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Abstract:

We establish the intersection theory of the rapid decay homology group and

formulate the twisted period relation in this setting. We claim that there is a standard method of
constructing a basis of the rapid decay homology group which can be related to GKZ
hypergeometric series. This can be carried out with the aid of a convergent regular triangulation
T. When T is unimodular, we can obtain a closed formula of the homology intersection number.
Finally, we obtain a Laurent series expansion formula of the cohomology intersection number in

terms of the combinatorics of T'.
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1. Introduction. This is the continuation of
the announcement “Euler and Laplace integral
representations of GKZ hypergeometric functions
I”. We use the same notation. In this announce-
ment, we claim that there is a combinatorial
construction of a basis of rapid decay homology
group which can be related to I'-series solutions.
Namely, to each convergent regular triangulation T’
we have a basis consisting of cycles I'y and that of
series solutions ®7 which are related to each other
in terms of character matrices of finite abelian
groups associated to T. As an application, when T
is unimodular, we can determine the twisted
intersection matrix explicitly. One can also prove
an explicit expansion formula of cohomology inter-
section number associated to a unimodular trian-
gulation. Details are available in [MHa, §4-].

2. Intersection theory for rapid decay
homology and cohomology groups. In this
section, we develop an intersection theory of rapid
decay homology groups along the line of the
preceding studies [CM95], [Iwa03], [KY94] and
[OST03]. We consider a smooth complex affine
variety U and a regular singular connection (E, V)
on U. In order to simplify the discussion and the
notation, we assume that F is a trivial bundle and
Vis given by V =d + Zle Q; df—zf A for some regular
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functions f; € O(U) \ C and complex numbers «;.
For another regular function f € O(U), we set V; =
V +dfA. We inherit the notation of §3 of [MHD].
Let VC X be an open subset. A section of the
sheaf P;D (resp. P%OdD) on V is a smooth function

on V '\ D whose derivative of any order is flat (resp.
of moderate growth) along D in the sense of §8.3

of [Sabl3]. We set ;(D = Ker (6_ : ”P%D —
%D P10y w’lﬁ()?’l)>, where ? stands for one of

either < or mod. As in [Hie09], we set
(1) DRZ’)V(D(Vf) = A%D R0y wilDRXan(Vf),

Let VJY be the dual connection of V;. With this
notation, V&P =10 (DR)S(D(V/Y)> and
SmOdD = HU (DR%O(ID(VJ‘)) .

We first remark that DR;D(V})

DR*P(Vy) are resolutions of YS<” and S§™”
respectively ([Hie09, Proposition 1]). Combining
this result with the quasi-isomorphism

(2)
%D D r0, @ Y (P%D D i0, QY 5),

we set

and

\/S<D SmodD

we see that and

PORP(VY) Y (P @er0, w1057, V},0) and

’PDR?OdD(Vf) déf (P%UdD ®w710X w_ng;’.),Vﬁg)’

respectively. We set

are quasi-isomorphic to
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(3) H; , (U,V}) = H"(X;'S<"). (o,0), : HI“(U, V) x Hyed (U, V) — C
- ~ w
Let j: U* — X be the natural inclusion. Then, (6) y .
the canonical duality pairing R<D (Vi) ® (], 16°]) = / ) A @Y(8Y)

DR;OdD(Vf) — 51ICpa ([Hie09, Theorem 3]) ylelds
a perfect pairing

(0, 0)cn - Hop(U: V) x BT (U V) - C
(4) w w

(], [n]) = [ wA,
{an

which we call the cohomology intersection pairing.
We also give a realization of H*(X, ™) in terms
of a certain relative homology group. We set
Dot = (Dy\ fY(So0) U FH (e oo | 3 < 0 <
7}). We consider a sequence of natural inclusions
yen Lgen y pmod £, X By the local description of
S™P ([Hie09,p12]), we can easily confirm the
equality S™P =k, LY. We define a sheaf

CP ____(L£Y)on X as the associated sheaf of a
U(UI UD!!IL)(J 7Dl!l()(i

presheaf whose section on an open subset V' is given
by Sp(Ua” U _l)mod7 (Ualb U Dmod \ V) U Dmod; l*EV)
Here, S, is the set of singular p-chains. We easily

see that SI“OdD 2n] ~ kC, ., 5 Dmd(ﬁv) as in the

arguments after Proposition 2.1 of [MHc]. There-
fore, we have a realization H” (X; 8Py =
Hg;fd* (U, V) Y Hy,_, (U U Dmod, pmod 1, £V) More-
over, the same argument as §5 of [Hie09] proves the

perfectness of the pairing

H; (U, VY) x Hy (U, V) — C

W w

(5) k
([], [8"]) oyl I Eia

=1

With these setups, we can naturally define the
Poincaré duality isomorphism & : H (U, VV)
H (U, VY) and @Y : H*Y(U, vf)—>H2n (U, vf)
Namely, for any element [y] € HI*(U"", VY), ®(y) €
H2 (U, VY ) is the unique element such that the
equality f 'L, f¥w = [®(7) Aw holds for any
[w] € HdR(U V). In the same way, for any element
[8V] € H™YU, V), ®V(8Y) € HZ (U, V) is the
unique  element such that the equality
fse ! Hle fi%m=[®V(6Y)An holds for any
7] € Hy , (U, VY¥). We define the homology inter-
section pairing (e,e), by

