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FIGURE 4. Thefirst regular move R1.

FIGURE 5. The second regular move R.

The inverses of the above moves R; are denoted by RJTl. If there is a sequence A =
Ag, A1, Ao, --- A, = A’ of DS-diagrams with E-cycle such that A, is obtained from A;_1
by one of the moves R and R5*, then A’ is said to be regularly equivalent to A, denoted
by A" = A.

Another move, called the surgery move, is defined as follows.

DEFINITION 2.3.3 (Thesurgery move S). If A isa DS-diagram with E-cycle whose
E-data&(A) includesasubword W = x ¢y Ttz 07~y y=tw x+¢, then the surgery move
S givesaDS-diagram A" = S(A) with the E-data £(A”) obtained from £(A) by eliminating
the subword W.

If thereisasequence A = Ag, A1, A, --- A, = A’ of DS-diagrams with E-cycle such
that Ay is obtained from A,_1 by one of the moves R, R3 ™ and S*2, then A” issaid to be
equivalent to A, denotedby A’ ~ A.

The following theorem was shown in [9].

THEOREM 2. Let A and A’ be DS-diagrams with E-cycle. Then there is orientation
preserving homeomorphism from M (A) onto M (A’) if and only if A ~ A’.

DEFINITION 2.3.4. Let M beaorientable closed 3-manifold. Let A beaDS-diagram
with E-cycle representing M (A) = M. The block number BI(M) of an orientable closed
3-manifold M is defined by

BI(M) = min{bl(A)|A" ~ A}.

Obvioudly BI(M) isatopological invariant for closed orientable 3-manifolds. The next propo-
sition was shown in [2].

PrROPOSITION 1. HG(M) < BI(M) for any closed orientable 3-manifold M except
for §2 x 1.
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3. A sufficient condition for BI(M) = HG (M)

In this section we will give a sufficient condition for a Heegaard diagram of a closed
3-manifold M with genus g which guarantees the existence of a DS-diagram A with E-cycle
suchthat M(A) = M and bi(A) = g.

Let M be aclosed 3-manifold having a Heegaard diagram (M1, My; D1, D) with genus
g, where M1 and M> are handlebodiessuch that 0 M1 = dM> and M = M1UM> withagluing
map h : IMy — dMy, and D1 = {1, @2, - -y} and D2 = {1, B2, - - - B4} are complete
meridian disk systems of M1 and M> respectively. Deforming the meridian disks D1 U Do,
if necessary, we may assume that 9 D1 U 3 D- is connected and each connected components
of dM; — (3D1U 3Dy) (i = 1,2) is an open 2-cell. Then the union » = F U D1 U D>
of the Heegaard surface F = dM; and the meridian disks in the systems D; (i =1, 2
forms a closed fake surface embedded in M, whose singularity S(P) consists of meridian
curves 3Dy = | J de; and 3D, = | J 3;, and whose vertices V (P) consists of D1 N Dy. This
fake surface P is not a simple spine because its complement is a union of two open 3-balls
M; — D1 and Mo — D5. A face of the fake surface P is either one of meridian disks o; and
Bi or aconnected component of F — (3 D1 U 3 D»). Removing aface A of P whichison F

and whose closure is a compact 2-disk, we can obtain asimple spine P = P — 1 which we
call aderived spine. However the DS-diagram of a derived spine is not necessarily one with
E-cycle. In what follows we will show that we obtain a DS-diagram with E-cycle if the face
to be removed has some good property.

DEFINITION 3.0.1 (A good 2¢g-gon). A face Ag of the fake surface P is said to be a
good 2¢-gon if

(1) theclosureof igisacompact 2-disk,

(2) V(P) N dxrg consists of exactly 2¢ points, and

(3) any two edges on drg are on mutually different meridian, that is, Ao N do; # 0
andorpNap; A@Pforanyi =1,2,---,¢.

THEOREM 3. If the closed fake surface P = F U D1 U Dy given by a Heegaard
diagram of genus ¢ admits a good 2¢-gon Ao, then the derived simple spine P = P — g has
an E-cycle, and its DS-diagram A satisfiesbl(A) = g¢.

PROOF. For simplicity, we will give the proof only for the case HG (M) = 2. We can
prove the lemmafor general cases by a quite similar method.

Let (M1, M2; D1, D) be a genus-2 Heegaard diagram of M, where D1 = {a1, ao}
and Dy = {B1, B2} are complete meridian disk systems for the handlebodies M1 and M
respectively. By i we denote thegluingmap i : M2 — oM.

Assume g to be a good 4-gon on the closed fake surface P = F U D1 U Dy, and

consider the derived spine P = P — Ao. The DS-diagram A = (G, f, P) of the derived
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FIGURE 6. /(M — N(P)).

spine P can be obtained in the following manner. Let Bl.3 (i = 1, 2) be the 3-ball obtained
by cutting the handlebody M; along the meridian disks in the system D;. The gluing map
h and the cutting off operation naturally define the identification map /2 : 9B3 U B3 — P.
For aface A of P which is on the Heegaard surface F, one of the components of 72 ~1(1)
ison an, denoted by A, and the other is on 9B3, denoted by A*. The two components
of A~1(«;) which we denote by a; and al.+, are both on aBi, and the two components of
h=L(B;), which we denote by g, and 8;", are both on 8B3. Since Ao is agood 4-gon, we may
assume that the inverse images A, and Aar are situated on aB? justasin Figure 6. That is, Ay
is adjacent to four faces o, 4, , o3 , and A, where dry N day = a1, drg N A, = ba,
dhg Nday = azand drg NIk, = bp. And Ay isadjacent to four faces i}, B, Af, and B
where dA{ NIAS, = a1, 00§ NPy = b1, IA NOAL, = apand IAJ N3P, = ba. Gluing Ay
and Aar , we obtain a3-ball B® (see Figure 7 and 8), on whose boundary 9B the identification
map f : 9B — P = P — g isnaturaly defined. Together with the graph G = f~1(S(P))
on 9B3, thetriple A = (G, f, P) becomes the DS-diagram for the derived spine P.

