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Abstract. The block number Bl(M) introduced in our previous paper is a new topological invariant of a closed
orientable 3-manifold M which estimates a combinatorial complexity of M just like the Heegaard genus HG(M).

In our previous paper, we have shown an inequality HG(M) ≤ Bl(M) for any M �= S2 × S1. In this paper, we
will show that Bl(M) = HG(M) for any M with HG(M) = 2 and moreover that Bl(M) ≤ 4 for any M with
HG(M) = 3.

1. Introduction

As a new topological invariant, we have introduced the block number for an orientable
closed 3-manifold M , denoted by Bl(M), in [2]. The block number is defined through a DS-
diagram with E-cycle (see [5]). In [2], we have shown that the block number Bl(M) dominates

the Heegaard genus HG(M) for any M �= S2×S1. Besides this, we have exhibited some other
properties of the block number, for examples, Bl(S2 × S1) = 0, Bl(S3) = 1, Bl(L(p, q)) =
HG(L(p, q)) = 1, Bl(M) = HG(M) = 2 for a Seifert fibered space M having the 2-sphere

S2 as its base manifold and three exceptional fibers. An interesting problem that remains to

be considered is whether HG(M) = Bl(M) for any M �= S2 × S1, S3.
In this paper, we focus on the relation between the block number and the Heegaard genus

for an oriented closed 3-manifolds. We will give a sufficient condition for Bl(M) = HG(M)

in §3. However in the case of HG(M) = g ≥ 3, it seems to be difficult to see if any manifold
M have a Heegaard diagram of genus g which satisfies our sufficient condition. In §4, by a
technique of DS-diagrams which does not need the sufficient condition in §3, we make sure
that a DS-diagram induced from any Heegaard-diagram with genus 2 can be deformed into the
one with E-cycle whose block number is 2, that is, we will show the following main theorem
of this paper.

THEOREM 1. Bl(M) = HG(M) = 2 for any orientable closed 3-manifold M with
HG(M) = 2.

Applying the same method as our proof of Theorem 1, we obtain Bl(M) ≤ 4 for any M

with HG(M) = 3 in §5. However it seems to be difficult to show whether Bl(M) = HG(M)
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FIGURE 1.

for any M with HG(M) ≥ 3. We will investigate what is the difficulty for proving Bl(M) =
HG(M) = 3.

The next section, §2, is devoted to review some definitions and some basic properties of
the block number which we need in this paper.

2. Preliminaries and definitions

The notion of fake surfaces, DS-diagrams, and DS-diagrams with E-cycle were intro-
duced by H. Ikeda ([3]–[5]). In this section, we shall review these concepts, and define the
block number for an orientable closed 3-manifold.

2.1. Fake surfaces, simple spines and DS-diagrams. A finite 2-dimensional poly-
hedron P is called a closed fake surface, if any point has a neighborhood homeomorphic to
an open subset of

(R2 × {0}) ∪ (R × {0} × R+) ∪ ({0} × R × R−) ⊂ R3 ,

that is, the shape of a neighborhood of a point x ∈ P is one of the three types shown in
Figure 1.

A closed fake surface P is naturally stratified as V (P) ⊂ S(P ) ⊂ P, where V (P) is
a finite set of points, called vertices, which play the role of 0 in the above subset of R3, and
S(P ) is the singular set which consists of the points playing the role of (t, 0, 0) or (0, t, 0).

A connected component of P − S(P ) is called a face of P, and a connected component of
S(P ) − V (P) is called an edge of P. In this paper, we assume that a face of a closed fake
surface is an open 2-disk, and an edge is an open arc.

If a closed fake surface P is embedded in a closed 3-manifold M , so that M − P is
homeomorphic to an open 3-ball B3, then we call P a simple spine of M . For a simple spine

P of a closed 3-manifold M , cutting out along P , we obtain a 3-ball B3 with a gluing map

on its boundary S2 = ∂B3. We can formulate this situation as the following definition of a
DS-diagram.

DEFINITION 2.1.1. A triple ∆ = (G, f, P ) is called a DS-diagram if

(1) G is a 3-regular graph embedded in the 2-sphere S2,

(2) P is a closed fake surface,
(3) f is a local homeomorphism from S2 onto P such that f −1(S(P )) = G and

f −1(V (P )) = VG, where VG is the set of the vertices of the graph G, and
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(4) #f −1(x) = 4 for any x ∈ V (P), #f −1(x) = 3 for any x ∈ S(P ) − V (P), and

#f −1(x) = 2 for any x ∈ P − S(P ).

Let B3 be a 3-ball with the boundary ∂B3 = S2. For a DS-diagram ∆ = (G, f, P ),

gluing ∂B3 by the map f, we get a closed 3-manifold M(∆) = B3/f with a simple spine

P = S2/f of M(∆). An element of VG is called a vertex of ∆, a connected component

of S2 − G is called a face of ∆ and a connected component of G − VG is called an edge

of ∆. For a face σ of P , f −1(σ ) consist of exactly two faces σ+ and σ− of ∆ such that
f (σ+) = f (σ−) = σ . We say that σ± is a spouse of σ∓, respectively.

We always assume that the closed 3-manifold M = M(∆) represented by a DS-diagram
∆ is orientable.

2.2. DS-diagrams with E-cycle and E-data. A cycle c = {E1, E2, · · · , Eν} of a
graph G is a sequence of edges Ej (Ei �= Ej if i �= j ) such that the closure of

⋃
j Ej is a

simple closed curve.

DEFINITION 2.2.1. Let ∆ = (G, f, P ) be a DS-diagram, e be a cycle of G (the un-
derlying space of the closure of the cycle e is denoted by the same letter e), and H+ and H−
be the connected components of S2 − e. The cycle e of the graph G is said to be an E-cycle,
if it satisfies that

(1) #(e ∩ f −1(x)) = 2 for any x ∈ V (P),

(2) #(e ∩ f −1(x)) = 1 for any x ∈ S(P ) − V (P), and
(3) the restriction of f onto H+ (or H−) is a bijection.

There exists a DS-diagram which admits some different E-cycles. When we consider a
DS-diagram with E-cycle, we always assume that an E-cycle e is specified, and has a fixed

orientation. Moreover we assume that S2 on which the graph G is drawn is oriented, and
the component H+ of S2 − e of which the restricted orientation is compatible with e, that is
∂H+ = e (in the oriented sense), is called the positive region. We represent a DS-diagram
with E-cycle by a four-tuple ∆ = (G, f, P ; e). It is known that any closed 3-manifold can
be represented by a DS-diagram with E-cycle ([5], [8]), and moreover it is known that, in the
orientable case, a DS-diagram with E-cycle defines a closed manifold (see [8] and [9]).

Let ∆ = (G, f, P ; e) be a DS-diagram with E-cycle, which is assumed to be given on

the unit sphere in R3. For each vertex v ∈ V (P) of the spine P = ∂B3/f, there are exactly
two vertices v+ and v− of the graph G such that f (v+) = f (v−) = v, and v+ and v− are
both on the E-cycle e. These two vertices are characterized by the condition

(∗) U ∩ (G − e) ⊂ H+ (or H−) for sufficiently small neighborhood U (in S2) of v+
(respectively v−).
Each vertex v ∈ V (P) is classified into the two cases (�) or (r) shown in Figure 2 (cf. [8] and
[9]). We define the code φ(v) so that φ(v) = � (or r) if v is the vertex of type (�) (respectively
(r)).
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FIGURE 2.

FIGURE 3.

Suppose that V (P) consists of n points v1, v2, · · · , vn. An E-data

E(∆) = (φ,A(∆))

of ∆ = (G, f, P ; e) is a pair of the code φ(vk) for each vk ∈ V (P) and the arrangement

A(∆) of 2n points v±
k on the oriented circle S1 ≡ e.

It is known that an E-data completely determines a DS-diagram with E-cycle, and there
are several methods for representing an E-data (see [8], [9], [10], and see also [1]). In this
paper, we use a representation of an E-data by a coded sequence which is introduced in [2].

EXAMPLE 1. Let ∆ = (G, f, P ; e) be the DS-diagram drawn in Figure 3, which has
four vertices V (P) = {a, b, c, d}. The codes of these vertices are φ(a) = φ(c) = φ(d) = �
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and φ(b) = r, and the arrangement A(∆) is given by a sequence

A(∆) = {a+b+b−c−d+c+a−d−} ,

which indicates the cyclical order of the points in V (G) ∩ e. Of course we may employ a
cyclically permuted sequence for representing the arrangement. The E-data E(∆) can be
represented by the following coded sequence:

E(∆) = {a+�b+rb−rc−�d+�c+�a−�d−�} .

We call a consecutive (in the sense of cyclical order) sequence of symbols in A(∆) a
subword of an arrangement A(∆). If any symbol in a subword W has the signature + (or −),
then we call W a positive subword (respectively a negative subword).

DEFINITION 2.2.2. A maximal positive (or negative) subword of an arrangement
A(∆) is called a positive block (respectively a negative block) of A(∆).

For example, the arrangement A(∆) in Example 1 has two positive blocks W+
1 = a+b+,

W+
2 = d+c+ and two negative blocks W−

3 = b−c−, W−
4 = a−d−, and we can represent

A(∆) as A(∆) = W+
1 W−

3 W+
2 W−

4 . Also for a coded sequence we can define the notion of a
“subword”, a “positive subword” and a “negative subword”.

The block number of a DS-diagram with E-cycle of an orientable closed 3-manifold are
defined as follow.

DEFINITION 2.2.3. The block number bl(∆) of a DS-diagram ∆ with E-cycle is de-
fined to be the number of positive blocks included in the arrangement A(∆).

2.3. Moves for E-data and block number of a 3-manifold. The moves for DS-
diagrams with E-cycle, generators of the deformations of DS-diagrams with E-cycle which
preserve the represented manifold, were introduces in [9]. Here we will review those moves
in terms of the coded sequences for E-data.

