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Abstract:

In this paper we study a relation between the cohomology ring of a regular

nilpotent Hessenberg variety and Schubert polynomials. To describe an explicit presentation of
the cohomology ring of a regular nilpotent Hessenberg variety, polynomials f; ; were introduced
by Abe-Harada-Horiguchi-Masuda. We show that every polynomial f;; is an alternating sum of

certain Schubert polynomials.
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1. Introduction. Let n be a positive inte-
ger. The (full) flag variety F¢(C") in C" is the
collection of nested linear subspaces V, := (V) C
Vo C---CV,=C") where each V; is an i-dimen-
sional subspace in C". We consider a weakly
increasing function h:{1,2,...,n} — {1,2,...,n}
satisfying h(j) > j for j =1,...,n. This function is
called a Hessenberg function. De Mari-Procesi-
Shayman ([6], [5]) defined a Hessenberg wvariety
Hess(X, h) associated with a linear operator X :
C" — C" and a Hessenberg function h:{1,2,...,
n} — {1,2,...,n} as the following subvariety of the
flag variety:

(1.1) Hess(X,h) :=
{(Ve e FU(C") | XV; C Vjyy for i =1,2,...,n}.

We note that if h(j) = nforallj=1,2,...,nor Xis
the zero matrix, then the corresponding Hessenberg
variety coincides with the whole full flag variety
Fe(C"). The family of Hessenberg varieties also
contains Springer varieties related to geometric
representations of Weyl group ([19], [20]) and
Peterson variety related to the quantum cohomol-
ogy of the flag variety ([13], [16]). Recently, it has
been found that Hessenberg varieties have surpris-
ing connection with other research areas such as
hyperplane arrangements ([18], [2]) and graph
theory ([17], [4], [9]).

In this paper we concentrate on Hessenberg
varieties Hess(N, h) associated with a regular nil-
potent operator N i.e. a matrix whose Jordan form
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consists of exactly one Jordan block with corre-
sponding eigenvalue equal to 0. The Hessenberg
variety Hess(IN,h) is called a regular nilpotent
Hessenberg variety. If we take h(j) =j+1 for 1 <
j<n-—1 and h(n)=n, then the corresponding
regular nilpotent Hessenberg variety is called the
Peterson wariety. Regular nilpotent Hessenberg
varieties Hess(IV, h) can be regarded as a (discrete)
family of subvarieties of the flag variety connecting
Peterson variety and the flag variety itself. The
complex dimension of Hess(N, %) is 377 (h(j) — j)
([18]). A regular nilpotent Hessenberg variety is
singular in general ([13], [12]). The cohomology ring
of a regular nilpotent Hessenberg variety has been
studied from various viewpoints (e.g. [3], [22], [11],
[15], [7], [10], [1], [2]). To describe an explicit
presentation of the cohomology ring of a regular
nilpotent Hessenberg variety, polynomials f; ; were
introduced in [1] as follows: (Throughout this paper
we work with cohomology with coefficients in Q.)
For 1 < j <4, we define a polynomial f;; by

fi,j = i( lil ({Ek - :Eé)) Tk

k=1 \t=j+1

(1.2)

Here, we take by convention H;:j-&-l(mk —x) =1
whenever ¢ = j. Then from the result of [1], the
following isomorphism as Q-algebras holds
(1.3) H*(Hess(N, h))

= Q[xla s 7x71/]/(fh(j),j | 1< .] < n)

Our main theorem is the following
Theorem 1.1. Let i,5 be positive integers
with 1 <j<i<n. Let fi_1; be the polynomial in
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(1.2) and &,, the Schubert polynomial for a permu-
tation w in the symmetric group S,. Then we have

i-j

ficrj = Z(—l)k_lﬁwu.;)

k=1 k

(1.4)

where w,(;"'j) for 1 <k <i—jisapermutation in S,
defined by

(1.5) wﬁf’j) = (SiokSick—1 " 8j)(Si—kr1Si-kp2 " Sic1)-

Here, s, denotes the transposition of v and r+ 1
for r=1,2,...,n—1 and we take by convention
(Si—k+1Si—kt2 -+ - Si—1) = id whenever k = 1.

We can interpret the equality (1.4) in Theo-
rem 1.1 from a geometric viewpoint under the
circumstances of having a codimension one
Hessenberg variety Hess(N,h') in the original
Hessenberg variety Hess(N,h). We will discuss
more details in Section 4.