After gluing A, and Aar, the edges a1, b1, az and b, of P are not edges of P any more.
Two faces o] of BS and Af of B3 become one face of A. We denote this face by o The
faces of A which result from o;" and A (or 8;" and A;) of B3 U B3 are denoted by o] (or
respectively ) (i = 1, 2). Consider the cyclee = (3o — a1) U (987 — b1) U (daf —
az) U (9p, — bz) of thegraph G. The component of §2 — e which includes the faces a;, B
is denoted by H~.The other component, which consists of the faces o;" and g;" and 17, is
denoted by H+. The restriction of f onto H (or H™) is abijection. Since the singularity
S(P) consists of 851 U 852 — 04, each edge X on P belongs to (da; — a;) or (38 — b;).
Three edges f~1(X) of G appear on e, H~ and H*. Since the vertices V (P) consists of
9D1N 3Dy — A, each vertex v of P belongsto (da; —a;) N (3B; — b;). Four vertices f~(v)
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FIGURE 8. A DS-diagram A with E-cycle.

of G appear on do;” —a; C e, 97 —bj Ce,do; —a; C H- anddp; —b; C H'. Sothe
cyclee turnsout to be an E-cycle of A.

We can see that bl(A) = 2 because, for any verticesv™ and v~ one, vt isincluded in
3By — b1 0r 3B, — by, v~ isincludedin dof — a1 or dag — ap. O

Maybe our main theorem can be proved by applying the above theorem, that is, we can
deform the meridian disk systems of any Heegaard diagram with genus 2 so that the deformed
diagram has a good 4-gon. However it seems to be hard to find a good 2¢-gon for a general
Heegaard diagram with genus ¢ > 3. So, in order to see what is the obstruction for getting
a DS-diagram with the block number ¢ by a Heegaard diagram with genus g, we will try to
prove the main theorem by using the remodeling algorithm in [7], which gives an algorithm
for obtaining a DS-diagram with E-cycle from a given DS-diagram without E-cycle. In 85, we
will show that a similar method gives an estimate BI(M) < 4 for any M with HG(M) = 3,
and moreover we will explain what isthe difficulty for proving BI(M) = HG (M) inthe case
of HG(M) = 3.
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4. Proof of themain theorem

In this chapter, M is assumed to be an orientable closed 3-manifold with genus 2.
The proof of the main theorem is divided into the following three steps:

step 1; defining aderived spine P = P — Ao,

step 2; remodeling Ag of Py into another DS-diagram A1 having an E-cycle,

step 3; reducing the block number of A; to 2 by applications of moves.

The remodeling algorithm in step 2 needs mark lines, each of which isa proper arc on a
face of the spine Py (see 84.1 below and also [7]), and, for the successful operation in step 3,
these mark lines must be carefully chosen. Also the face 1 of the closed fake surface P is so

chosen that we can take desirable mark lines on the derived spine Pp = P — Ag.

4.1. A DS-diagram of aderived spine P. Let (M1, Mo; 51, 52) be a Heegaard di-
agram with genus 2 giving a closed 3-manifold M. Deforming the meridian disks D1 U Dy
if necessary, we may assume that 351 U 852 is connected and each connected components
of M; — (3D1 U 8D) (i = 1,2) isan open 2-cell. The notations M;, D;, B3, F, P and i
follow onesin §3. Let A, A1 and A be three faces of the fake surface P such that

(1) threefaces o, A1 and A} areincludedin F C P,

(2) aface Ao isa2-gon face whose inverse image 1, is adjacent to a; , and the other
inverseimage A8 is adjacent to 85,

(3) theinverseimage A; isadjacent to both A, and af,

(4) theinverseimage ;™ isadjacentto g, and g, .

Theinverseimages Ao, A7 and A;~ on 8B3 and A§, A7 and ;™ on 9B3 are situated just as
in Figure 9. Let x, y, A, B1, Bo, C1, C2, A’ and B’ be edges of P where y = 9io N daro,
x = ko NP2, A C h(dr] Ndaf), A C h(dr" Na;), B’ C h(dryT Napy), daz =
-.-B1yBp--- anddfp =---C1xCa---B'---.

Letp e A, g € B2, p' € A'andq’ € B' befour points. We call apair of smplearcs y;
on dB3 and y, on aB3 pre mark-lines, if they satisfy that

(1) y, isadirectedarconA; suchthat 2(y; ) goesfrom p tog,

(2) v, isadirectedarcon 1’y such that (y;") goesfrom p’ to ¢’ and

Q) hy)Nhy) =0.

These pre mark-lines become mark-linesin step 2.

Notethat, for y; (or y5"), thereisthespouse y;" (or y; ) suchthat a(y; ) = h(y;") = »1
(respectively h(y5") = h(y; ) = y2), see Figure 9.

LEMMA 4.1.1. Thereexists a Heegaard diagram of M which gives a closed fake sur-
face admitting a 2-gon Ao and pre mark-lines y; and y».



DS-DIAGRAMS FOR 3-MANIFOLDS OF HEEGAARD GENUS 2 127

3
B>

FIGURE 9. Thepre mark-linesy;” and y, on 9B3, and y;" and ;" on 9B3.

The proof of Lemma 4.1.1 will be shown in 84.5.1. We obtain a derived simple spine
Po=P — Ao whose singularity S(Pg) consists of da1 U (da2 — y) and 981 U (B2 — x), and
whosevertices V (Pp) consists of 8510852—%0. Thediagram of Figure 10isaDS-diagram

of a derived spine Py = P — Ag. We denote this DS-diagram by Ag. But the DS-diagram
Ao have no E-cyclein general. So we will deform Ag into one with E-cycle by applying the
algorithm of [7].

4.2. Remodeling a DS-diagram into one with E-cycle. Applying the remodeling
algorithm to the DS-diagram Ag of the derived spine Py in the previous subsection, we con-
struct a DS-diagram A4 with E-cycle. The algorithm is carried out along the mark-lines y1
and y», and this operation produces some new vertices. These new vertices of the spine P;
represented by A will be denoted by

a;(1<i<12), h(1=<i<9, ¢(1=<i<p), dd=<i=z<p),

where the number p depends on the initial Heegaard diagram. The set V (P1) of vertices of
Py consists of these new vertices and the original vertices V (Pg). We can see (cf. 84.5) that
the codes of the new vertices are

pla) =L, ¢la) =r, ¢Plaz)=r, ¢laa) =L, ¢las)=1L, Plae) =7,
¢ar) =r, ¢ag) =L, ¢lag) =L, ¢lawn) =r, ¢an) =4, ¢a)=r,

¢y =r, ¢b2)=r, ¢b3)=r, ¢ba)=¢t, ¢bs)=r, ¢be)=r,
¢pbr) =1L, ¢bg) =L, ¢(bo) =r,

() =r, ¢lcp =¢,
¢d)=2t, ¢dp) =r.
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FIGURE 10. The DS-diagram Aq of the derived spine Py = P — Ag.