DEFINITION 2.3.1 (The first regular move R1). Let ∆ be a DS-diagram with E-cycle

whose E-data E(∆) includes three subwords W1 = a−�b+�, W2 = a+�x+� and W3 =
x−�b−�. Then R1 is defined to be a deformation changing ∆ into ∆′ with the E-data E(∆′)
in which the subwords Wk (k = 1, 2, 3) are replaced by W ′

1 = b+�a−�, W ′
2 = a+� and

W ′
3 = b−� respectively. By this move, a−� and b+� mutually exchange their places in the

coded sequence, and x±� are eliminated. Hence, for the spines P represented by ∆ and P ′
represented by ∆′, we have #V (P) = #V (P ′) + 1.

DEFINITION 2.3.2 (The second regular move R2). Let ∆ be a DS-diagram with E-
cycle whose E-data E(∆) includes two subwords W1 = x−�y−r (or y−rx−�) and W2 =
x+�y+r (or y+rx+�). Then R2 is defined to be a deformation eliminating these two subwords
W1 and W2. Hence, for two spines P represented by ∆ and P ′ represented by ∆′ = R2(∆)

obtained by the move R2, we have #V (P) = #V (P ′) + 2.
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FIGURE 4. The first regular move R1.

FIGURE 5. The second regular move R2.

The inverses of the above moves Rj are denoted by R−1
j . If there is a sequence ∆ =

∆0,∆1,∆2, · · · ∆n = ∆′ of DS-diagrams with E-cycle such that ∆k is obtained from ∆k−1

by one of the moves R±1
1 and R±1

2 , then ∆′ is said to be regularly equivalent to ∆, denoted

by ∆′ ∼= ∆.

Another move, called the surgery move, is defined as follows.

DEFINITION 2.3.3 (The surgery move S). If ∆ is a DS-diagram with E-cycle whose

E-data E(∆) includes a subword W = x−�y+�z+�z−�w−r y−�w+r x+�, then the surgery move
S gives a DS-diagram ∆′ = S(∆) with the E-data E(∆′) obtained from E(∆) by eliminating
the subword W.

If there is a sequence ∆ = ∆0,∆1,∆2, · · · ∆n = ∆′ of DS-diagrams with E-cycle such

that ∆k is obtained from ∆k−1 by one of the moves R±1
1 , R±1

2 and S±1, then ∆′ is said to be

equivalent to ∆, denoted by ∆′ ∼ ∆.

The following theorem was shown in [9].

THEOREM 2. Let ∆ and ∆′ be DS-diagrams with E-cycle. Then there is orientation
preserving homeomorphism from M(∆) onto M(∆′) if and only if ∆ ∼ ∆′.

DEFINITION 2.3.4. Let M be a orientable closed 3-manifold. Let ∆ be a DS-diagram
with E-cycle representing M(∆) = M . The block number Bl(M) of an orientable closed
3-manifold M is defined by

Bl(M) = min{bl(∆′)|∆′ ∼ ∆} .

Obviously Bl(M) is a topological invariant for closed orientable 3-manifolds. The next propo-
sition was shown in [2].

PROPOSITION 1. HG(M) ≤ Bl(M) for any closed orientable 3-manifold M except

for S2 × S1.
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3. A sufficient condition for Bl(M) = HG(M)

In this section we will give a sufficient condition for a Heegaard diagram of a closed
3-manifold M with genus g which guarantees the existence of a DS-diagram ∆ with E-cycle
such that M(∆) ∼= M and bl(∆) = g .

Let M be a closed 3-manifold having a Heegaard diagram (M1,M2; 
D1, 
D2) with genus
g , where M1 and M2 are handlebodies such that ∂M1 = ∂M2 and M = M1∪M2 with a gluing

map h : ∂M2 → ∂M1, and 
D1 = {α1, α2, · · · αg } and 
D2 = {β1, β2, · · · βg } are complete

meridian disk systems of M1 and M2 respectively. Deforming the meridian disks 
D1 ∪ 
D2,

if necessary, we may assume that ∂ 
D1 ∪ ∂ 
D2 is connected and each connected components

of ∂Mi − (∂ 
D1 ∪ ∂ 
D2) (i = 1, 2) is an open 2-cell. Then the union P̃ = F ∪ 
D1 ∪ 
D2

of the Heegaard surface F ≡ ∂Mi and the meridian disks in the systems 
Di ( i = 1, 2)

forms a closed fake surface embedded in M , whose singularity S(P̃ ) consists of meridian

curves ∂ 
D1 ≡ ⋃
∂αi and ∂ 
D2 ≡ ⋃

∂βi , and whose vertices V (P̃ ) consists of 
D1 ∩ 
D2. This

fake surface P̃ is not a simple spine because its complement is a union of two open 3-balls

M1 − 
D1 and M2 − 
D2. A face of the fake surface P̃ is either one of meridian disks αi and

βi or a connected component of F − (∂ 
D1 ∪ ∂ 
D2). Removing a face λ of P̃ which is on F

and whose closure is a compact 2-disk, we can obtain a simple spine P = P̃ − λ which we
call a derived spine. However the DS-diagram of a derived spine is not necessarily one with
E-cycle. In what follows we will show that we obtain a DS-diagram with E-cycle if the face
to be removed has some good property.

DEFINITION 3.0.1 (A good 2g-gon). A face λ0 of the fake surface P̃ is said to be a
good 2g-gon if

(1) the closure of λ0 is a compact 2-disk,

(2) V (P̃ ) ∩ ∂λ0 consists of exactly 2g points, and
(3) any two edges on ∂λ0 are on mutually different meridian, that is, ∂λ0 ∩ ∂αi �= ∅

and ∂λ0 ∩ ∂βi �= ∅ for any i = 1, 2, · · · , g .

THEOREM 3. If the closed fake surface P̃ = F ∪ 
D1 ∪ 
D2 given by a Heegaard

diagram of genus g admits a good 2g-gon λ0, then the derived simple spine P ≡ P̃ − λ0 has
an E-cycle, and its DS-diagram ∆ satisfies bl(∆) = g .

PROOF. For simplicity, we will give the proof only for the case HG(M) = 2. We can
prove the lemma for general cases by a quite similar method.

Let (M1,M2; 
D1, 
D2) be a genus-2 Heegaard diagram of M , where 
D1 = {α1, α2}
and 
D2 = {β1, β2} are complete meridian disk systems for the handlebodies M1 and M2

respectively. By h we denote the gluing map h : ∂M2 → ∂M1.

Assume λ0 to be a good 4-gon on the closed fake surface P̃ = F ∪ 
D1 ∪ 
D2, and

consider the derived spine P = P̃ − λ0. The DS-diagram ∆ = (G, f, P ) of the derived
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B3
1 B3

2

FIGURE 6. cl(M − N(P̃ )).

spine P can be obtained in the following manner. Let B3
i (i = 1, 2) be the 3-ball obtained

by cutting the handlebody Mi along the meridian disks in the system 
Di . The gluing map

h and the cutting off operation naturally define the identification map h̃ : ∂B3
1 ∪ ∂B3

2 → P̃ .

For a face λ of P̃ which is on the Heegaard surface F , one of the components of h̃−1(λ)

is on ∂B3
1, denoted by λ−, and the other is on ∂B3

2, denoted by λ+. The two components

of h̃−1(αi) which we denote by α−
i and α+

i , are both on ∂B3
1, and the two components of

h̃−1(βi), which we denote by β−
i and β+

i , are both on ∂B3
2. Since λ0 is a good 4-gon, we may

assume that the inverse images λ−
0 and λ+

0 are situated on ∂B3
i just as in Figure 6. That is, λ−

0

is adjacent to four faces α+
1 , λ−

b1
, α+

2 , and λ−
b2

where ∂λ−
0 ∩ ∂α+

1 = a1, ∂λ−
0 ∩ ∂λ−

b1
= b1,

∂λ−
0 ∩ ∂α+

2 = a2 and ∂λ−
0 ∩ ∂λ−

b2
= b2. And λ+

0 is adjacent to four faces λ+
a1

, β−
1 , λ+

a2
and β−

2

where ∂λ+
0 ∩∂λ+

a1
= a1, ∂λ+

0 ∩∂β−
1 = b1, ∂λ+

0 ∩∂λ+
a2

= a2 and ∂λ+
0 ∩∂β−

2 = b2. Gluing λ−
0

and λ+
0 , we obtain a 3-ball B3 (see Figure 7 and 8), on whose boundary ∂B3 the identification

map f : ∂B3 → P = P̃ − λ0 is naturally defined. Together with the graph G = f −1(S(P ))

on ∂B3, the triple ∆ = (G, f, P ) becomes the DS-diagram for the derived spine P .

After gluing λ−
0 and λ+

0 , the edges a1, b1, a2 and b2 of P̃ are not edges of P any more.

Two faces α+
1 of B3

1 and λ+
a1

of B3
2 become one face of ∆. We denote this face by α+

1 . The

faces of ∆ which result from α±
i and λ±

ai
(or β±

i and λ±
bi

) of B3
1 ∪ B3

2 are denoted by α±
i (or

respectively β±
i ) (i = 1, 2). Consider the cycle e = (∂α+

1 − a1) ∪ (∂β−
1 − b1) ∪ (∂α+

2 −
a2) ∪ (∂β−

2 − b2) of the graph G. The component of S2 − e which includes the faces α−
i , β−

i

is denoted by H−.The other component, which consists of the faces α+
i and β+

i and λ+
j , is

denoted by H+. The restriction of f onto H+ (or H−) is a bijection. Since the singularity

S(P ) consists of ∂ 
D1 ∪ ∂ 
D2 − ∂λ, each edge X on P belongs to (∂αi − ai) or (∂βj − bj ).

Three edges f −1(X) of G appear on e, H− and H+. Since the vertices V (P) consists of

∂ 
D1 ∩ ∂ 
D2 − λ, each vertex v of P belongs to (∂αi − ai) ∩ (∂βj − bj ). Four vertices f −1(v)
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B3
1 B3

2

FIGURE 7. gluing B3
1 and B3

2.