2. Divided difference operator. In this
section, we observe a new property of polynomials
fij in (1.2) related with the divided difference
operator defined by Bernstein-Gelfand-Gelfand and
Demazure. This is the key property for the proof of
the main theorem. We first recall the definition of
the divided difference operator and the Schubert
polynomials. For general reference, see [8].

Let f be a polynomial in Z[zy,...,z,] and s; the
transposition of ¢ and ¢4+ 1 for any 1 =1,2,...,
n — 1. Let s;(f) denote the result of interchanging x;
and ;1 in f. Then the divided difference operator
0; on the polynomial ring Z[z1, ..., z,| is defined by
the formula

f=si(f)

Tj — Ti41

Since f —s;(f) is divisible by z; — z;y1, 0;(f) is
always a polynomial. If f is homogeneous of degree
d, then 0;(f) is homogeneous of degree d — 1.

For a reduced expression u = s; s, --S;,, we
set 0, = 0,0, ---0; . Since the divided difference
operators satisfy the relations 0;0,119; = 0;110;0;11
and 0? = 0, the operator 9, is independent of the
choice of reduced expressions for u. The Schubert
polynomial G,, for a permutation w in the symmet-
ric group S, is defined as follows. For wy = [n,n —
1,...,1] € S, the permutation of the longest length
in one-line notation, we define

6100 = Gwo(xl, ..

(2.1) Oi(f) =

n—1,n-2

LX) =Ty STy

For general permutation w in S,, write w=
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woS;, Sy - -+ 8i, With £(wos s, -+ si,) = £(wg) —p for
1 < p < r. Then the Schubert polynomial is induc-
tively defined by

Gy = 610(331’ cee 7-Tn) = ai,- ©---0 6i2 © ail(Gw())
=@, 0---00;,00; (x?71x§72 S Xpo1)-

In general, Schubert polynomials have the following
property

Gy i w(d) >w(+1),

0 if w(z) < w(i+1).
Note that the Schubert polynomial &, is a homo-
geneous polynomial in Z[xy, ..., z, 1] of degree £(w)
which is the number of inversions in w, called the
length of w, i.e.,

t(w) = #{j <i|w(j) > w(@)}.

Schubert polynomials have an important property
that &, is in fact independent of n in the following
sense. For w € S, and m > n, we define w™ € S,
by w™ (i) = w(i) for 1 <i <n and w™ (i) =i for
n+1<i<m. Then we have

(2.3) Gy =6y m.

The following proposition is the key property
for the proof of the main theorem.

Proposition 2.1. Let1,j be positive integers
with j <. Let f;; be the polynomial in (1.2) and 0
the divided difference operator in (2.1). Then
(2.4) 9i(fig) = fij,

(2.5) 0i(fij) = —fi-1;-

Proof. We first prove the equality (2.4). Since

fig= i( li[ (@ — w)) (zr — i)k

k=1 \/=j+2

+ < ﬁ (zj— Iz)> (@ — @j1)z),

e=j+2

sj(fig) = Z( li[ (zk — xe)) (T — j)@s

k=1 \e=j+2
+ ( H (Tj41 — xe)) (Tj1 — Tj)Tj11,
(=j+2
the difference f; ; — s;(fi;) is
j+1 i
(zj — i) <Z< I - mé)) xk) :
=1 \(=j+2

Hence, we obtain 9;(f;;) = fij1-
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We next prove the equality (2.5). Since

J i—1
fii=> <(xk —a) ] (o - mz)) T,

k=1 r=j+1
J i—1
si(fiy) = Y| (e —win) ] (= 20) ),
k=1 =j+1
we have
j i—1
f fLJ :Z -THI_-TZ H (xk_xf) Tk
k=1 =j+1
j i-1
= (Tit1 — ;) Z H (e — @) | |-
k=1 \t=j+1

Thus, we obtain

Oi(fij) = — (i:( ﬁ (@r, — 33@))%) = —fi—1;-

=j+1

O

From Proposition 2.1, we see that every poly-

nomial f;; for 1 < j<4i<n is obtained from the

single polynomial f,,; by using the divided differ-
ence operator. More concretely, we set

F, = fn,l = (331
Then we obtain
fii = ((1)"" 0110142+ 0,) (0521052 - D) ().

3. Proof of Theorem 1.1. In this section
we prove Theorem 1.1. To do that, we need Monk’s
formula.

Theorem 3.1 (Monk’s formula [14], see also
[8] p- 180). Let &, be the Schubert polynomial for
w € S, and s, the transposition of r and r + 1. Then

we have
= z :Gthq

(3.1)

where t,, is the transposition interchanging values
of p and q, and the sum is over all1 < p < r < q such
that w(p) < w(q) and w(i) is not in the interval
(w(p),w(q)) for any i in the interval (p,q).