The codes ¢ (c¢;), ¢(d;) (2 < i < p — 1) depend on the initial Heegaard diagram. As a
consequence of the remodeling operation together with Lemma 4.1.1, we get the following
lemma, whose proof is givenin 84.5.

LEMMA 4.2.1. Let M beanoriented closed 3-manifold with H G(M) = 2. Thenthere
exists a DS-diagram with E-cycle A1 which satisfies M = M (A1) and has a representation
of the E-data:

E(Ap) _{al_ed pgaz_ra;rajeas aera}”as ag alora;'ra;' allaler_
+e —¢ +r+£++r+r+r+r+é++r+llr+r+£—
a6 ag ag-as alO » T bi'by' b3 d T, d ajya, a7 ajya; A,

D
Q;i_b (b rb+rb2rb+ib8(b9rgllclrd (Q‘F
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where
(V) Y =cfqof e and Yy =dydy --dy g,
(2) A7, A, arenegative subwordsand 2,1, 215, £25; and £25, are positive subwords,
() A7UA; —(Uc; ulUdD), 241, 2, 24 and 225, consist of the verticesinherited
from the original Heegaard-diagram,
@ fADU (A = f20D U f(25) U f(253) U f(25) U fFHU F).

4.3. Some more moves. The E-dataof Lemma4.2.1 has bl(A1) = 14. In order to
prove the main theorem, we have to reduce the block number of A1. So we prepare several
moves which are some compositions of regular moves and their inverses.

4.31. Exchange of vertices. Composing the regular moves Ry and R3*, we can

obtain eight moves T}, (o; = € or r) (cf. [9]) which causes the following replacement of
subwords in the coded sequence £(A):

Tf, o () bta™t — a~Tt, (ii)a™t — atixTl, (i) b7t — xhpt
T/, : () bfat - a bt (i) att - atatr, (i) b - bx
Tfe s (@) btta - a7, (i) a™ — xTratr, (i) bt - xTb¢
' © (@) bTa™" — a"btr, (i) at — xTlatr, ()b — b'x7E
7., () a~tptt — btta=t, (ii)att — atixt, ()bt - x7b¢
T/ o () a~'bt — bta~t, (i) att > atlxtt, (i) b — bxt
T, o () abtt > bttar, (i) a™ - xTlatr, (i) b~ > x~tb¢
T, © ()a”bt — bTra~, (i)™ — xtatr, (i) b — bx .

where x ™) are new symbols appearing by each moves.

Each of the above eight moves 7, exchanges the positions of a =2 and b™°3 in the
coded sequence £(A), and so we can use them for decreasing the block number without
altering the regular equivalence class.

4.3.2. Blockreducinglemma. By adequate successive applications of the moves T(f o
or 7, ., we have the following two lemmas. We call each of those lemmas a block reducing
lemma.

LEMMA 4.3.1. Let A = (G, f, P; e) be a DSdiagram with E-cycle having an ar-
rangement of E-data of the form

A(A) = WWy U Uy -+ Uy, Uy

where W isa subword, W and U, are negative blocks, Us; 41 are positive blocks. If

k
<U f(Uzt_p) Nf(Uzy) =0 @)

i=1
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foranyk = 1---m, then we can obtain a DS-diagram A’ with E-cycle such that A’ = A and
bl(A") = bl(A) — m.

LEMMA 4.3.2. Let A = (G, f, P; e¢) be a DSdiagram with E-cycle having an ar-
rangement of E-data of the form
AA) = Wwwiu oS -0, US

where W isa subword, Wy and Us; are positive blocks, Uy, 1 arenegative blocks. If

k
(U f(Uz,»_l)> NfWUz) =0 ®

i=1
for anyk = 1-- - m, then we can obtain a DS-diagram A’ with E-cycle such that A’ = A and
rbl(A") = bl(A) — m.

These block reducing lemmas can be proved by applying the following lemmas 4.3.3
and 4.3.4 which were shown in [2] and give the moves exchanging the position of a positive
subword and a negative subword in the arrangement A(A).

LEMMA 4.3.3. Let A = (G, f, P; e) be a DSdiagram having an arrangement of
E-data of the form

= w— Wt w— bt
AL =U Uy Wy Wi Wy eeeeee Wo_aWo, Woiq (4)

where U;F, W, ; are positive subwordsand U, , W, are negative subwords.

If fWUH N fWUy) =0, U =biby o ---byby and U, = ajay ---a,_ja;, then,
by adequate successive applications of the moves T fu we can obtain a DS-diagram A’ such
that A" = A and the E-data £(A’) has an arrangement

A = Uy Uf Wy Wi Wy - W, Wabr 1 ©)
satisfying the following conditions (i)—(iii):
(i) W, (or Wy _,) is a positive (respectively negative) subword which differs from
WZJ; (respectively W, ;) only by the new symbols created by the moves,

(i) W, includes some new symbolsif and only if the symbol a; appearsin the original
subword W, for somei = 1,2, -, u,

(iii) W{,{_l includes some new symbolsif and only if the original subword W, ; con-
tains the symbol b forsome;j=1,2,---,v.

By similar successive applications of 7,/ , instead of Tf_a,, we have that

LEMMA 4.3.4. Let A = (G, f, P; e) be a DSdiagram having an arrangement of
E-data of the form

=t - - -
A(L) =Up Uy Wy Wy Wy oo Wo,_aWo, Wo,4q -
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If fUD) N FUF) =0, U =byb, ---byby and Uy = ajay ---a;_ja;f, then, by

adequate successive applications of the moves 7 ,, we can obtain a DS-diagram A’ such
that A’ = A and the E-data £(A’) has an arrangement

AN = US UL WG Wy Wy e Wi Wo 1
satisfying the following conditions (i)—(iii):
(i) Wy (or W,;_;) is a negative (respectively positive) subword which differs from

W5, (respectively WZJ;F 1) only by the new symbols created by the moves,

(i) ng includes some new symbolsif and only if the symbol a;~ appearsin the original
subword W,, for somei =1,2,---, u,

(i) W, _, includes some new symbols if and only if the original subword W, _; con-
tains the symbol b;r forsomej=1,2---,v.