FIGURE 8. A DS-diagram ∆ with E-cycle.

of G appear on ∂α+
i − ai ⊂ e, ∂β−

j − bj ⊂ e, ∂α−
i − ai ⊂ H− and ∂β+

j − bj ⊂ H+. So the

cycle e turns out to be an E-cycle of ∆.
We can see that bl(∆) = 2 because, for any vertices v+ and v− on e, v+ is included in

∂β−
1 − b1 or ∂β−

2 − b2, v− is included in ∂α+
1 − a1 or ∂α+

2 − a2. �

Maybe our main theorem can be proved by applying the above theorem, that is, we can
deform the meridian disk systems of any Heegaard diagram with genus 2 so that the deformed
diagram has a good 4-gon. However it seems to be hard to find a good 2g-gon for a general
Heegaard diagram with genus g ≥ 3. So, in order to see what is the obstruction for getting
a DS-diagram with the block number g by a Heegaard diagram with genus g , we will try to
prove the main theorem by using the remodeling algorithm in [7], which gives an algorithm
for obtaining a DS-diagram with E-cycle from a given DS-diagram without E-cycle. In §5, we
will show that a similar method gives an estimate Bl(M) ≤ 4 for any M with HG(M) = 3,
and moreover we will explain what is the difficulty for proving Bl(M) = HG(M) in the case
of HG(M) = 3.



126 MARIKO ENDOH

4. Proof of the main theorem

In this chapter, M is assumed to be an orientable closed 3-manifold with genus 2.
The proof of the main theorem is divided into the following three steps:

step 1; defining a derived spine P0 ≡ P̃ − λ0,
step 2; remodeling ∆0 of P0 into another DS-diagram ∆1 having an E-cycle,
step 3; reducing the block number of ∆1 to 2 by applications of moves.
The remodeling algorithm in step 2 needs mark lines, each of which is a proper arc on a

face of the spine P0 (see §4.1 below and also [7]), and, for the successful operation in step 3,

these mark lines must be carefully chosen. Also the face λ0 of the closed fake surface P̃ is so

chosen that we can take desirable mark lines on the derived spine P0 ≡ P̃ − λ0.

4.1. A DS-diagram of a derived spine P . Let (M1,M2; 
D1, 
D2) be a Heegaard di-

agram with genus 2 giving a closed 3-manifold M . Deforming the meridian disks 
D1 ∪ 
D2

if necessary, we may assume that ∂ 
D1 ∪ ∂ 
D2 is connected and each connected components

of ∂Mi − (∂ 
D1 ∪ ∂ 
D2) (i = 1, 2) is an open 2-cell. The notations Mi , 
Di , B3
i , F , P̃ and h̃

follow ones in §3. Let λ0, λ1 and λ′
1 be three faces of the fake surface P̃ such that

(1) three faces λ0, λ1 and λ′
1 are included in F ⊂ P̃ ,

(2) a face λ0 is a 2-gon face whose inverse image λ−
0 is adjacent to α+

2 , and the other

inverse image λ+
0 is adjacent to β−

2 ,

(3) the inverse image λ−
1 is adjacent to both λ−

0 and α+
1 ,

(4) the inverse image λ′
1
+ is adjacent to β−

1 and β−
2 .

The inverse images λ−
0 , λ−

1 and λ′
1
− on ∂B3

1 and λ+
0 , λ+

1 and λ′
1
+ on ∂B3

2 are situated just as

in Figure 9. Let x, y, A, B1, B2, C1, C2, A′ and B ′ be edges of P̃ where y = ∂λ0 ∩ ∂α2,

x = ∂λ0 ∩ ∂β2, A ⊂ h̃(∂λ−
1 ∩ ∂α+

1 ), A′ ⊂ h̃(∂λ′
1
+ ∩ ∂β−

1 ), B ′ ⊂ h̃(∂λ′
1
+ ∩ ∂β−

2 ), ∂α2 =
· · · B1yB2 · · · and ∂β2 = · · ·C1xC2 · · · B ′ · · · .

Let p ∈ A, q ∈ B2, p′ ∈ A′ and q ′ ∈ B ′ be four points. We call a pair of simple arcs γ −
1

on ∂B3
1 and γ +

2 on ∂B3
2 pre mark-lines, if they satisfy that

(1) γ −
1 is a directed arc on λ−

1 such that h̃(γ −
1 ) goes from p to q ,

(2) γ +
2 is a directed arc on λ′+

1 such that h̃(γ +
2 ) goes from p′ to q ′ and

(3) h̃(γ −
1 ) ∩ h̃(γ +

2 ) = ∅.
These pre mark-lines become mark-lines in step 2.

Note that, for γ −
1 (or γ +

2 ), there is the spouse γ +
1 (or γ −

2 ) such that h̃(γ −
1 ) = h̃(γ +

1 ) = γ1

(respectively h̃(γ +
2 ) = h̃(γ −

2 ) = γ2), see Figure 9.

LEMMA 4.1.1. There exists a Heegaard diagram of M which gives a closed fake sur-
face admitting a 2-gon λ0 and pre mark-lines γ1 and γ2.
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B3
1 B3

2

FIGURE 9. The pre mark-lines γ −
1 and γ −

2 on ∂B3
1, and γ +

1 and γ +
2 on ∂B3

2.

The proof of Lemma 4.1.1 will be shown in §4.5.1. We obtain a derived simple spine

P0 ≡ P̃ − λ0 whose singularity S(P0) consists of ∂α1 ∪ (∂α2 − y) and ∂β1 ∪ (∂β2 − x), and

whose vertices V (P0) consists of ∂ 
D1∩∂ 
D2−∂λ0. The diagram of Figure 10 is a DS-diagram

of a derived spine P0 = P̃ − λ0. We denote this DS-diagram by ∆0. But the DS-diagram
∆0 have no E-cycle in general. So we will deform ∆0 into one with E-cycle by applying the
algorithm of [7].

4.2. Remodeling a DS-diagram into one with E-cycle. Applying the remodeling
algorithm to the DS-diagram ∆0 of the derived spine P0 in the previous subsection, we con-
struct a DS-diagram ∆1 with E-cycle. The algorithm is carried out along the mark-lines γ1

and γ2, and this operation produces some new vertices. These new vertices of the spine P1

represented by ∆1 will be denoted by

ai (1 ≤ i ≤ 12) , bi (1 ≤ i ≤ 9) , ci (1 ≤ i ≤ p) , di (1 ≤ i ≤ p) ,

where the number p depends on the initial Heegaard diagram. The set V (P1) of vertices of
P1 consists of these new vertices and the original vertices V (P0). We can see (cf. §4.5) that
the codes of the new vertices are

φ(a1) = � , φ(a2) = r , φ(a3) = r , φ(a4) = � , φ(a5) = � , φ(a6) = r ,

φ(a7) = r , φ(a8) = � , φ(a9) = � , φ(a10) = r , φ(a11) = � , φ(a12) = r ,

φ(b1) = r , φ(b2) = r , φ(b3) = r , φ(b4) = � , φ(b5) = r , φ(b6) = r ,

φ(b7) = � , φ(b8) = � , φ(b9) = r ,

φ(c1) = r , φ(cp) = � ,

φ(d1) = � , φ(dp) = r.
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FIGURE 10. The DS-diagram ∆0 of the derived spine P0 = P̃ − λ0.

The codes φ(ci), φ(di) (2 ≤ i ≤ p − 1) depend on the initial Heegaard diagram. As a
consequence of the remodeling operation together with Lemma 4.1.1, we get the following
lemma, whose proof is given in §4.5.

LEMMA 4.2.1. Let M be an oriented closed 3-manifold with HG(M) = 2. Then there
exists a DS-diagram with E-cycle ∆1 which satisfies M = M(∆1) and has a representation
of the E-data:

E(∆1) = {a−�
1 d−r

p c−�
p a−r

2 a+r
3 a+�

4 a−�
5 a−r

6 a+r
7 a+�

8 a−�
9 a−r

10 a+r
2 a+�

5 a−�
11 a−r

12 Λ−
1

a+r
6 a+�

9 a−�
8 a−r

3 a+r
10 c+�

p Υ +
1 c+r

1 b+r
1 b+r

2 b+r
3 d+�

1 Υ +
2 d+r

p a+�
11 a−�

4 a−r
7 a+r

12 a+�
1 Λ−

2

Ω+
21b

−�
4 b−r

5 b+r
6 b−r

2 b+�
7 b−�

8 b−r
9 Ω+

11c
−r
1 d−�

1 Ω+
12

b+r
5 b−r

3 b+�
8 b−�

7 b−r
6 b+r

9 b−r
1 b+�

4 Ω+
22} ,

(1)
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where
(1) Υ +

1 = c+
p−1c

+
p−2 · · · c+

2 and Υ +
2 = d+

2 d+
3 · · · d+

p−1,

(2) Λ−
1 , Λ−

2 are negative subwords and Ω+
11, Ω+

12, Ω+
21 and Ω+

22 are positive subwords,

(3) Λ−
1 ∪Λ−

2 −(
⋃

c−
i ∪⋃

d−
i ), Ω+

11, Ω+
12, Ω+

21 and Ω+
22 consist of the vertices inherited

from the original Heegaard-diagram,
(4) f (Λ−

1 ) ∪ f (Λ−
2 ) = f (Ω+

11) ∪ f (Ω+
12) ∪ f (Ω+

21) ∪ f (Ω+
22) ∪ f (Υ +

1 ) ∪ f (Υ +
2 ).

4.3. Some more moves. The E-data of Lemma 4.2.1 has bl(∆1) = 14. In order to
prove the main theorem, we have to reduce the block number of ∆1. So we prepare several
moves which are some compositions of regular moves and their inverses.

