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Abstract: This note is a summary of our work [OO], which provides an explicit and global

moduli-theoretic framework for the collapsing of Ricci-flat Kähler metrics and we use it to study

especially the K3 surfaces case. For instance, it allows us to discuss their Gromov-Hausdorff

limits along any sequences, which are even not necessarily ‘‘maximally degenerating’’. Our results

also give a proof of Kontsevich-Soibelman [KS06, Conjecture 1] (cf., [GW00, Conjecture 6.2]) in

the case of K3 surfaces as a byproduct.
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1. Introduction. Our paper [OO] is a sequel

to a series by the first author [Od14,Od18], which

compactified both the moduli space of compact

Riemann surfaces Mgðg � 2Þ and that of principally

polarized abelian varieties Ag. In each case, as we

actually expect an analogue for any moduli of

general polarized Kähler-Einstein varieties with

non-positive scalar curvatures, we introduce and

study two similar (non-variety) compactifications

of the moduli space M, which we denote by MGH

andMT
. The formerMGH

is the Gromov-Hausdorff

compactification with respect to rescaled Kähler-

Einstein metrics of fixed diameters and the latter

‘‘tropical geometric compactification’’ MT
should

dominate the former MGH
as its boundary @MT

encodes more structure of the Gromov-Hausdorff

limits (collapses) rather than just distance struc-

ture. For a precise definition ofMGH
we employ the

same definition as [Od14, §2.3], [Od18, §2.2]. For

MT
, we have a case by case definition for only

particular classes of varieties. Here, we recall the

structure theorem of Ag
GH

from [Od18, Theorems

2.1, 2.3 and Corollary 2.5].

Theorem 1.1 ([Od18]). Ag can be explic-

itly compactified as Ag
GH

whose boundary para-

metrizes all flat (real) tori Ri=Zi of diameter 1

where 1 � i � g. Once we attach the rescaled flat

Kähler metric in the principal polarization with

diameter 1 to each abelian variety, the parametriza-

tion of metric spaces on whole Ag
GH

is continuous

with respect to the Gromov-Hausdorff distance.

In the above case, we simply set Ag
T

:¼ Ag
GH

.

On the other hand, in the analogue for Mg [Od14],

we distinguish Mg
GH

and Mg
T
, where the bound-

aries of Mg
GH

(resp., Mg
T
) parametrize metrized

graphs (resp., metrized graphs with integer weights

on the vertices). We refer the details to [Od14].

Our [OO] contains the followings

(i) We first apply the Morgan-Shalen type com-

pactification for general Hermitian locally

symmetric spaces and identify it with one

of the Satake compactifications ([Sat60a],

[Sat60b]).

(ii) We partially prove that the boundary of the

Satake compactification of the type which

appears in (i) parametrizes collapses of abelian

varieties and Ricci-flat K3 surfaces. This gives

a generalisation of some results in [GW00],

[Tos10], [GTZ13], [GTZ16], [TZ17] for the

K3 surface case. For instance, a proof of the

conjecture of Kontsevich-Soibelman [KS06,

Conjecture 1] (see also Gross-Wilson [GW00,

Conjecture 6.2]), which is related to the

Strominger-Yau-Zaslow mirror symmetry

[SYZ96], for the case of K3 surfaces directly

follows from our description of collapsing. We

also give a conjecture for higher dimensional

hyperKähler varieties.

Now we move on to a more detailed description.

2. General Hermitian symmetric do-

main. Let G be a reductive algebraic group over

Q, G ¼ GðRÞ, K (one of) its maximal compact

subgroup, and D :¼ G=K, which we suppose to
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have a Hermitian symmetric domain structure.

We moreover assume D is irreducible and G is

simple as a Lie group. Suppose that � is an

arithmetic subgroup of GðQÞ, which acts on D.

Hence we can discuss Hermitian locally symmetric

space �nD.

Satake [Sat60a], [Sat60b] constructed compac-

tifications of Riemannian locally symmetric spaces

G=K associated to irreducible projective represen-

tations � :G! PGLðCÞ satisfying certain condi-

tions. They are stratified as:

�nDSat;� ¼ �nD t
G

P

ð� \QðP ÞÞnMP=ðK \MP Þ:

Here, P runs over all the �ð�Þ-connected rational

parabolic subgroups, P ¼ NPAPMP denotes the

Langlands decomposition, and QðP Þ is the �ð�Þ-sat-

uration of P . We are particularly interested in the

case when � is the adjoint representation �ad.