In the case where the formula (4) is ablockwise representation, namely W, = W2+n =
¢, the resulting arrangement (5) gives a blockwise representation

AA) = (U WHWy Wy o Wa, 1(Wa,Uy)

andwe have bl(A') = bl(A) — 1.

PROOF OF LEMMA 4.3.1. Let A = (G, f, P; ¢) beaDS-diagram with E-cycle having
an arrangement of E-data of the form

A(A) = WWy U Uy -+ Uy U

having the condition (2). Since f(UlJ“) N f(U, ) = @, we can apply Lemma4.3.3 and get a
regularly equivalent DS-diagram A1 = (G1, f1, P1; e1) having an arrangement of E-data of
the form

A(Ar) = Wl(WioUiz)(UflUf3) Uy Uon_lU£2m

where each subword satisfies that
(2-i) Wy differsfrom W only by new wmboISxfj produced by the moves,

(1-ii) Wio differsfrom WJ only by new symbols;clf j produced by the moves,

(i) U, =Uf ad U, =U;

(L-iv)  Ufp_q (k =2,3,---m)differsfrom U3 _; only by new symboISfoj produced
by the moves,

(1-v) Upy (k=23 ---m)differsfrom U, only by new symbols X1 produced by
the moves.
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Thisimpliesthat bl(A1) = bl(A) — 1. By thefact f(U, ) N f(Uy ) =0 (k=2,---,m)and
the conditions (2), (1-iii)-(1-v), we can see the conditions
k

(Uwinp) n i =7 ®
i=1

for any k = 2,3,---m. Since (f1(U7) U faUfy) N iU, = @, we can apply

Lemma 4.3.3 and get a regularly equivaent DS-diagram Az = (G2, f2, P2; e2) having an

arrangement of the form

A(Ar) = Wz(szOUZjZUZj4)(szlUZfSszS)Uzjﬁ . Usz_lUizm

where each subword satisfies that
(2-i) Wo differsfrom W1 only by new symbols;czjf j produced by the moves,
(2-ii) W5, differsfrom WlJr only by new symbols.x, j produced by the moves,
(2-0il) Ufy_1=Uip (k=12 andU;y = Uy (k=2)
(2-v) Ujy 4 (k = 3,4,---m) differs from U, , only by new symbols x; ; pro-
duced by the moves,
(2-v) Us o1 (k=1,3,4,---m)differsfrom Ui only by new S)ImbO|Sx£i produced
by the moves.
Thisimpliesthat b1(A2) = bl(A) — 2. By thefact f(Uy) N f(U,) =0 (k = 3,---m) and
the conditions (6), (2-iii)—<(2-v), we can see the conditions that

k
(U f(Uszz,»_l)> Nf(Uzp) =0 (7)
i=1

forany k = 3,4, - -m.

Applying Lemma 4.3.3 m-times similarly, we get a sequence A, = (Gy, fx, Pr; er)
(k =1,2,---m) of regularly equivalent DS-diagrams, such that A is obtained from A;_1
by exchanging the positive subword (U, ;U 3 5+ Ui ;) and the negative subwords
U1 BY x,fj (1 < j < sk), we denote the new symbols created by the k-th application of
Lemma4.3.3 which deforms Ay _1 into Ay, where the number s, is given by

k
sk = (#Uy;) X <l_[(#U2+jl)> .

j=1

The conditions (2) imply that the arrangement of m-th DS-diagram A,, can be represented as
A(Ap) = WO OF

(©1 =W, 0Un 2UnaUpe Uy

m,2m’

ot — 77+ + + ..t
02 - Um,lUm,SUm,S U, ,2m—l) ’

m

and satisfies that
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(m-i) W, differsfrom W by some of new symboISijE j fork <k’ <m,
(m-ii) W, , differsfrom Wy~ by some of new symboISkaj fork <k’ <m, and
(mHiii) U, differsfrom U, by some of new me0|lej7)j fork <k’ <m, and
(m-iv) U, 5 differsfrom U, by new symbolsx, .
Thisimpliesthat bl(A,;) = bl(A) — m. So we completethe proof by A, = A’. O
Lemma 4.3.2 can be proved by using the moves in Lemma 4.3.4 instead of those in
Lemma4.3.3.

4.3.3. Pair eliminating. There are some cases where, even if the block reducing
lemmais not directly applicable, we can reduce the block number after preparatory moves.
Here we will introduce such preparatory moves, called pair eliminatings.

Consider the case that the given E-data includes subwords Wo = at*W=b*" and Vo =

a=th™", where W~ = wI¢(u;1)w£¢(u;2) Coe w§—¢(w¢) is a negative subword disjoint from Vg.

Then, making successive ¢ times applications of the moves T¢€(w,~) , (0 =t orr), weobtain

an E-data in which the subwords Wo, Vo and each of w;”

following

i) (j =1,2,...¢) arereplaced as

) a™w bt > watt, (i) a b >V ab,

(i) w?" > wri=12-.-7)
where V= = v ?"y, 02 .y 7 is anegative subword, and

W — w it gawi) =€,

L .
v;“rwi” if p(w;))=r

is a positive subword. The symbols above vijE

by themoves 7% ,.

¢0) (; = 1,2, ¢) are new symbols created

Furthermore, making an application of the move R, we obtain an E-data in which the
subwords W—attht", V=a=tb" arereplaced by W, V~ respectively. Then, we obtain the
move which causes the following replacement of subwords on the coded sequence

S () attwThT - wo, (i) a7 - VT,

(i) w?" > wri=12-..7).

Thismove eliminatesthe verticesa* and b* in the arrangement A(A). Sowe call Gﬁ” apair
eliminating and a pair of vertices a and b an eliminating pair.
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Composing 7,2, and RS (o = € or r) similarly, we can obtain three other pair elimi-
natings &';¢, %" and &"*, in a coded sequence:
&"t: () a Wbt > W, (i) b e > VT, (i) w M > W i =1,2,---0)
Y (i) a ' WrhT > W, (i) b att - V(i) w ™M S Wi ((=1,2,---0)
St (i)awHbt > W, (i) at bt - VT, (i) w;¢<Wf> - W (=120

where
W = w;¢(w1) wg¢(wz) o w;fﬁ(w:) ’ wt = wir¢(w1)w;r¢>(wz) o w;ﬁi’(w:) ’
o N
T =yt —902) ~p ) et Jwiu i gwi) =€,
= U; oo UZ Ul y Wi = e 4r ]
v w; if o(w;)=r,
—r _e . _
b AW (), () e _ Wi v i gwi) =r,
VT =v, SRR VN vy , W, = o
v w; if ¢p(w;)=2¢,

U)»_rv»_r if ¢(U)) =r,
vt = U]J_r¢(vl)1j;¢(l)2) . v;*d’(vz) and Wi_ _ i Y i

v twif d(w;) =1¢.