4.3.1. Exchange of vertices. Composing the regular moves R±1
1 and R±1

2 , we can

obtain eight moves T
σ1
σ2,σ3 (σj = � or r) (cf. [9]) which causes the following replacement of

subwords in the coded sequence E(∆):

T �
�,� : (i) b+�a−� → a−�b+� , (ii) a+� → a+�x+� , (iii) b−� → x−�b−�

T �
�,r : (i) b+ra−� → a−�b+r , (ii) a+� → a+�x+r , (iii) b−r → b−rx−r

T �
r,� : (i) b+�a−r → a−rb+� , (ii) a+r → x+ra+r , (iii) b−� → x−rb−�

T �
r,r : (i) b+ra−r → a−rb+r , (ii) a+r → x+�a+r , (iii) b−r → b−rx−�

T r
�,� : (i) a−�b+� → b+�a−� , (ii) a+� → a+�x+r , (iii) b−� → x−rb−�

T r
�,r : (i) a−�b+r → b+ra−� , (ii) a+� → a+�x+� , (iii) b−r → b−rx−�

T r
r,� : (i) a−rb+� → b+�a−r , (ii) a+r → x+�a+r , (iii) b−� → x−�b−�

T r
r,r : (i) a−rb+r → b+ra−r , (ii) a+r → x+ra+r , (iii) b−r → b−rx−r .

where x±φ(x) are new symbols appearing by each moves.
Each of the above eight moves T

σ1
σ2,σ3 exchanges the positions of a−σ2 and b+σ3 in the

coded sequence E(∆), and so we can use them for decreasing the block number without
altering the regular equivalence class.

4.3.2. Block reducing lemma. By adequate successive applications of the moves T �
σ,σ ′

or T r
σ,σ ′ , we have the following two lemmas. We call each of those lemmas a block reducing

lemma.

LEMMA 4.3.1. Let ∆ = (G, f, P ; e) be a DS-diagram with E-cycle having an ar-
rangement of E-data of the form

A(∆) = WW−
0 U+

1 U−
2 · · ·U+

2m−1U
−
2m

where W is a subword, W−
0 and U−

2k are negative blocks, U+
2k+1 are positive blocks. If

( k⋃
i=1

f (U+
2i−1)

)
∩ f (U−

2k) = ∅ (2)



130 MARIKO ENDOH

for any k = 1 · · ·m, then we can obtain a DS-diagram ∆′ with E-cycle such that ∆′ ∼= ∆ and
bl(∆′) = bl(∆) − m.

LEMMA 4.3.2. Let ∆ = (G, f, P ; e) be a DS-diagram with E-cycle having an ar-
rangement of E-data of the form

A(∆) = WW+
0 U−

1 U+
2 · · · U−

2m−1U
+
2m

where W is a subword, W+
0 and U+

2k are positive blocks, U−
2k+1 are negative blocks. If( k⋃

i=1

f (U−
2i−1)

)
∩ f (U+

2k) = ∅ (3)

for any k = 1 · · ·m, then we can obtain a DS-diagram ∆′ with E-cycle such that ∆′ ∼= ∆ and
rbl(∆′) = bl(∆) − m.

These block reducing lemmas can be proved by applying the following lemmas 4.3.3
and 4.3.4 which were shown in [2] and give the moves exchanging the position of a positive
subword and a negative subword in the arrangement A(∆).

LEMMA 4.3.3. Let ∆ = (G, f, P ; e) be a DS-diagram having an arrangement of
E-data of the form

A(∆) = U+
1 U−

2 W−
0 W+

1 W−
2 · · · · · · W+

2n−1W
−
2nW

+
2n+1 (4)

where U+
1 , W+

2k−1 are positive subwords and U−
2 , W−

2k are negative subwords.

If f (U+
1 ) ∩ f (U−

2 ) = ∅, U+
1 = b+

ν b+
ν−1 · · · b+

2 b+
1 and U−

2 = a−
1 a−

2 · · · a−
µ−1a

−
µ , then,

by adequate successive applications of the moves T �
σ,σ ′, we can obtain a DS-diagram ∆′ such

that ∆′ ∼= ∆ and the E-data E(∆′) has an arrangement

A(∆′) = U−
2 U+

1 W̃−
0 W̃+

1 W̃−
2 · · · · · · W̃−

2nW̃
+
2n+1 , (5)

satisfying the following conditions (i)–(iii):

(i) W̃+
2k (or W̃−

2k−1) is a positive (respectively negative) subword which differs from

W+
2k (respectively W−

2k−1) only by the new symbols created by the moves,

(ii) W̃+
2k includes some new symbols if and only if the symbol a+

i appears in the original

subword W+
2k for some i = 1, 2, · · · , µ,

(iii) W̃−
2k−1 includes some new symbols if and only if the original subword W−

2k−1 con-

tains the symbol b−
j for some j = 1, 2, · · · , ν.

By similar successive applications of T r
σ,σ ′ instead of T �

σ,σ ′, we have that

LEMMA 4.3.4. Let ∆ = (G, f, P ; e) be a DS-diagram having an arrangement of
E-data of the form

A(∆) = U−
1 U+

2 W+
0 W−

1 W+
2 · · · · · · W−

2n−1W
+
2nW

−
2n+1 .
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If f (U−
1 ) ∩ f (U+

2 ) = ∅, U−
1 = b−

ν b−
ν−1 · · · b−

2 b−
1 and U+

2 = a+
1 a+

2 · · · a+
µ−1a

+
µ , then, by

adequate successive applications of the moves T r
σ,σ ′ , we can obtain a DS-diagram ∆′ such

that ∆′ ∼= ∆ and the E-data E(∆′) has an arrangement

A(∆′) = U+
2 U−

1 W̃+
0 W̃−

1 W̃+
2 · · · · · · W̃+

2nW̃
−
2n+1 ,

satisfying the following conditions (i)–(iii):

(i) W̃−
2k (or W̃+

2k−1) is a negative (respectively positive) subword which differs from

W−
2k (respectively W+

2k−1) only by the new symbols created by the moves,

(ii) W̃−
2k includes some new symbols if and only if the symbol a−

i appears in the original

subword W−
2k for some i = 1, 2, · · · , µ,

(iii) W̃+
2k−1 includes some new symbols if and only if the original subword W+

2k−1 con-

tains the symbol b+
j for some j = 1, 2, · · · , ν.

In the case where the formula (4) is a blockwise representation, namely W−
0 = W+

2n+1 =
∅, the resulting arrangement (5) gives a blockwise representation

A(∆′) = (U+
1 W̃+

1 )W̃−
2 W̃+

3 · · · · · · W̃+
2n−1(W̃

−
2nU

−
2 ) ,

and we have bl(∆′) = bl(∆) − 1.

PROOF OF LEMMA 4.3.1. Let ∆ = (G, f, P ; e) be a DS-diagram with E-cycle having
an arrangement of E-data of the form

A(∆) = WW−
0 U+

1 U−
2 · · ·U+

2m−1U
−
2m

having the condition (2). Since f (U+
1 ) ∩ f (U−

2 ) = ∅, we can apply Lemma 4.3.3 and get a
regularly equivalent DS-diagram ∆1 = (G1, f1, P1; e1) having an arrangement of E-data of
the form

A(∆1) = W1(W
−
1,0U

−
1,2)(U

+
1,1U

+
1,3)U

−
1,4 · · ·U+

1,2m−1U
−
1,2m

where each subword satisfies that
(1-i) W1 differs from W only by new symbols x±

1,j produced by the moves,

(1-ii) W−
1,0 differs from W+

0 only by new symbols x−
1,j produced by the moves,

(1-iii) U+
1,1 = U+

1 and U−
1,2 = U−

2

(1-iv) U+
1,2k−1 (k = 2, 3, · · · m) differs from U+

2k−1 only by new symbols x+
1,j produced

by the moves,

(1-v) U−
1,2k (k = 2, 3, · · · m) differs from U−

2k only by new symbols x−
1,j produced by

the moves.
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This implies that bl(∆1) = bl(∆) − 1. By the fact f (U−
2k) ∩ f (U−

2 ) = ∅ (k = 2, · · · ,m) and
the conditions (2), (1-iii)-(1-v), we can see the conditions( k⋃

i=1

f1(U
+
1,2i−1)

)
∩ f1(U

−
1,2k) = ∅ (6)

for any k = 2, 3, · · ·m. Since (f1(U
+
1,1) ∪ f1(U

+
1,3)) ∩ f1(U

−
1,4) = ∅, we can apply

Lemma 4.3.3 and get a regularly equivalent DS-diagram ∆2 = (G2, f2, P2; e2) having an
arrangement of the form

A(∆2) = W2(W
−
2,0U

−
2,2U

−
2,4)(U

+
2,1U

+
2,3U

+
2,5)U

−
2,6 · · · U+

2,2m−1U
−
2,2m

where each subword satisfies that
(2-i) W2 differs from W1 only by new symbols x±

2,j produced by the moves,

(2-ii) W−
2,0 differs from W+

1 only by new symbols x−
2,j produced by the moves,

(2-iii) U+
2,2k−1 = U+

1,2k−1 (k = 1, 2) and U−
2,2k = U−

1,2k (k = 2)

(2-iv) U+
2,2k−1 (k = 3, 4, · · · m) differs from U+

1,2k−1 only by new symbols x+
2,j pro-

duced by the moves,
(2-v) U−

2,2k (k = 1, 3, 4, · · · m) differs from U−
1,2k only by new symbols x−

2,j produced

by the moves.
This implies that bl(∆2) = bl(∆) − 2. By the fact f (U−

2k) ∩ f (U−
4 ) = ∅ (k = 3, · · ·m) and

the conditions (6), (2-iii)–(2-v), we can see the conditions that( k⋃
i=1

f (U+
2,2i−1)

)
∩ f (U−

2,2k) = ∅ (7)

for any k = 3, 4, · · ·m.
Applying Lemma 4.3.3 m-times similarly, we get a sequence ∆k = (Gk, fk, Pk; ek)

(k = 1, 2, · · ·m) of regularly equivalent DS-diagrams, such that ∆k is obtained from ∆k−1

by exchanging the positive subword (U+
k−1,1U

+
k−1,3 · · · U+

k−1,2k−1) and the negative subwords

U−
k−1,2k. By x±

k,j (1 ≤ j ≤ sk), we denote the new symbols created by the k-th application of

Lemma 4.3.3 which deforms ∆k−1 into ∆k, where the number sk is given by

sk = (#U−
2k) ×

( k∏
j=1

(#U+
2j−1)

)
.