Using Monk’s formula, we first prove the
following proposition which is the case i = n and
j =1 of Theorem 1.1.

Proposition 3.2. Let n>1 and f,—11 the
polynomial in (1.2). Let &,, be the Schubert poly-
nomial for w € S,. Then we have

- xn)(xl - xn—l) ce (371 - $2)331-
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n—1

fac11 = Z(—l)kAGw(w

k=1

where w}v ) € 8, is the permutation defined in (1.5).
Proof. We prove the proposition by induction

on n. For the base case n =2, it holds because

Jir =21 =6, =6 . Now we assume n > 2 and
the following cquahty
n—2 1
fn72,1 = ;(_1) ' Sw,(cnfm).

Since we have from the definition (1.

fnfl,l = (xl - 1’77,71)fn72,1

n—2
_ _ _1\k-1 .
= (651 + 65,,,2 65,771) ( E ( 1) Gwi"’ ’ >> ’

k=1

2) that

it is enough to prove the following equality

(1ﬁ1Q$M>

(V)

n—

(3-2) (Gsl + 6., — Gsn—l) <

>~
Il

1

n—1

k=1

We prove the equality (3.2) using Monk’s formula
(3.1).
Case(i): Using Monk’s formula (3.1), the product
G -6w<7171.1) equals

L Sy,

G |

n-1,1)
wy, tin—k

Case(ii): Using Monk’s formula (3.1), the product
G;, , -6 w1y equals

w,,

if k=1,
if k1.

ngn—l 4 + 610(1"71'1)257172,,71 if k=1,
Gw’(cnfl.l)tn R Gw(‘n—l 1)t7 ) if k 7& 1, n—2
G(n—ll 1fk:n—2

1)
W, 5 th-2n

Case(iii): Using Monk’s formula (3.1), the product

Ss, -Gwif,,fl,l) equals
6w(1n71,1)t1n + Guﬁn—l,l)tnil" if k=1,
6wi@71,1)t”72" + Gwﬁ:v—l.l)t"iln’ if k 75 1.
From Case(i),(ii),(iii) together with equalities
(n—1,1) _(n, (n—1,1) _ o (nd)
wy ti, =w; " and wy, bn—1n = Wiy for 1 <

k < n — 2, the left hand side of (3.2) reduces to

n—3
k—1
Gwin.l) E ( ) (G} Yillltln—k—l

k=1
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However, since we have w,(cizl'l)tl,L,k,l =
w2n71’1>t,b,k,1,L,1 for 1 <k <n-—3, the above ex-
pression is equal to the right hand side of (3.2).
Therefore, we obtain (3.2). This completes the
induction step and proves the proposition. O
Proof of Theorem 1.1. We now prove The-
orem 1.1 by induction on j. For the base case j =1,
it holds from Proposition 3.2 together with the
property (2.3) of Schubert polynomials. Now we

assume j > 1 and the following equality

i—j+1 .
ficrj-1 = Z (-1) ng’z,y—n-

k=1

Then since
w7 = 1) > ()
w0 = 1) <w ()
we have from (2.2) that

0j—1 (wa‘j*’) = {

Therefore, using (2.4), we obtain

& k-1
fic1j=0j1 ( Z (=™ 6u,2i=-i1>>

if1<k<i-—j
fk=i—j+1,

S,  H1<E<i—j,
;A j—
0 ifk=i—j+1.

k=1

7—

[

k-1
(—1) 6“)/(:.]‘71)3%1

<. 7
—

<.

(—1)’f*16,w;;_j>.

o~

=1

This completes the induction step and proves
Theorem 1.1. (]

4. Geometric meaning of Theorem 1.1.
In this section we observe a geometric meaning of
Theorem 1.1. Throughout this section we use the
notation

[n] :={1,2,...,n}.

Recall that a Hessenberg function h : [n] — [n] is a
weakly increasing function satisfying h(j) > j for
j € [n]. We denote a Hessenberg function h by
listing its values in sequence, i.e.
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Fig. 1. The configuration of shaded boxes for h = (3,3,4,5,5).

j-th column

i-th — ]
row

Fig. 2.

h n

The pictures of h and A/'.

We often regard a Hessenberg function as a config-
uration of boxes on a square grid of size n X n whose
shaded boxes correspond to the boxes in the
position (i, 7) for i,j € [n] and i < h(j).