The pair eliminating is useful for removing vertices which prevent us from applying the block
reducing lemma or other moves. A new DS-diagram A’ obtained by applying the pair elimi-
nating operation to a DS-diagram A satisfiesthat A’ = A and bl(A’) = bI(A) or bl(A) — 1
or bl(A) —

4.4. Reducing the block number. In this subsection, we reduce a block number of
A1 from fourteen to two by applying three times of pair eliminatings and two times of block
reducing lemmas introduced in 84.3. The coded sequences in the following moves are so
complicated that we bracket the subwords where we apply a pair eliminating.

First we apply apair eliminating &' to the E-data
E(A) = {cf d, Cpeazraérr(a4 a5ea6r Jrr)as ageaiga;r(agr()afleaﬂAI
(ag )a9 ag a3rafor e +rb+rb+rb+rd+e')’+d+ra£€ o
(aj‘az"afy aft A5 23b, b bE by b b by 2 e dy 2, ©®
b+rb ’b“b/zb rb+rb ’b”.(z )
In order to explain how the pair eliminating is applied, we rewrite £(A1) by

E(A1) = Uy WoUaWoUs3
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where
0 g—r —f —
Up=ag dprcp azra;'r,
Wo = aIZ(as_eagr)a;'r,
0 —t — 0 —C —r 4— ¢ —t —
U2=a§r dg “10r"5rr(a;r )aqy alerl(ag“’)a; ag a3raforc;r€
+ Arptrptrptr g+ gt 4L
Y ¢ bi'by b3 dT, dp agy s
Vozaiea{r and
_ Ar e a—ot+ Aty —rptrp—rp byl —r o+ —r gL+
Us =ajya; Ay 25,by by bg by by bg by 275¢1"dy $215
Hryp—ryp 4y —€y —ryp4+ryp—rip+€ 5+
bg b3 "bg by bg by by by $25,.

Applying the pair eliminating, the subwords Wo, Vo and the verticesaZ “ and al” arereplaced
asfollowing

(i) aIZWfa}H —- W =a5_ea6_r, (i) a;ga;r - vt =ml_£m5r,
(iii) ag'e — Wl+ =a;'em'lHZ
ag'r—> Wg'zm'{rag'r.

As a consequence, we obtain a DS-diagram A with an E-data
E(A2) = UtW UaV ™ Us

—0 g—r —C — —0 - o~ — O+l —b —r 4—
= {a, dprcp azr(“;r(% asr)“g )ag alor“;r(“; mir Jayy agy Aq
+r o +ry o = —r\ tr Hlapt Ayt gt gt 4L
(my"ag" )ag (ag a3 )ajy cp Yie] by by by AT dp agy 9
—L_—rN +r H p— oty —ry+rp—ri+ly—ly—r 5+ —r j— ~H+
(mq"my )ag, ay Ay 251by b bg by b7 "bg by $295¢1 " dy " $215
Hryp—ryp 4y —€y —ryp4+ryp—rip+€ 5+
bg b3 "bg by bg by by by 25,}.
The block number of A» is still fourteen. This move from A4 to A, enables us to make the
following move.

Applying the pair eliminating GZ;Z to £(A2), which causes the replacement

0) aé"rW_a;'e - W = as_eagr, (i) as_gagr -V = mZngr,
a;e — a;eméﬁ
(iii) +r +C _+r

dg —>m4 dg

’

we obtain aDS-diagram A3 with an E-data

£(A3) ={ag'd," ¢, ay" (a5 ag ag ‘argaz” (ad‘m3 mT

by, —C —r y—
p aygay (ag mg my )apya;, Ay

+r o Ary o~ —ry AT At rptrptrptr g+t gtr o+
(my ' my~ag )ag (my mg )ajgc, Vi cf bbby b3 d Y, d," ayy

—L_—r\ +r +lao—o+ti—Cy—ryp+rp—ri+ly -4y —r o+ —r L+
(my"my )ag, ay” Ay $251b, bs" bg by by by by" 29117 dy $215

bi b3 b b7 b b b b 20}

(10)
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This move reduces the block number by two, that is, bI(A3) = bl(A2) — 2 = 12.
Applying the pair eliminating 6+ to
E(A3) = {al_edp c, a2 "ag a6 "ag alora;'ra;%m;rm'l"ean aj, A7

+0 +r +€ —L r+e++r+r +ry g1 gt ghr L
m2m4a6 ag m4m3a10pT by (by")bg led agy

11
ml@mzra]-f-zra-‘rf/‘ .Q+b @b r(b-'rrbzrb-'r@)bsfbgrg-‘r rdl—fglz

by"b3" by (b7 "bg")bg b1 i 251
which causes the replacement
() ba"W bt - W™ =by", (i) b7'bg" — V- =mg", (i) b3 — md'b]",

we obtain A4 with an E-data

E(Ag) = {a; Zd c, a2 a5£a6 ag alga;ra;emgrm#allaler_

O A1 AL ettt b

+p 4y AT gt +e
m2 "myag ag ma” “ma~ "ajgc M (ma"b3")b3"d T, d+r

a1 (12)

m1 " my " ady af A5 2516, b by b tbg” 24 ey d Tt 21
bg"b3" by (mg)bg" by by 235}
Thismove causes bi(A4) = bl(A3) — 2 = 10.