The conditions (2) imply that the arrangement of m-th DS-diagram ∆m can be represented as

A(∆m) = WmΘ−
1 Θ+

2

(Θ−
1 = W−

m,0U
−
m,2U

−
m,4U

−
m,6 · · · U−

m,2m,Θ+
2 = U+

m,1U
+
m,3U

+
m,5 · · ·U+

m,2m−1) ,

and satisfies that
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(m-i) Wm differs from W by some of new symbols x±
k′,j for k ≤ k′ ≤ m,

(m-ii) W−
m,0 differs from W−

0 by some of new symbols x−
k′,j for k ≤ k′ ≤ m, and

(m-iii) U+
m,2k−1 differs from U+

2k−1 by some of new symbols x+
k′,j for k ≤ k′ ≤ m, and

(m-iv) U−
m,2k differs from U−

2k by new symbols x−
k,j .

This implies that bl(∆m) = bl(∆) − m. So we complete the proof by ∆m = ∆′. �

Lemma 4.3.2 can be proved by using the moves in Lemma 4.3.4 instead of those in
Lemma 4.3.3.

4.3.3. Pair eliminating. There are some cases where, even if the block reducing
lemma is not directly applicable, we can reduce the block number after preparatory moves.
Here we will introduce such preparatory moves, called pair eliminatings.

Consider the case that the given E-data includes subwords W0 = a+�W−b+r and V0 =
a−�b−r , where W− = w

−φ(w1)

1 w
−φ(w2)

2 · · · w−φ(wζ )

ζ is a negative subword disjoint from V0.

Then, making successive ζ times applications of the moves T �
φ(wi),�

(σ = � or r), we obtain

an E-data in which the subwords W0, V0 and each of w
+φ(wi )
i (i = 1, 2, · · · ζ ) are replaced as

following

(i) a+�W−b+r → W−a+�b+r , (ii) a−�b−r → V −a−�b−r ,

(iii) w
+φ(wi )
i → W+

i (i = 1, 2, · · · ζ )

where V − = v
−φ(v1)
1 v

−φ(v2)
2 · · · v−φ(vζ )

ζ is a negative subword, and

W+
i =


w+�

i v+�
i if φ(wi) = � ,

v+r
i w+r

i if φ(wi) = r

is a positive subword. The symbols above v
±φ(vi )
i (i = 1, 2, · · · ζ ) are new symbols created

by the moves T �
σ,�.

Furthermore, making an application of the move R+
2 , we obtain an E-data in which the

subwords W−a+�b+r , V −a−�b−r are replaced by W−, V − respectively. Then, we obtain the
move which causes the following replacement of subwords on the coded sequence

S�,r
+ : (i) a+�W−b+r → W− , (ii) a−�b−r → V − ,

(iii) w
+φ(wi )
i → W+

i (i = 1, 2, · · · ζ ) .

This move eliminates the vertices a± and b± in the arrangement A(∆). So we call S�,r
+ a pair

eliminating and a pair of vertices a and b an eliminating pair.
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Composing T
σ1
σ2,σ3 and R+

2 (σj = � or r) similarly, we can obtain three other pair elimi-

natings Sr,�
+ , S�,r

− and Sr,�
− , in a coded sequence:

Sr,�
+ : (i) a+rW−b+� → W− , (ii) b−�a−r → V̄ − , (iii) w

+φ(wi )
i → Wi

+
(i = 1, 2, · · · ζ )

S�,r
− : (i) a−�W+b−r → W+ , (ii) b+ra+� → V̄ + , (iii) w

−φ(wi )
i → Wi

−
(i = 1, 2, · · · ζ )

Sr,�
− : (i) a−rW+b−� → W+ , (ii) a+rb+� → V + , (iii) w

−φ(wi )
i → W−

i (i = 1, 2, · · · ζ )

where

W− = w
−φ(w1)
1 w

−φ(w2)
2 · · · w−φ(wζ )

ζ , W+ = w
+φ(w1)
1 w

+φ(w2)
2 · · · w+φ(wζ )

ζ ,

V̄ − = v
−φ(vζ )

ζ · · · v−φ(y2)

2 v
−φ(v1)
1 , Wi

+ =

w+�

i v+r
i if φ(wi) = � ,

v+�
i w+r

i if φ(wi) = r ,

V̄ + = v
+φ(vζ )

ζ · · · v+φ(y2)

2 v
+φ(v1)
1 , Wi

− =

w−r

i v−�
i if φ(wi) = r ,

v−r
i w−�

i if φ(wi) = � ,

V + = v
+φ(v1)

1 v
+φ(v2)

2 · · · v+φ(vζ )

ζ and W−
i =


w−r

i v−r
i if φ(wi) = r ,

v−�
i w−�

i if φ(wi) = � .

The pair eliminating is useful for removing vertices which prevent us from applying the block
reducing lemma or other moves. A new DS-diagram ∆′ obtained by applying the pair elimi-
nating operation to a DS-diagram ∆ satisfies that ∆′ ∼= ∆ and bl(∆′) = bl(∆) or bl(∆) − 1
or bl(∆) − 2.

4.4. Reducing the block number. In this subsection, we reduce a block number of
∆1 from fourteen to two by applying three times of pair eliminatings and two times of block
reducing lemmas introduced in §4.3. The coded sequences in the following moves are so
complicated that we bracket the subwords where we apply a pair eliminating.

First we apply a pair eliminating S�,r
+ to the E-data

E(∆1) = {a−�
1 d−r

p c−�
p a−r

2 a+r
3 (a+�

4 a−�
5 a−r

6 a+r
7 )a+�

8 a−�
9 a−r

10 a+r
2 (a+�

5 )a−�
11 a−r

12 Λ−
1

(a+r
6 )a+�

9 a−�
8 a−r

3 a+r
10 c+�

p Υ +
1 c+r

1 b+r
1 b+r

2 b+r
3 d+�

1 Υ +
2 d+r

p a+�
11

(a−�
4 a−r

7 )a+r
12 a+�

1 Λ−
2 Ω+

21b
−�
4 b−r

5 b+r
6 b−r

2 b+�
7 b−�

8 b−r
9 Ω+

11c
−r
1 d−�

1 Ω+
12

b+r
5 b−r

3 b+�
8 b−�

7 b−r
6 b+r

9 b−r
1 b+�

4 Ω+
22} .

(8)

In order to explain how the pair eliminating is applied, we rewrite E(∆1) by

E(∆1) = U1W0U2V0U3
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where

U1 = a−�
1 d−r

p c−�
p a−r

2 a+r
3 ,

W0 = a+�
4 (a−�

5 a−r
6 )a+r

7 ,

U2 = a+�
8 a−�

9 a−r
10 a+r

2 (a+�
5 )a−�

11 a−r
12 Λ−

1 (a+r
6 )a+�

9 a−�
8 a−r

3 a+r
10 c+�

p

Υ +
1 c+r

1 b+r
1 b+r

2 b+r
3 d+�

1 Υ +
2 d+r

p a+�
11 ,

V0 = a−�
4 a−r

7 and

U3 = a+r
12 a+�

1 Λ−
2 Ω+

21b
−�
4 b−r

5 b+r
6 b−r

2 b+�
7 b−�

8 b−r
9 Ω+

11c
−r
1 d−�

1 Ω+
12

b+r
5 b−r

3 b+�
8 b−�

7 b−r
6 b+r

9 b−r
1 b+�

4 Ω+
22 .

Applying the pair eliminating, the subwords W0, V0 and the vertices a+�
5 and a+r

6 are replaced
as following

(i) a+�
4 W−a+r

7 → W− = a−�
5 a−r

6 , (ii) a−�
4 a−r

7 → V + = m−�
1 m−r

2 ,

(iii)
a+�

5 → W+
1 = a+�

5 m+�
1

a+r
6 → W+

2 = m+r
2 a+r

6 .

As a consequence, we obtain a DS-diagram ∆2 with an E-data

E(∆2) = U1W
−Û2V

−U3

= {a−�
1 d−r

p c−�
p a−r

2 (a+r
3 (a−�

5 a−r
6 )a+�

8 )a−�
9 a−r

10 a+r
2 (a+�

5 m+�
1 )a−�

11 a−r
12 Λ−

1

(m+r
2 a+r

6 )a+�
9 (a−�

8 a−r
3 )a+r

10 c+�
p Υ +

1 c+r
1 b+r

1 b+r
2 b+r

3 d+�
1 Υ +

2 d+r
p a+�

11

(m−�
1 m−r

2 )a+r
12 a+�

1 Λ−
2 Ω+

21b
−�
4 b−r

5 b+r
6 b−r

2 b+�
7 b−�

8 b−r
9 Ω+

11c
−r
1 d−�

1 Ω+
12

b+r
5 b−r

3 b+�
8 b−�

7 b−r
6 b+r

9 b−r
1 b+�

4 Ω+
22} .

(9)

The block number of ∆2 is still fourteen. This move from ∆1 to ∆2 enables us to make the
following move.

Applying the pair eliminating Sr,�
+ to E(∆2), which causes the replacement

(i) a+r
3 W−a+�

8 → W− = a−�
5 a−r

6 , (ii) a−�
8 a−r

3 → V̄ − = m−�
4 m−r

3 ,

(iii)
a+�

5 → a+�
5 m+r

3
a+r

6 → m+�
4 a+r

6 ,

we obtain a DS-diagram ∆3 with an E-data

E(∆3) = {a−�
1 d−r

p c−�
p a−r

2 (a−�
5 a−r

6 )a−�
9 a−r

10 a+r
2 (a+�

5 m+r
3 m+�

1 )a−�
11 a−r

12 Λ−
1

(m+r
2 m+�

4 a+r
6 )a+�

9 (m−�
4 m−r

3 )a+r
10 c+�

p Υ +
1 c+r

1 b+r
1 b+r

2 b+r
3 d+�

1 Υ +
2 d+r

p a+�
11

(m−�
1 m−r

2 )a+r
12 a+�

1 Λ−
2 Ω+

21b
−�
4 b−r

5 b+r
6 b−r

2 b+�
7 b−�

8 b−r
9 Ω+

11c
−r
1 d−�

1 Ω+
12

b+r
5 b−r

3 b+�
8 b−�

7 b−r
6 b+r

9 b−r
1 b+�

4 Ω+
22} .