Let us fix four bases {[w;]};_, C Hjz(U;Vy),
{blYizs c HIH (U3 VY, {Im]}io, € HYT (U V),

and {[5\/]}2—1 C Hg;?d*(Uv vf) We set Ich, -
((lawi, [77]]>(h)”a In = ([l 67D n)i g0 P =
f Hl 1 wl)zj’ and PY =

f«s,v e
[CM95, Theorem 2] is a transcendental analogue of
Riemann-Hodge bilinear relations:

(7) I, =PI '"pY.

Remark 2.1. While preparing this an-
nouncement, the author noticed that one can find
a similar discussion in [FSY].

3. I'-series solutions of GKZ systems. In
this section, we briefly recall the construction of a
basis of solutions of GKZ system in terms of I'-series
following the exposition of M.-C. Fernandez-
Fernandez ([FF10]). For any commutative ring R
and for any pair of finite sets I and J, the symbol
R™7 denotes the set of matrices with entries in R
whose rows (resp. columns) are indexed by elements
of I (resp. J). For any univariate function F' and
for any vector w = '(wy,...,wg) € C™!, we define
F(w) by F(w)=F(w)---F(wg). For any subset
T CA{l,...,n}, the symbol A, denotes the matrix
given by the columns of A indexed by elements of
7. Let 7 be the complement of 7. In the following, we
take 0 C {1,...,n} such that the cardinality |o]| is
equal to d and det A, # 0. Since A! is naturally
regarded as an element of Q7*?, we write py;(v) for
the i-th entry (i € o) of the vector A 'v with
v e C™!. We write 1, for the vector in Z7*! whose
entries are all unity. For any vector k € Z7*!, we
put

(8) wok(206)
AN Az

def P (20
a 1, — A1 (8 + As(k + m)) (k + m)!’

H[ ) —azm)” The twisted period relation

ZE)k+m

7 k4+meAy F(
where Ay is given by
(9) Ay ={k+m € ZT§' | Azm € ZA,}.

We call @, k(z;6) a I-series. It can readily be seen
that ¢, k(2;6) is a solution of the GKZ hyper-
geometric system My(9).
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Now we recall the definition of a regular
triangulation. In general, for any subset o of

{1,...,n}, cone(o) denotes the cone generated by
the set {a(i)},.,- A collection T of subsets of
{1,...,n} is called a triangulation if {cone(o) | o €

T} is the set of cones in a simplicial fan whose
support equals cone(A). For any generic choice of a
vector w € R we can define a triangulation T'(w)
as follows: a subset o C {1,...,n} belongs to T(w) if
there exists a vector n € R such that n - a(i) =
w; if i € 0 and n- a(j) < wj if j € . A triangulation
T is called a regular triangulation if T'= T'(w) for
some w € R". Note that T(w) can be empty for a
specific choice of A and w. For a fixed non-empty
regular triangulation 7', we say that the parameter
vector ¢ is very generic if for any simplex o € T, the
vector A;'(6+ Azm) does not have any integer
entry for any m € Z°*!. Now suppose § is very
generic. Then, it was shown in [FF10] that we have
rank My (6) = volz(A,). Here, we write volg for
the d-dimensional Lebesgue measure and set
volz = volg/d!l. Let us put H,={je {1,...,n}|
|Ata(j)| = 1}. Here, |A;'a ()\ denotes the sum of
all entries of the vector A ta(j). We set U, = {z €
(C)" | abs(z""*92)) < R, for all a(j) € H,\ o},
where R > 0 is a small positive real number and abs
stands for the absolute value.

Definition 3.1. A regular triangulation T is
said to be convergent if it is non-empty and for any
n-simplex o € T and for any j € 3, one has the
inequality |4 'a(j)| < 1.

Note that a convergent regular triangulation
always exists. With this terminology, the following
result is a special case of [FF10, Theorem 6.7.].