Now we apply the block reducing lemma. In order to confirm the conditions for the
block reducing lemma, we rewrite the E-data £ (A4) by a blockwise representation:

- wrwowtr wowtr wowr wo.w
E(Ag) = Wa 1 Wy oWy sWaaWasWaeWa7WasWa Wi 10

13
szllWIlzszlsWZ,rszflsWIszfl?WIlSszlgWIzo &
where
Wsq =aI€d;rc;£a£rageagra§eaig WIZ _a2 a;rﬁm;rrmiré
W3 =a51€aI2rAI Wi,r4 =m2 ’"Ieaéﬂa;e
Wyg =ma‘ms™ Wie =algctrf et v mg by b3 dfry
d;‘rai’f
Ws7 =m1 tmo™" WIS =ai"2rai"1Z
Wi =43 Wi10= 1925
Wy11=b5 b5 by "bg ' bg” Wi=24)
W;13=CIrdfe W414—~Q+2b '
415—b3 W4+16=b“
W4,17—(m5£) Wi’,rls:bgr
Wi9=b1" Wi,rzozbj{eg;z‘

Obviously, f(W,5) N f(Wye) =@ and {f (W, 5) U f (W, 7} N f(W,g) = 0. We can apply
Lemma 4.3.2 to the blocks W;5WIGW;7WI8 in £(A4). Then we obtain a DS-diagram As
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which satisfies bl(As) = bl(A4) — 2. The E-data of As can be represented as
—wowtrw-wt+ wo.w* w— wt
E(As) = Wy 1 W5 , W5 3Wg s Wg Wi 10Ws5 11 Ws 10

14
R R R R R "
where
W, =W, We, =W,
Weg =Wag  Wey =Wi,WiWis
Wsg =WusWi Wag We10=Wigg
WS_,ll = VYZM WsJ,rlz = Wi,rlz
Ws 13= sz 13 Wg,r 14= WI 14
Ws15=Wy 15 We'16= Wy 16
Ws 17= szﬂ WSJ,rlS = WI 18
W5 10= Wy 190 Wg 20= W 50-

A subword Wg ; (or WI j) differs from W, (or WI j) only by the new vertices created
by the moves from A4 to As. The fact ngj = ijj (j = 10, 12, 14, 16, 18 or 20) implies
that

FWe) N f(Wa ) =0,

{f(We10) U F (W)} N f(W5 1) =0,

{f(We10) U F(Wel1p) U F(WEh )} 0 f(Wg15) =4,

{f(We10) U F(We'1p) U F(Weh1) U F(Wehh N f(Wg17) =4,

{f(We10) U F(Weiip) U F(Weh1) U f(Wee) U f(Wai@d N f(Waq9) =0 and
{f(We10) U F(WeT1p) U F(Weh1) U fF(Wa 1) U fF(Wa19) U f(Wapo)} N f(Wg ) = 0.

Therefore applying Lemma 4.3.1, we obtain a DS-diagram A which has bi(A) = 2. This
shows that it is sufficient for the proof of our main theorem to prove Lemma4.2.1. a

45. Proofsof Lemma4.1.1 and Lemma4.2.1

45.1. Proof of Lemma4.1.1. According to [11], for afake surface P induced from
a Heegaard diagram (M1, M>; 51, 52) with genus 2, we can find two faces A1 and A7 on P
having the following conditions

(1) twofacesiq and A} areincludedin F C P,

(2) therearefiveedges A, B, D, A’ and B’ such that

A C h(@r] Ndaf), B C h(dr] Ndaf), D Ch@r{ Napd),
A Ch@r"napy) and B Ch@r, Ny,

(3) theseedgesare arranged on 911 and 91} in the order

oM =---A---DB--- and 8)/1=---A'---B/---
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Each symbols ¥, 1), o and 8 means each component of the inverse images 7~ (3.1),
h=1(W)), i~ () and h=2(B;) respectively, such that A7, A~ and o are on 9B3, and A,
A * and g areon 9B3.

Letp e A,q € B,p' € A'and ¢’ € B’ befour points. Then there are two simple arcs
y10n iz and y2 on A} which satisfies that

(1) y1isadirected arc on 11 going from p to ¢ and y; is adirected arc on 1 going
from p’ to ¢/,

(2 y1Ny2=0onF,

(3) h~(y1) hastwo components ;" € A} andy; C A,

(4 h™(y2) hastwo components y,7 € A, and y;, C A}~
Thearcs y;& and 5= on 9B3 U B3 are as described in Figure 11.

For a Heegaard diagram (M1, M»; D1, D) with the arcs y1 and y» on P, we apply a
disk-dlide to the meridian disks a2 and B2 so that the edges B and C cross each other and a
face Ag is produced, as described in Figure 12. This Heegaard diagram gives a fake surface
admitting a2-gon 1o and pre mark-lines y;” and y2+ . This complete the proof. |

45.2. Proof of Lemma4.2.1. Thelemmawill beproved by carrying out the algorithm
in[7]. First we briefly explain some terminologies, see [7] for detail. For each edge (or face)
o of A, wecal o al-cel (or a2-cell) of A, wemay cal f(o)in P al-labd (or a2-label,
respectively) of A. Let A = (G, f, P) beagenera DS-diagram. Consider a pair of 2-cellsin
A with the same label «. We denote one of them by o™ and the other by &~ In thisway, we
can separatewhole 2-cellsin A intotwo classes {7, -+, orf  Jand {ag  ag - a4 ).
Theclosure Z* of ay Uay U---Uaf; (or 2~ of a7 U, U--- U, ) iscalled the positive
zone (or the negative zone, respectively). We will call such a pair (Z*, Z7) abicoloring of
the DS-diagram A. If both of Z+ and Z~ are connected, we will call (Z+, Z7) a split
bicoloring of A. A DS-diagram A is splittableif A hasa split bicoloring.

3
B>

FIGURE 11. Thearcsy;" and v~ on 9B$ U 9B3.
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FIGURE 12. Thedisk-slide producing 1q.

Let A be a splittable DS-diagram with a split bicoloring (Z+, Z7). Letas, az, - - -, am
be asequence of successive 1-cellsonasimpleloop ZTNZ~ suchthat cl(a1UazU- - -Uay,) =
ZTNZ™. Let A; bethelabel of @;, 1 < i < m. Thenwesay that I' = AjAs--- A, iS
a splitting cycle of A associated with (2, Z7). If a DS-diagram A has a splitting cycle
I' = A1A3--- A, satisfying A; # A foreachi # j, then Z¥ N Z~ isanE-cycleof A.