(10)
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This move reduces the block number by two, that is, bl(∆3) = bl(∆2) − 2 = 12.

Applying the pair eliminating Sr,�
+ to

E(∆3) = {a−�
1 d−r

p c−�
p a−r

2 a−�
5 a−r

6 a−�
9 a−r

10 a+r
2 a+�

5 m+r
3 m+�

1 a−�
11 a−r

12 Λ−
1

m+r
2 m+�

4 a+r
6 a+�

9 m−�
4 m−r

3 a+r
10 c+�

p Υ +
1 c+r

1 b+r
1 (b+r

2 )b+r
3 d+�

1 Υ +
2 d+r

p a+�
11

m−�
1 m−r

2 a+r
12 a+�

1 Λ−
2 Ω+

21b
−�
4 b−r

5 (b+r
6 b−r

2 b+�
7 )b−�

8 b−r
9 Ω+

11c
−r
1 d−�

1 Ω+
12

b+r
5 b−r

3 b+�
8 (b−�

7 b−r
6 )b+r

9 b−r
1 b+�

4 Ω+
22} ,

(11)

which causes the replacement

(i) b+r
6 W−b+�

7 → W− = b−r
2 , (ii) b−�

7 b−r
6 → V̄ − = m−�

5 , (iii) b+r
2 → m+�

5 b+r
2 ,

we obtain ∆4 with an E-data

E(∆4) = {a−�
1 d−r

p c−�
p a−r

2 a−�
5 a−r

6 a−�
9 a−r

10 a+r
2 a+�

5 m+r
3 m+�

1 a−�
11 a−r

12 Λ−
1

m+r
2 m+�

4 a+r
6 a+�

9 m4
−�m3

−ra+r
10 c+�

p Υ +
1 c+r

1 b+r
1 (m+�

5 b+r
2 )b+r

3 d+�
1 Υ +

2 d+r
p a+�

11

m1
−�m2

−ra+r
12 a+�

1 Λ−
2 Ω+

21b
−�
4 b−r

5 (b−r
2 )b−�

8 b−r
9 Ω+

11c
−r
1 d−�

1 Ω+
12

b+r
5 b−r

3 b+�
8 (m−�

5 )b+r
9 b−r

1 b+�
4 Ω+

22} .

(12)

This move causes bl(∆4) = bl(∆3) − 2 = 10.
Now we apply the block reducing lemma. In order to confirm the conditions for the

block reducing lemma, we rewrite the E-data E(∆4) by a blockwise representation:

E(∆4) = W−
4,1W

+
4,2W

−
4,3W

+
4,4W

−
4,5W

+
4,6W

−
4,7W

+
4,8W

−
4,9W

+
4,10

W−
4,11W

+
4,12W

−
4,13W

+
4,14W

−
4,15W

+
4,16W

−
4,17W

+
4,18W

−
4,19W

+
4,20

(13)

where

W−
4,1 = a−�

1 d−r
p c−�

p a−r
2 a−�

5 a−r
6 a−�

9 a−r
10 W+

4,2 = a+r
2 a+�

5 m+r
3 m+�

1
W−

4,3 = a−�
11 a−r

12 Λ−
1 W+

4,4 = m+r
2 m+�

4 a+r
6 a+�

9
W−

4,5 = m4
−�m3

−r W+
4,6 = a+r

10 c+�
p Υ +

1 c+r
1 b+r

1 m+�
5 b+r

2 b+r
3 d+�

1 Υ +
2

d+r
p a+�

11
W−

4,7 = m1
−�m2

−r W+
4,8 = a+r

12 a+�
1

W−
4,9 = Λ−

2 W+
4,10 = Ω+

21
W−

4,11 = b−�
4 b−r

5 b−r
2 b−�

8 b−r
9 W+

4,12 = Ω+
11

W−
4,13 = c−r

1 d−�
1 W+

4,14 = Ω+
12b

+r
5

W−
4,15 = b−r

3 W+
4,16 = b+�

8
W−

4,17 = (m−�
5 ) W+

4,18 = b+r
9

W−
4,19 = b−r

1 W+
4,20 = b+�

4 Ω+
22 .

Obviously, f (W−
4,5) ∩ f (W+

4,6) = ∅ and {f (W−
4,5) ∪ f (W−

4,7} ∩ f (W+
4,8) = ∅. We can apply

Lemma 4.3.2 to the blocks W−
4,5W

+
4,6W

−
4,7W

+
4,8 in E(∆4). Then we obtain a DS-diagram ∆5
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which satisfies bl(∆5) = bl(∆4) − 2. The E-data of ∆5 can be represented as

E(∆5) = W−
5,1W

+
5,2W

−
5,3W

+
5,4W

−
5,9W

+
5,10W

−
5,11W

+
5,12

W−
5,13W

+
5,14W

−
5,15W

+
5,16W

−
5,17W

+
5,18W

−
5,19W

+
5,20

(14)

where

W−
5,1 = W̃−

4,1 W+
5,2 = W̃+

4,2
W−

5,3 = W̃−
4,3 W+

5,4 = W̃+
4,4W

+
4,6W

+
4,8

W−
5,9 = W−

4,5W
−
4,7W̃

−
4,9 W+

5,10 =W+
4,10

W−
5,11 = W̃−

4,11 W+
5,12 =W+

4,12
W−

5,13 = W̃−
4,13 W+

5,14 =W+
4,14

W−
5,15 = W̃−

4,15 W+
5,16 =W+

4,16
W−

5,17 = W̃−
4,17 W+

5,18 =W+
4,18

W−
5,19 = W̃−

4,19 W+
5,20 =W+

4,20.

A subword W̃−
4,i (or W̃+

4,j ) differs from W−
4,i (or W+

4,j ) only by the new vertices created

by the moves from ∆4 to ∆5. The fact W+
5,j = W+

4,j (j = 10, 12, 14, 16, 18 or 20) implies

that

f (W+
5,10) ∩ f (W−

5,11) = ∅ ,

{f (W+
5,10) ∪ f (W+

5,12)} ∩ f (W−
5,13) = ∅ ,

{f (W+
5,10) ∪ f (W+

5,12) ∪ f (W+
5,14)} ∩ f (W−

5,15) = ∅ ,

{f (W+
5,10) ∪ f (W+

5,12) ∪ f (W+
5,14) ∪ f (W+

5,16)} ∩ f (W−
5,17) = ∅ ,

{f (W+
5,10) ∪ f (W+

5,12) ∪ f (W+
5,14) ∪ f (W+

5,16) ∪ f (W+
5,18)} ∩ f (W−

5,19) = ∅ and
{f (W+

5,10) ∪ f (W+
5,12) ∪ f (W+

5,14) ∪ f (W+
5,16) ∪ f (W+

5,18) ∪ f (W+
5,20)} ∩ f (W−

5,1) = ∅ .

Therefore applying Lemma 4.3.1, we obtain a DS-diagram ∆ which has bl(∆) = 2. This
shows that it is sufficient for the proof of our main theorem to prove Lemma 4.2.1. �

4.5. Proofs of Lemma 4.1.1 and Lemma 4.2.1

4.5.1. Proof of Lemma 4.1.1. According to [11], for a fake surface P̃ induced from

a Heegaard diagram (M1,M2; 
D1, 
D2) with genus 2, we can find two faces λ1 and λ′
1 on P̃

having the following conditions

(1) two faces λ1 and λ′
1 are included in F ⊂ P̃ ,

(2) there are five edges A, B, D, A′ and B ′ such that

A ⊂ h̃(∂λ−
1 ∩ ∂α+

1 ) , B ⊂ h̃(∂λ−
1 ∩ ∂α+

2 ) , D ⊂ h̃(∂λ+
1 ∩ ∂β+

2 ) ,

A′ ⊂ h̃(∂λ′
1
+ ∩ ∂β−

1 ) and B ′ ⊂ h̃(∂λ′
1
+ ∩ ∂β−

2 ) ,

(3) these edges are arranged on ∂λ1 and ∂λ′
1 in the order

∂λ1 = · · · A · · ·DB · · · and ∂λ′
1 = · · · A′ · · · B ′ · · · .
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Each symbols λ±
1 , λ′

1
±, α±

i and β±
i means each component of the inverse images h̃−1(λ1),

h̃−1(λ′
1), h̃−1(αi) and h̃−1(βi) respectively, such that λ−

1 , λ′
1
− and α±

i are on ∂B3
1, and λ+

1 ,

λ′
1
+ and β±

i are on ∂B3
2.

Let p ∈ A, q ∈ B, p′ ∈ A′ and q ′ ∈ B ′ be four points. Then there are two simple arcs
γ1 on λ1 and γ2 on λ′

1 which satisfies that

(1) γ1 is a directed arc on λ1 going from p to q and γ2 is a directed arc on λ′
1 going

from p′ to q ′,
(2) γ1 ∩ γ2 = ∅ on F ,

(3) h̃−(γ1) has two components γ +
1 ⊂ λ+

1 and γ −
1 ⊂ λ−

1 ,

(4) h̃−(γ2) has two components γ +
2 ⊂ λ′

1
+ and γ −

2 ⊂ λ′
1
−.

The arcs γ ±
1 and γ ±

2 on ∂B3
1 ∪ ∂B3

2 are as described in Figure 11.