Example 4.1. Let n=5. A function h=
(3,3,4,5,5) is a Hessenberg function and the
corresponding configuration of boxes on a square
grid of size 5 x 5 is given in Figure 1.

An (i,7)-th box of a Hessenberg function is a
corner if there is neither a shaded box in (i + 1,7)
nor in (4,7 —1). Let h:[n] — [n] be a Hessenberg
function with (4,7)-th box as a corner with i > j.
We define a Hessenberg function b’ : [n] — [n] by
removing (i,7)-th box of h (see Figure 2). More
precisely, i’ is defined by

W' (k) = h(k)
W) =h()—1=i—1.
Then, we have Hess(N,h') C Hess(N,h) by the

definition (1.1). From the isomorphism (1.3) we
obtain

if k#J,

fic1j #0
fici; =0

In fact, suppose for a contradiction that f;_; ; = 0in
H*(Hess(N, h)). Then the ideal (fy1)1,- -, fam)n) is

in H*(Hess(N, h)),
in H*(Hess(N,1')).
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equal to the ideal (fu(1)1,---;fuw(n)n). It follows
from (1.3) that H*(Hess(N,h)) is isomorphic to
H*(Hess(N,h')). This contradicts the equality
dim Hess(N, h) = 377, (h(j) — j) = dim Hess(N, 2') +
1.

Next, we consider intersections of a regular
nilpotent Hessenberg variety and Schubert cells.
We first recall the definition of Schubert cells. Let
G be the general linear group GL(n,C) and B the
standard Borel subgroup of upper-triangular inver-
tible matrices. Then the flag variety F¢(C") can be
realized as a homogeneous space G/B. For a
permutation w in the symmetric group S,, we
define the Schubert cell X of the flag variety by
X? = BwB/B. The Schubert cell X? is isomorphic
to an affine space C™). Tt follows from [21, Theorem
6.1] that the condition for Hess(N,h) N X: being
nonempty is given by

(4.1) Hess(N,h)N X, #0

= w H(w(r) i 1) < h(r) for all r € [n].

The following lemma gi_ves the geometric meaning
of the permutations wk”) in (1.5).

Lemma 4.2. Let h:[n]— [n] be a
Hessenberg function with (i,7)-th box as a corner
with i > j and W : [n] — [n] a Hessenberg function
obtained from h by removing (i,j)-th box. Let
{X5} be Schubert cells. Then, the set of permuta-
tions wg"]) (1 <k <i—j)in(1.5) coincides with the
set of minimal length permutations w in S, such that

Hess(N,h) N X, # 0 and Hess(N, k') N X, = 0.

Proof. Let X; be a Schubert cell. It follows
from (4.1) that a necessary and sufficient condition
for Hess(N, h) N X¢ # 0 and Hess(N,h') N XS =0 is
given by i—1="Hn(j) <w ' (w(j)—1) < h(j) =1
and w(w(r) — 1) < h(r) for r # j, that is,

(4.2) w(j) = 1= w(i),
(4.3) wH(w(r) —1) < h(r) for r# j.

It is clear that wg’j) satisfies (4.2) and (4.3). Let v be
a permutation in S, satisfying (4.2) and (4.3) with
minimal length, and we prove that v is a permuta-
tion w,(j’]) for some 1 < k < i — j. From the minimal-
ity of the number of inversions of v, we must
arrange the values v(r) for r#j,4 in one-line
notation as a subsequence in the increasing order.
If v(j) = m + 1,v(i) = m for some m with 1 <m <
j—1lori<m<n-—1, then ¢(v) >£(w§;’])) =1i—j.
This contradicts the minimality for the length of v.
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Hence, we have wv(j)=i—k+1,v(i)=1i—k for
some k with 1 <k <i—j. This means that v=
wg’j). (]

In summary, we can observe a geometric
meaning of Theorem 1.1 as follows. Let Hess(N, h)
be a regular nilpotent Hessenberg variety. By
removing an (i,7)-th box from h, we obtain the
new Hessenberg variety Hess(N,h'). Then, Lemma
4.2 tells us that X', (1<k<i—j) are the
minimal dimensional Sé¢hubert cells which do not
with the new Hessenberg variety
Hess(N,1'). Theorem 1.1 now says that an alter-
nating sum of Schubert classes o ;) vanishes in
H*(Hess(N, 1)) as the new relation which we do not
have in H*(Hess(N, h)).
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