For remodeling a DS-diagram into one with E-cycle, we use elementary deformations
I*, I1* and digging operations as deformations of DS-diagrams which preserve the repre-

sented manifold, see [7].
Now we apply the remodeling algorithm to the DS-diagram Ag of the derived spine Po

obtained by Lemma4.1.1. We decide abicoloring (2*, Z7) of Ag by Z*+ = (o}, B}, /\j}
andZ~ = {o; , Bi Ak The choice of 1o makes it possible to define this bicoloring. The

intersection Z* N Z~ consists of three cycles, and so this bicoloring (Z+, Z7) isnot yet a
split one. Thethree cycles of Z+ N Z~ can be written as

dof ={AT (@)},
0By ={(A) I g} and
(a3 —y) U (@B —x)=(BI(@3)CT (Bx)(B) 'I'(By)},

where F(af), r<a2+), I'(B1), I'(By;) and I" (B,,) are consecutive sequences of 1-labels, see
Figure 13.

We apply DS-deformations in Theorem 2.3 of [7] and digging operations to make Z+ N
Z~ asimple loop. The DS-deformaions in Theorem 2.3 of [7] are applied to the 1-labels B
and B’. As aconsequence of these deformations, the three cyclesof Z+ N Z~ are deformed
into

dof ={AT (@)},

By ={(AHIr ) and
oy — y) U085 —x)={I'(B)[(a)CT (Bn) (BT (By)} ,
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67 2*
B (o) c
Y —
vy
A
1] a 1+
T(B22); e 7 {T(B21)
b4
2 -
.
Av
—1 B 2—
A 5 A
+
Ya
g
B.*

G

FIGURE 13. TheDS-diagram Ag.

where
I'(B) = B1VB.Q1SP>B,.P1T Q2B U B>
and
(B =By WU B oy ) e By eyt
sH oty tvH Tty Tt
Defining amark-line y,~ from A to B, (or y; from A’ to B.) in pardlel with the pre mark-

line y; (or respectively y2+ ), we apply digging operations along mark-lines y,;” and )/2+ . By
Lemma2.1 of [7], these digging operations connect the three cyclesinto only one cycle. Now
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we obtain a splittable DS-diagram A; having a splitting cycle
I ={I1(B, A)T(a3)CT (B3 Tu(B', AT (B3)} .
where
I'(B, A) = 31VBbE*lBtlePszDﬁ(AtF(af)Ab)DbBﬁPlTQngBBﬁUbUUﬁBz
and
N8, A" = By U~ UHTHU) THBYTHB) THB)THEY THT) TP THB) !
(D)~ HAprBAD YD)t
(B)TH(PYHSHTHEYTHBY TE B) V) THBY T
We apply Theorem 3.1 of [7] to the 1-labels B; and B;.
Iy ={I2(B, AT (a3)CT (By)T2(B', AT (By)} .
where
I>(B,A) = 81VBbE*lL QlSPngDt(AtF(af)Ab)DbNPlT Q02B,BMU,UUy B>
and
Ia(B', A) = (B~ HUH~HUH ™ U~ M) THB)THB) THE) THT) TP TN T
(D) HAD T B HD)H
(BT (P THSHTHQD TN TE (B TV TR T
Remove two 2-gons with each of boundary circles U, D, and U, *11);*1 by applying elemen-
tary deformation 1~ for each of 2-gons. The splitting cycle I3 is
'3 = {I3(B, A)I(a3)CT (By)3(B', AT (By)} .
where
I3(B,A) = 81VBbE_1LQlSPngDﬁ(AtF(af)Ab)PlTQZBbBUUﬁBg
and
(B, A) = By Uh~twH BBty ta) eyt
(Ap~ren@hhoyt
(B)~HPy~HSHH DT TE BTV TR T
For a pair of two 1-labels B, and B,’, we apply DS-deformations according to Theorem 4.2

of [7]. Firstly, we apply an elementary deformation /7™ to B,’. Then, Z+ N Z~ condiststwo
cyclesas

Z¥N 27 = {Ia(B, AT (@3)CT (By)Ta(B'. AV (B)} U{GHI}
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where

I'w(B, A) = B1VB,E"*L Q1S P2B, D (A: T (e ) Ay) LT Q2B, BUU; By
and

ryB', Ay = By~ UHwH 1B ey )i A Tr (s (A
(DY~HPYTHSHTHEY TN THE' (V) TR BD T

Secondly, we take asimple arc y from B, to H in Z+. y+ may intersects with p 1-cells
with 1-labels Wy, Wo, --- W,_1 and V where each W; is an edge inherited from the initial
Heegaard diagram and V is a new edge obtained by the deformations of remodeling, see
Figure 14. The 1-label W1 isanedgeincluded in gy andeach W; (i =2,3---, p — 1) isan
edgeincluded in da1 U dap. Along y+ as amark-line, we apply a digging operation.

Lastly, applying an elementary deformation 77/ to X1 and an elementary deforma-
tion 7111 to X, (edges X1 and X», see Figure 12-c in [7]), we obtain a DS-diagram
A1 = (G, f, P; e) with an E-cycle e. The splitting cycle I', which is the sequence of succes
sive 1-labelsone is

T, ={Is(B, A)T(@3) I ()T (B3 T5(B', AT (B)}

where
I5(B, A) = Bl(VbVV]:.hX*JzE*lL QlSP2L1ZL2Dt)Aﬁ1:'(aIr)Ab
(PAT Q2K1TpTp 1 I'(T)T1H1IGH2811" (S)S,—1K2BUUy) B>

= B1l5(B, A)B;

v
Q.
v E , .
8 \ P Ds Wiy We, Wa W W, D, P
. T Q.

FIGURE 14. Mark line y ™ from B, to H.
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and
Is(B'. A) = (B W)~ U M B)THR) I TR THAD TR (B (AT
(DH~HPY™HSHHEY TN TIE (V) THBY T
= (By) 'I5(B', A)(B) .

The consecutive sequence of 1-labels I'(T) = Tp,—2--- T and I'(S) = Sz - - - Sp—2 included
in I's(B, A), consist the new 1-labels which appear by the digging operation along y +, see
Figure 15. If I" (e;") containsthe 1-label W; for some j = 2,3---p — 1, I'(;) includesthe
1-labels Wi W; Wy, If C = Wy, forsomek = 2,3--- p — 1, then I'(C) = Wi Wi Wy For
rBy) = TB)WAT (B), I'(BY) = I'(Br) Wiy WiW1, I (B).