Proposition 3.2. Fix a convergent regular
triangulation T. Assume 6 is very generic. For each
simplex o € T, let {k(i)}.2, be a system of complete
representatives of the finite abelian group Z%*1/
ZA,. Then, the set U {gpak(l Yo, is a basis of

holomorphic solutions of Ma(6) on UT = ﬂ U, #

oeT
.
4. Combinatorial construction of inte-
gration contours via regular triangula-
tions. We use the notation of §2 of [MHb]. We

fix a convergent regular triangulation 7. After a
sequence of changes of coordinates, we can con-
struct a basis U{ng( .}?”:1 of the rapid decay

homology group Hffi at a generic point z. Here, the
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index {k( J)}iZy is a system of complete representa-
tives of the finite abelian group Z7*'/Z!'A,. The
concrete form of the cycle I' g ) is, in general, quite
complicated. For the detail, see [MHa,§6]. Let
UT{Fa,k(j)}jzl be the corresponding basis of the
o€

dual homology group ([MHa, §6]).

Proposition 4.1. If o0y # 09, for any ele-
ments k; € Z7Y)Z! A, and ky € Z7*Y 7! A,,, one
has the equality

(10) <F01,1~<1’f02,1~<2>h =0.

Moreover, we have the following explicit rela-
tions between the basis [J{I', g} of H’% and
the I-series solutions. 77 '

Theorem 4.2. Take a convergent regular
triangulation T. Assume that the parameter vector
6 is very generic, and v ¢ Z for any l=1,... k.
Then, there exists a basis U {me{(j) }i2y1 of the rapid

decay homology group Hn 5 such that if one puts
(1) f,50(2)

1 ; dx

— el ROL¢ h “// c ,
(27’(’ /_l)n-Hc /F(,f( H 1,200 T

U {f, k() }j21 is a basis of solutions of Ma(6) on

o

the non-empty open set Ur, where {k(j N}, is a
complete system of representatives of Z°*'JZ!A,.
Moreover, for each o € T, one has a transformation
formula

fok) () Pox(1) (2 0)
(12) = _
fa,f{(rn) (2) Pokiry) (2 6)
Here, T, is an ry X v, matrix given by
(13)
sgn(4, o) H e~V -101=m) H e~V =1
T — Llo®]>1 L:o®]=1
T det AT(m)---Tiw) [ (1—e )

L:o®]=1
SN
AT AT () D)
2mV=1)  poi(8+ Aak(ﬁ)}) ;

i€o®)

x diag(exp{—2mv—1"k(i)A
x (exp{—2mv—1'k(i) A

x diag (1 — exp{—
put

where we have
(- 1)k‘0—(0) [+ (k=1)| 0D | oerrp o1 H@

sgn(A,o) =
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We say that T is unimodular if for any simplex
o €T, one has the equality det A, = +1. In this
case, there is a single cycle I'; y associated with each
simplex o € T.

Theorem 4.3. Suppose T is convergent and
unimodular. We decompose o into o =c O U---U
o™ and set ~y = Y ico® Poi(0). For any simplex o €
T, one puts

(14)

(1]

_ H {(1 _ 62”\/7_W’) H (1— 6271'\/_1])01(6))}'

L|oW]>1 icol)
Then, one has

(15)

<Fo'70 ) F0'70 > h =

[1]

if ¥ = & and
(16)

if o0 #£ &
The proof of Theorem 4.3 is based on the explicit
description of the cycle I'; 5. The evaluation of the
intersection number (T', ¢, ), can be reduced to
that of simple cycles of a simple connection. See §7
of [MHa] for the detail.

As an immediate application of the theorem
above, we get an expansion formula of the coho-

mology intersection number. We set

Ty, Too)y = (1 — 6727“/7_1%)5

(17) WXJ«(Z% 6)

_ ZA;‘[) Z (71)k()+m() cm/__lz/em“! Poi(Az(k+m)) (Z;A;IA; Za)ker
7 W I'(1,+ A;1(6 — As(k+m)))(k + m)!

For any complex numbers «, 3 such that a+ 5 ¢

Z<, we put (a);= F%”EZ‘)H). In general, forr any

vectors a = (aq,...,a5),8=(B1,...,0s) € C*, we

put (a); =[[;_;(ai)s. Combining the results of
§2, 83 and §4, we obtain the main result of this
section.

Theorem 4.4. Suppose that four wvectors
a,a’ € Z b, b € Z¥! and a convergent unimod-
ular regular triangulation T are given. If the
parameter 6 is generic so that 6 is non-resonant,

_ 7—b
w¢Z for any 1=1,...,k and (c+a) and

[Vol. 96(A),
!/
(Z+Z,) are very generic, then, for any z € Ur,

one has an identity

(18) (_1)\b\+lb’\,yl ""Vk('Y_ b)b(_,y_b/)b/

7.[.n+k ,y_b
X ¥ ;
UGZTsinﬂA;ldsD ’O<Z (c+a)>

v v+ b
X o0\ F c—a’

apbdx ,a'pb dz
<.T h ?71‘ h ?>ch

(2mv/—1)"
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