For a Heegaard diagram (M1,M2; 
D1, 
D2) with the arcs γ1 and γ2 on P̃ , we apply a
disk-slide to the meridian disks α2 and β2 so that the edges B and C cross each other and a
face λ0 is produced, as described in Figure 12. This Heegaard diagram gives a fake surface

admitting a 2-gon λ0 and pre mark-lines γ −
1 and γ +

2 . This complete the proof. �

4.5.2. Proof of Lemma 4.2.1. The lemma will be proved by carrying out the algorithm
in [7]. First we briefly explain some terminologies, see [7] for detail. For each edge (or face)
σ of ∆, we call σ a 1-cell (or a 2-cell) of ∆, we may call f (σ) in P a 1-label (or a 2-label,
respectively) of ∆. Let ∆ = (G, f, P ) be a general DS-diagram. Consider a pair of 2-cells in
∆ with the same label α. We denote one of them by α+ and the other by α−. In this way, we
can separate whole 2-cells in ∆ into two classes {α+

1 , α+
2 , · · · , α+

n+1} and {α−
1 , α−

2 , · · · , α−
n+1}.

The closure Z+ of α+
1 ∪α+

2 ∪· · ·∪α+
n+1 (or Z− of α−

1 ∪α−
2 ∪· · ·∪α−

n+1) is called the positive

zone (or the negative zone, respectively). We will call such a pair (Z+,Z−) a bicoloring of
the DS-diagram ∆. If both of Z+ and Z− are connected, we will call (Z+,Z−) a split
bicoloring of ∆. A DS-diagram ∆ is splittable if ∆ has a split bicoloring.

B3
1 B3

2

FIGURE 11. The arcs γ
±
1 and γ

±
2 on ∂B3

1 ∪ ∂B3
2.
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B3
1 B3

2

FIGURE 12. The disk-slide producing λ0.

Let ∆ be a splittable DS-diagram with a split bicoloring (Z+,Z−). Let a1, a2, · · · , am

be a sequence of successive 1-cells on a simple loopZ+∩Z− such that cl(a1∪a2∪· · ·∪am) =
Z+ ∩ Z−. Let Ai be the label of ai , 1 ≤ i ≤ m. Then we say that Γ = A1A2 · · · Am is
a splitting cycle of ∆ associated with (Z+,Z−). If a DS-diagram ∆ has a splitting cycle
Γ = A1A2 · · · Am satisfying Ai �= Aj for each i �= j , then Z+ ∩ Z− is an E-cycle of ∆.

For remodeling a DS-diagram into one with E-cycle, we use elementary deformations
I±, II± and digging operations as deformations of DS-diagrams which preserve the repre-
sented manifold, see [7].

Now we apply the remodeling algorithm to the DS-diagram ∆0 of the derived spine P0

obtained by Lemma 4.1.1. We decide a bicoloring (Z+,Z−) of ∆0 by Z+ = {α+
i , β+

i , λ+
j }

and Z− = {α−
i , β−

i , λ−
j }. The choice of λ0 makes it possible to define this bicoloring. The

intersection Z+ ∩ Z− consists of three cycles, and so this bicoloring (Z+,Z−) is not yet a
split one. The three cycles of Z+ ∩ Z− can be written as

∂α+
1 ={AΓ (α+

1 )} ,

∂β−
1 ={(A′)−1

Γ (β−
1 )} and

(∂α+
2 − y) ∪ (∂β−

2 − x) ={BΓ (α+
2 )CΓ (β−

21)(B
′)−1

Γ (β−
22)} ,

where Γ (α+
1 ), Γ (α+

2 ), Γ (β−
1 ), Γ (β−

21) and Γ (β−
22) are consecutive sequences of 1-labels, see

Figure 13.
We apply DS-deformations in Theorem 2.3 of [7] and digging operations to make Z+ ∩

Z− a simple loop. The DS-deformaions in Theorem 2.3 of [7] are applied to the 1-labels B

and B ′. As a consequence of these deformations, the three cycles of Z+ ∩ Z− are deformed
into

∂α+
1 ={AΓ (α+

1 )} ,

∂β−
1 ={(A′)−1

Γ (β−
1 )} and

(∂α+
2 − y) ∪ (∂β−

2 − x) ={Γ (B)Γ (α+
2 )CΓ (β−

21)Γ (B ′)Γ (β−
22)} ,
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FIGURE 13. The DS-diagram ∆0.

where

Γ (B) = B1V B∗Q1SP2B∗P1T Q2B∗UB2

and

Γ (B ′) = (B ′
2)

−1(U ′)−1(B ′∗)−1(Q′
2)

−1(T ′)−1(P ′
1)

−1(B ′∗)−1(P ′
2)

−1

(S′)−1(Q′
1)

−1(B ′∗)−1(V ′)−1(B ′
1)

−1 .

Defining a mark-line γ −
1 from A to B∗ (or γ +

2 from A′ to B ′∗) in parallel with the pre mark-

line γ −
1 (or respectively γ +

2 ), we apply digging operations along mark-lines γ −
1 and γ +

2 . By
Lemma 2.1 of [7], these digging operations connect the three cycles into only one cycle. Now
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we obtain a splittable DS-diagram ∆s having a splitting cycle

Γ1 = {Γ1(B,A)Γ (α+
2 )CΓ (β−

21)Γ1(B
′, A′)Γ (β−

22)} ,

where

Γ1(B,A) = B1V B�E
−1B�Q1SP2B�D�(A�Γ (α+

1 )A�)D�B�P1T Q2B�BB�U�UU�B2

and

Γ1(B
′, A′) = (B ′

2)
−1(U ′

�)
−1(U ′)−1(U ′

�)
−1(B ′

�)
−1(B ′)−1(B ′

�)
−1(Q′

2)
−1(T ′)−1(P ′

1)
−1(B ′

�)
−1

(D′
�)

−1((A′
�)

−1Γ (β−
1 )(A′

�)
−1)(D′

�)
−1

(B ′
�)

−1(P ′
2)

−1(S′)−1(Q′
1)

−1(B ′
�)

−1E′(B ′
�)

−1(V ′)−1(B ′
1)

−1 .

We apply Theorem 3.1 of [7] to the 1-labels B� and B ′
�.

Γ2 = {Γ2(B,A)Γ (α+
2 )CΓ (β−

21)Γ2(B
′, A′)Γ (β−

22)} ,

where

Γ2(B,A) = B1V B�E
−1LQ1SP2B�D�(A�Γ (α+

1 )A�)D�NP1T Q2B�BMU�UU�B2

and

Γ2(B
′, A′) = (B ′

2)
−1(U ′

�)
−1(U ′)−1(U ′

�)
−1(M ′)−1(B ′)−1(B ′

�)
−1(Q′

2)
−1(T ′)−1(P ′

1)
−1(N ′)−1

(D′
�)

−1((A′
�)

−1Γ (β−
1 )(A′

�)
−1)(D′

�)
−1

(B ′
�)

−1(P ′
2)

−1(S′)−1(Q′
1)

−1(L′)−1E′(B ′
�)

−1(V ′)−1(B ′
1)

−1 .

Remove two 2-gons with each of boundary circles U�D� and U ′
�
−1

D′
�
−1 by applying elemen-

tary deformation I− for each of 2-gons. The splitting cycle Γ3 is

Γ3 = {Γ3(B,A)Γ (α+
2 )CΓ (β−

21)Γ3(B
′, A′)Γ (β−

22)} ,

where

Γ3(B,A) = B1V B�E
−1LQ1SP2B�D�(A�Γ (α+

1 )A�)P1T Q2B�BUU�B2

and

Γ3(B
′, A′) = (B ′

2)
−1(U ′

�)
−1(U ′)−1(B ′)−1(B ′

�)
−1(Q′

2)
−1(T ′)−1(P ′

1)
−1

((A′
�)

−1Γ (β−
1 )(A′

�)
−1)(D′

�)
−1

(B ′
�)

−1(P ′
2)

−1(S′)−1(Q′
1)

−1(L′)−1E′(B ′
�)

−1(V ′)−1(B ′
1)

−1 .

For a pair of two 1-labels B� and B�
′, we apply DS-deformations according to Theorem 4.2

of [7]. Firstly, we apply an elementary deformation II+ to B�
′. Then, Z+ ∩Z− consists two

cycles as

Z+ ∩ Z− = {Γ4(B,A)Γ (α+
2 )CΓ (β−

21)Γ4(B
′, A′)Γ (β−

22)} ∪ {GHI }
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where

Γ4(B,A) = B1V B�E
−1LQ1SP2B�D�(A�Γ (α+

1 )A�)P1T Q2B�BUU�B2

and

Γ4(B
′, A′) = (B ′

2)
−1(U ′

�)
−1(U ′)−1(B ′)−1(Q′

2)
−1(T ′)−1(P ′

1)
−1(A′

�)
−1Γ (β−

1 )(A′
�)

−1

(D′
�)

−1(P ′
2)

−1(S′)−1(Q′
1)

−1(L′)−1E′(V ′)−1(B ′
1)

−1 .

Secondly, we take a simple arc γ + from B� to H in Z+. γ + may intersects with p 1-cells
with 1-labels W1, W2, · · · Wp−1 and V where each Wi is an edge inherited from the initial
Heegaard diagram and V is a new edge obtained by the deformations of remodeling, see
Figure 14. The 1-label W1 is an edge included in ∂β1 and each Wi (i = 2, 3 · · · , p − 1) is an
edge included in ∂α1 ∪ ∂α2. Along γ + as a mark-line, we apply a digging operation.

Lastly, applying an elementary deformation II+ to X1 and an elementary deforma-
tion II+ to X2 (edges X1 and X2, see Figure 12-c in [7]), we obtain a DS-diagram
∆1 = (G, f, P ; e) with an E-cycle e. The splitting cycle Γe which is the sequence of succes-
sive 1-labels on e is

Γe = {Γ5(B,A)Γ̃ (α+
2 )Γ (C)Γ (β−

21)Γ5(B
′, A′)Γ (β−

22)} ,

where

Γ5(B,A) = B1(V�V V�J1X∗J2E
−1LQ1SP2L1ZL2D�)A�Γ̃ (α+

1 )A�

(P1T Q2K1TpTp−1Γ (T )T1H1IGH2S1Γ (S)Sp−1K2BUU�)B2

= B1Γ̃5(B,A)B2

FIGURE 14. Mark line γ + from B� to H .
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and

Γ5(B
′, A′) = (B ′

2)
−1(U ′

�)
−1(U ′)−1(B ′)−1(Q′

2)
−1(T ′)−1(P ′

1)
−1(A′

�)
−1Γ̃ (β−

1 )(A′
�)

−1

((D′
�)

−1(P ′
2)

−1)(S′)−1(Q′
1)

−1(L′)−1E′(V ′)−1(B ′
1)

−1

= (B ′
2)

−1Γ̃5(B
′, A′)(B ′

1)
−1 .