From now on, we will see the vertices on the E-cycle of the DS-diagram A1 in order to

examine the E-data and to prove Lemma 4.2.1. The splitting cycle I', leads us to the E-data
E(A1). We can writeit as

E(A) = {WBA -Q lI/B’ 22} (15)
where
— gt =t —r 4r +t —r 4+t~ +r +t -
¥p =a, dp Cp Ay ag a, ag aG a; ag - aqg aloaz ag allale
+r +t +r oAt +r +rptrptr gyt g+ —t = 4r 4+t
ag aq ag a3 alO » T bi by by d"T, d a11a4 a; aj,a; ",
and

lIIB/ —b Zb rb-‘rrbzrb-'r@bsebgrg-i- o €Q+b+rb3rb+@b7@b6rb+rb rb+€

The subword ¥ (or ¥p) consists of the vertices which are adjacent to the 1-labels of

:J/r' 7" and 7,5 consist of

I5(B, A) (or I's(B’, A), respectively). The subwords A7, 2

'_>

Q. 4
ViV Ve * Wois Wor Wi, WoaWoo W, Woe Wo Wo, Wi 145 W, Wl Wi D P
X, ;e\l @8 Pt Z D, PTQXBUL }
k } k } Toa 52Ty 5 T s T s, i
P,

T, H.
Woay Woz Whoe Woai o s Wose Wa, Wa W2, Wai W) Wy

g
]
5<<
93
=

FIGURE 15. The DS-diagram A with E-cycle.



144 MARIKO ENDOH

the vertices which are adjacent to the 1-labels of I"(e;") (or I'(e )W1:Wa, if C = W),
r(B;), I'(T) and I'(S), respectively. For the vertices included in T = c;lc;z...c;
and 1,0 = dydy---d} ), theverticesc; and d; (i = 2,3,---p — 1) are included in
the sequence of 1-labels W; W; W;;, on the E-cycle. Thisimpliesthat f(A7) U f(A;) =
F25D U F(R21) U £(25) U F(25) U F(r]H U £(T5D). Theverticesa™ (1 < i < 12),
bE(Ll<i<9,cf@L<i<padd"(<i< p)arenew vertices which appear
by deformations of remodeling. This shows that the E-data (15) is one required in
Lemma4.2.1 |

ReEmMARK 1. By the movesfrom the coded sequence (15) to the coded sequence (14)
in 84.4, each subword in (15) isinherited to the subwordsin (14) asfollows,

W — Wg  Wa,Wo s We y Wi sWa 7,

Ay > Wiy,

2% — 25 =Wy,

WB/ g WS_ 11 W;:lZ WS_ 13 W;,_14W5_, 15 Wg_ 16 WS_,17 Wg_ 18 WS_,lgbjl_ ‘ and
25— 25,

5. Difficulty for thecaseof HG(M(A)) =3

In the main theorem, we have considered the case of HG(M (A)) = 2. Here, we will
mention briefly that the same method as in the case of HG(M(A)) = 2 seems not to be
applicableinthecaseof HG(M(A)) = 3.

Let (M1, Ma; D1, D) be a Heegaard diagram with genus 3, and let D1 = {a1, ap, o)
and Dy = {B1, B2, B} be complete meridian disk systems of M1 and M respectively. In
order to apply the similar way of moves of the case HG (M (A)) = 2, we have to prepare the
following four pre mark-lines

y; Wwiththeinitial point p; € A1 C 1™ and thetermina point g1 € By C da2™,

y; withtheinitial point pj € A} C 8o/1+ and thetermina point ¢} € B C da2™,

y2+ with theinitial point p2 € Ao C 981~ andthetermina pointg> € Bo C 982~ and

5" with theinitial point p, € A, € 38, and thetermina point ¢, € B, C 32~ ,

where
(1) thesearcsdo not intersect with each other,
(2) bothof y," and '3 intersect with neither edges By nor Bj.
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We also obtain a DS-diagram A1 inasimilar method to the case of genus 2 by making 2-gon
near the mark-line y; . The splitting cycle of A; can be written as
I'(A1) =I'5(Bi, Al)f(a{)F(C)F(ﬁz_l)Fs(Bz, A2) I (B5))
' (By ) Is(B5, AT (B, ) I5(B, A’l)f(a’2+)
and it leads us to the E-data
E(A) = Wp, A 208,25, 51 W, '3 A7 .
Applying the moves for reducing the block number to A1, we obtain a DS-diagram A’ with
the coded sequence
E(A") = (Wg 1 We ,Wg s We Wi s W, )W, g Wa 1
- wtr w— wt+ w— wt w—_wt w— ptHot
(WS, 11 WS, 12 WS, 13 WS, 14 WS, 15 WS, 16 WS, 17 WS, 18 WS, 19b4 ) 922
+ - + - + - + - + — g+ +
W5 10(W's 11W'5 1.W'5 13W'5 1aW'5 15W's 16W's 17W's 18W'5 1004 )22

(W's 1 W's W5 sW'E 4W g sW 4 D)W
2 10
- + - +
= < l_[ W5,2k—1W5,2k> < 1_[ W5,2k—1W5,2k>
k=1 k=5

10 2
+ - + - + -
W/s,lo( 1_[ W,5,2le,5,2k> < l_[ W/S,Zle/S,Zk) W's g
k=6 k=1
where W' g = W5 sW'5 7 W/ae and W'e 5o = b'2°25,™ and each subwords of £(Ay) are
inherited to the subwords of £(A”) asfollows,
W, — W5 W5, W5 sWs yWasW,y 7,
A7 = W,
+ + _ owt
29, = $251=Wg1p»
- wt w- wt+ w— wt+ w— wt+ w— p+t
Ve, — W511Ws515W513Ws514W5 15Ws 16 W5 17Ws,18Ws5 1004
+ +
29 — $25,
9§1+ - 9§1+ = W’ér,lo’
- + - + - + - + Ty,
Wp, — W5 11 W5 15W'513W'5 14W'5 15W'5 16W'517W'5 18W'5 1064
9§2+ - 9§2+ )
Ay = Wy,
The subwords W/ j and W/f’ ; (e = +or—) consists of similar symbols and order to the
subwords W; i of (14).
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The subword ([Ti2s Ws o1 We 20 W'a 100 Tice W's k1 W e ) W51 W'e 5 can be
deformed to the blocks ©1 and @5 . But the other subword W'z 3 W'a 4, W'5o Wg, We,

Wi, 3W5Jf 4 can not be deformed to less blocks any more by the similar confirmation to the
proof of Theorem 1. So we obtain a DS-diagram with block number 4. If we apply the dif-
ferent way of moves, we may obtain a DS-diagram with block number 3. But it is difficult to
find amethod to do it now.
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