The consecutive sequence of 1-labels Γ (T ) = Tp−2 · · · T2 and Γ (S) = S2 · · · Sp−2 included

in Γ5(B,A), consist the new 1-labels which appear by the digging operation along γ +, see

Figure 15. If Γ (α+
i ) contains the 1-label Wj for some j = 2, 3 · · ·p − 1, Γ̃ (α+

i ) includes the
1-labels Wj�WjWj�. If C = Wk , for some k = 2, 3 · · ·p − 1, then Γ (C) = Wk�WkWk�. For

Γ (β−
1 ) = Γ (β−

11)W1Γ (β−
12), Γ̃ (β−

1 ) = Γ (β−
11)W1�W1W1�Γ (β−

12).
From now on, we will see the vertices on the E-cycle of the DS-diagram ∆1 in order to

examine the E-data and to prove Lemma 4.2.1. The splitting cycle Γe leads us to the E-data
E(∆1). We can write it as

E(∆1) = {ΨBΛ−
2 Ω+

21ΨB ′Ω+
22} , (15)

where

ΨB = a−�
1 d−r

p c−�
p a−r

2 a+r
3 a+�

4 a−�
5 a−r

6 a+r
7 a+�

8 a−�
9 a−r

10 a+r
2 a+�

5 a−�
11 a−r

12 Λ−
1

a+r
6 a+�

9 a−�
8 a−r

3 a+r
10 c+�

p Υ +
1 c+r

1 b+r
1 b+r

2 b+r
3 d+�

1 Υ +
2 d+r

p a+�
11 a−�

4 a−r
7 a+r

12 a+�
1 ,

and

ΨB ′ = b−�
4 b−r

5 b+r
6 b−r

2 b+�
7 b−�

8 b−r
9 Ω+

11c
−r
1 d−�

1 Ω+
12b

+r
5 b−r

3 b+�
8 b−�

7 b−r
6 b+r

9 b−r
1 b+�

4 .

The subword ΨB (or ΨB ′ ) consists of the vertices which are adjacent to the 1-labels of

Γ̃5(B,A) (or Γ̃5(B
′, A′), respectively). The subwords Λ−

i , Ω+
ij , Υ +

1 and Υ +
2 consist of

FIGURE 15. The DS-diagram ∆1 with E-cycle.



144 MARIKO ENDOH

the vertices which are adjacent to the 1-labels of Γ̃ (α+
i ) (or Γ̃ (α+

2 )W1�W1, if C = Wk .),

Γ (β−
ij ), Γ (T ) and Γ (S), respectively. For the vertices included in Υ +

1 = c+
p−1c

+
p−2 · · · c+

2

and Υ +
2 = d+

2 d+
3 · · · d+

p−1, the vertices c−
i and d−

i (i = 2, 3, · · ·p − 1) are included in

the sequence of 1-labels Wi�WiWi� on the E-cycle. This implies that f (Λ−
1 ) ∪ f (Λ−

2 ) =
f (Ω+

11) ∪ f (Ω+
12) ∪ f (Ω+

21) ∪ f (Ω+
22) ∪ f (Υ +

1 ) ∪ f (Υ +
2 ). The vertices a±

i (1 ≤ i ≤ 12),

b±
i (1 ≤ i ≤ 9), c±

i (1 ≤ i ≤ p) and d±
i (1 ≤ i ≤ p) are new vertices which appear

by deformations of remodeling. This shows that the E-data (15) is one required in
Lemma 4.2.1 �

REMARK 1. By the moves from the coded sequence (15) to the coded sequence (14)

in §4.4, each subword in (15) is inherited to the subwords in (14) as follows,

ΨB →W−
5,1W

+
5,2W

−
5,3W

+
5,4W

−
4,5W

−
4,7 ,

Λ−
2 → W̃−

4,9 ,

Ω+
21 →Ω+

21 = W+
5,10 ,

ΨB ′ →W−
5,11W

+
5,12W

−
5,13W

+
5,14W

−
5,15W

+
5,16W

−
5,17W

+
5,18W

−
5,19b

+�
4 and

Ω+
22 →Ω+

22 .

5. Difficulty for the case of HG(M(∆)) = 3

In the main theorem, we have considered the case of HG(M(∆)) = 2. Here, we will
mention briefly that the same method as in the case of HG(M(∆)) = 2 seems not to be
applicable in the case of HG(M(∆)) = 3.

Let (M1,M2; 
D1, 
D2) be a Heegaard diagram with genus 3, and let 
D1 = {α1, α2, α
′
1}

and 
D2 = {β1, β2, β
′
1} be complete meridian disk systems of M1 and M2 respectively. In

order to apply the similar way of moves of the case HG(M(∆)) = 2, we have to prepare the
following four pre mark-lines

γ −
1 with the initial point p1 ∈ A1 ⊂ ∂α1

+ and the terminal point q1 ∈ B1 ⊂ ∂α2
+ ,

γ ′
1
− with the initial point p′

1 ∈ A′
1 ⊂ ∂α′

1
+ and the terminal point q ′

1 ∈ B ′
1 ⊂ ∂α2

+ ,

γ +
2 with the initial point p2 ∈ A2 ⊂ ∂β1

− and the terminal point q2 ∈ B2 ⊂ ∂β2
− and

γ ′
2
+ with the initial point p′

2 ∈ A′
2 ⊂ ∂β ′

1
− and the terminal point q ′

2 ∈ B ′
2 ⊂ ∂β2

− ,

where
(1) these arcs do not intersect with each other,

(2) both of γ +
2 and γ ′+

2 intersect with neither edges B1 nor B ′
1.
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We also obtain a DS-diagram ∆1 in a similar method to the case of genus 2 by making 2-gon

near the mark-line γ ′
1
−. The splitting cycle of ∆1 can be written as

Γ (∆1) =Γ5(B1, A1)Γ̃ (α+
2 )Γ (C)Γ (β−

21)Γ5(B2, A2)Γ (β−
22)

Γ (β ′
21

−
)Γ5(B

′
2, A

′
2)Γ (β ′

22
−
)Γ5(B

′
1, A

′
1)Γ̃ (α′

2
+
)

and it leads us to the E-data

E(∆1) = ΨB1Λ
−
2 Ω+

21ΨB2Ω
+
22Ω

′+
21ΨB ′

2
Ω ′+

22ΨB ′
1
Λ′−

2 .

Applying the moves for reducing the block number to ∆1, we obtain a DS-diagram ∆′ with
the coded sequence

E(∆′) = (W−
5,1W

+
5,2W

−
5,3W

+
5,4W

−
4,5W

−
4,7)W̃

−
4,9W

+
5,10

(W−
5,11W

+
5,12W

−
5,13W

+
5,14W

−
5,15W

+
5,16W

−
5,17W

+
5,18W

−
5,19b

+�
4 )Ω+

22

W ′+
5,10(W

′−
5,11W

′+
5,12W

′−
5,13W

′+
5,14W

′−
5,15W

′+
5,16W

′−
5,17W

′+
5,18W

′−
5,19b

′
4
+�

)Ω ′
22

+

(W ′−
5,1W

′+
5,2W

′−
5,3W

′+
5,4W

′−
4,5W

′−
4,7)W̃

′−
4,9

=
( 2∏

k=1

W−
5,2k−1W

+
5,2k

)( 10∏
k=5

W−
5,2k−1W

+
5,2k

)

W ′+
5,10

( 10∏
k=6

W ′−
5,2k−1W

′+
5,2k

)( 2∏
k=1

W ′−
5,2k−1W

′+
5,2k

)
W ′−

5,9

where W ′−
5,9 = W ′−

4,5W
′−
4,7W̃

′−
4,9 and W ′+

5,20 = b′+�
4 Ω ′

22
+ and each subwords of E(∆1) are

inherited to the subwords of E(∆′) as follows,

ΨB1 → W−
5,1W

+
5,2W

−
5,3W

+
5,4W

−
4,5W

−
4,7 ,

Λ−
2 → W̃−

4,9 ,

Ω+
21 → Ω+

21 = W+
5,10 ,

ΨB2 → W−
5,11W

+
5,12W

−
5,13W

+
5,14W

−
5,15W

+
5,16W

−
5,17W

+
5,18W

−
5,19b

+�
4 ,

Ω+
22 → Ω+

22 ,

Ω ′
21

+ → Ω ′
21

+ = W ′+
5,10 ,

ΨB ′
2

→ W ′−
5,11W

′+
5,12W

′−
5,13W

′+
5,14W

′−
5,15W

′+
5,16W

′−
5,17W

′+
5,18W

′−
5,19b

′+�
4 ,

Ω ′
22

+ → Ω ′
22

+
,

ΨB ′
1

→ W ′−
5,1W

′+
5,2W

′−
5,3W

′+
5,4W

′−
4,5W

′−
4,7 ,

Λ′−
2 → W̃ ′−

4,9 .

The subwords Wε
i,j and W ′ε

i,j (ε = + or −) consists of similar symbols and order to the

subwords Wε
i,j of (14).
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The subword (
∏10

k=5 W−
5,2k−1W

+
5,2k)W

′+
5,10(

∏10
k=6 W ′−

5,2k−1W
′+
5,2k)W

′−
5,1W

′+
5,2 can be

deformed to the blocks Θ−
1 and Θ+

2 . But the other subword W ′−
5,3 W ′+

5,4 W ′−
5,9 W−

5,1 W+
5,2

W−
5,3W

+
5,4 can not be deformed to less blocks any more by the similar confirmation to the

proof of Theorem 1. So we obtain a DS-diagram with block number 4. If we apply the dif-
ferent way of moves, we may obtain a DS-diagram with block number 3. But it is difficult to
find a method to do it now.
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