On the other hand, given any toroidal com-

pactification [AMRT75] for �nD, we can apply the

Morgan-Shalen type compactification to it as

[Od18, Appendix] (following [MS84,BJ17]). The

Morgan-Shalen type compactification �nDMSBJ

obtained in this way is independent of the cone

decomposition for the toroidal compactification

[Od18, A.13, A.14].

We now compare these two compactifications.

Theorem 2.1. Let �nD be a locally

Hermitian symmetric space. Consider its toroidal

compactification and the associated (generalised)

Morgan-Shalen compactification �nDMSBJ
. Then

this is homeomorphic to the Satake compactification

�nDSat;�ad
for the adjoint representation �ad of G.

In the following we make an ‘‘elementary’’ but

important observation on a rationality phenomenon

of the limits along one parameter holomorphic

family, which we expect to fit well with the recent

approach to extend the theta functions in [GS16]

etc.

Proposition 2.2. Suppose U � UhybðXÞ is

a Morgan-Shalen-Boucksom-Jonsson compactifica-

tion associated to an arbitrary dlt stacky pair ðX ;DÞ
of boundary coefficients 1 ([Od18]) with U :¼ X nD,

its coarse moduli space U ! U. Then for any

holomorphic morphism �� :¼ fz 2 C j 0 <
jzj < 1g ! U which extend to � :¼ fz 2 C j jzj <
1g ! X , it induces a continuous map �! U

hybðXÞ,
i.e., the limit exists. Furthermore, such possible

limits in �ðDÞ are characterized as points with

rational coordinates.

Corollary 2.3 (corollary to Theorem 2.1 and

Proposition 2.2). Take an arbitrary holomorphic

map f : �� ! �nD, which extends to a map to a

toroidal compactification of �nD. Then f also

extends to a map �! �nDSat;�ad
where 0 is sent to

a point with rational coordinates, i.e., a point in the

dense subset ðCðF Þ \ UðF Þ �QÞ=Q>0 � CðF Þ=R>0.

This is partially proved in the case of Ag

in [Od18] by using degeneration data in [FC90].

Remark 2.4. Although we assume that G

is simple in this section, our Morgan-Shalen type

compactification construction [Od18, Appendix]

still works for non-simple G. Thus, our construction

also gives a new Satake-type compactification for

non-simple G, e.g., of the Hilbert modular varieties.

3. Abelian varieties case. We identify our

tropical geometric compactification Ag
T

([Od18]) of

Ag with the adjoint type Satake compactification.

Theorem 3.1. There are canonical homeo-

morphisms between the three compactifications

Ag
T ¼� Ag

Sat;�ad ¼� Ag
MSBJ

;

extending the identity on Ag.
The second canonical homeomorphism is a

special case of Theorem 2.1 and the first is

essentially reduced to matrix computations.

In [OO], we also give a purely moduli-theoretic

reexplanation of the structure theory of one param-

eter degenerations of abelian varieties in

[Mum72], [FC90], after the above Theorem 3.1 as

follows:

Theorem 3.2. Take a holomorphic maxi-

mally degenerating family of principally polarized

abelian varieties �: ðX ;LÞ ! �. Consider the re-

scaled Gromov-Hausdorff limit BðX ;LÞ of diameter

1 as in Theorem 1.1 ([Od18]) and its discrete

Legendre transform �BðX ;LÞ ([GS11], [KS06]).

Then we can enhance the underlying integral

affine structure of �BðX ;LÞ as K-affine structure (in

the sense of [KS06, §7.1]) naturally via the data of �.

Furthermore, such K-affine structure recovers � up

to an equivalence relation generated by base change

(replace t by ta with a 2 Q>0).

4. Moduli of Algebraic K3 surfaces.

4.1. Satake compactification. Let F 2d be

the moduli space of polarized K3 surfaces of degree

2d possibly with ADE singularities. Its structure is

known as follows: Let �K3 :¼ E8ð�1Þ	2 	 U	3 be

82 Y. ODAKA and Y. OSHIMA [Vol. 94(A),



the K3 lattice and fix a primitive vector � with

ð�; �Þ ¼ 2d and �2d :¼ �?. The complex manifold

�ð�2dÞ :¼f½w
 2 Pð�2d �CÞ j ðw;wÞ ¼ 0; ðw; �wÞ> 0g

has two connected components. We choose one

component and denote by D�2d
. Let Oð�K3Þ denote

the isomorphism group of the lattice �K3 preserving

the bilinear form and set

~Oð�2dÞ :¼ fgj�2d
: g 2 Oð�K3Þ; gð�Þ ¼ �g:

The group ~Oð�2dÞ naturally acts on �ð�2dÞ. We

define ~Oþð�2dÞ to be the index two subgroup of
~Oð�2dÞ consisting of the elements preserving each

connected component of �ð�2dÞ. Then it is well-

known that

F 2d ’ ~Oþð�2dÞnD�2d
’ ~Oð�2dÞn�ð�2dÞ:

Let F 2d
Sat;�ad

(or simply F 2d
Sat

in our papers) be the

Satake compactification of F 2d corresponding to the

adjoint representation of Oð2; 19Þ. It decomposes as

F 2d
Sat ¼ F 2d t

[

l

F 2dðlÞ t
[

p

F 2dðpÞ;

where l runs over one-dimensional isotropic sub-

spaces of �2d �Q, and p runs over two-dimensional

isotropic subspaces of �2d �Q. Also, we simply

define the tropical geometric compactification of

F 2d as this F 2d
Sat

. The boundary component F 2dðlÞ
is given as

F 2dðlÞ ¼ fv 2 ðl?=lÞ �R j ðv; vÞ > 0g= � :

Here v � v0 if g � v ¼ cv0 for some g 2 ~Oþð�2dÞ and

c 2 R�. We have F 2dðlÞ ¼ F 2dðl0Þ if g � l ¼ l0 for

some g 2 ~Oþð�2dÞ and F 2dðlÞ \ F 2dðl0Þ ¼ ; if other-

wise. Since ðl?=lÞ �R has signature ð1; 18Þ, there is

an isomorphism

fv 2 ðl?=lÞ �R j ðv; vÞ > 0g=R�

’ Oð1; 18Þ=Oð1Þ �Oð18Þ

and hence F 2dðlÞ is an arithmetic quotient of

Oð1; 18Þ=Oð1Þ �Oð18Þ. The other component

F 2dðpÞ is a point and F 2dðpÞ ¼ F 2dðp0Þ if and only

if g � p ¼ p0 for some g 2 ~Oþð�2dÞ. Therefore, if we

take representatives of l and p from each equiv-

alence class, we get a finite decomposition:

F 2d
Sat ¼ F 2d t

G

l

F 2dðlÞ t
G

p

F 2dðpÞ:

4.2. Tropical K3 surfaces. In our paper,

what we mean by tropical polarized K3 surface is a

topological space B homeomorphic to the sphere S2,

with an affine structure away from certain finite

points SingðBÞ, with a metric which is Mongé-

Ampere metric g with respect to the affine structure

on B n SingðBÞ. Studies of such object as tropical

version of K3 surfaces are pioneered in well-known

papers of Gross-Wilson [GW00] and Kontsevich-

Soibelman [KS06].

Here we assign such tropical K3 surface to each

point in the boundary component F 2dðlÞ as follows:

Let l be an oriented one-dimensional isotropic

subspace of �2d �Q. Write e for the primitive

element of l such that R>0e agrees with the

orientation of l. Take a vector v 2 ðl?=lÞ �R such

that ðv; vÞ > 0. Write ½e; v
 for the corresponding

point in F 2dðlÞ. Then there exists a (not necessarily

projective) K3 surface X and a marking �X:
H2ðX;ZÞ ! �2d with

(i) �XðH2;0Þ � R�þ
ffiffiffiffiffiffiffi
�1
p

Rv,

(ii) ��1
X ðeÞ is in the closure of Kähler cone.

Let L be a line bundle on X such that �Xð½L
Þ ¼ e.
By the Torelli theorem, the pair ðX;LÞ is unique up

to isomorphisms. Then by (ii) we get an elliptic

fibration f : X ! Bð’ P1Þ. Take a holomorphic

volume form � on X such that �Xð½Re �
Þ ¼ �.

The map f is a Lagrangian fibration with respect to

the symplectic form Re �. Hence it gives an affine

manifold structure on B n�, where � denotes the

finite set of singular points. Similarly, the imagi-

nary part Im � gives another affine manifold

structure on B n�.

We endow the base space B with the McLean

metric on the base B ([ML98]), where we regard f

as special Lagrangian fibration after hyperKähler

rotation. A straightforward calculation shows that

this coincides with the ‘‘special Kähler metric’’ gsp

introduced and studied in [DW96,Hit99,Freed99]

and appears as the metric on P1 in [GTZ16]. We

rescale the metric to make its diameter 1 and denote

this obtained tropical K3 surface by �algð½e; v
Þ.
Remark 4.1. Recall the concepts of the

class of metric (metric class) and the radiance

obstruction of Mongé-Ampére manifolds B with

singularities. They are introduced in [KS06] and

discussed in [GS06] in more details. We denote

them by kðBÞ 2 H1ðB; i�~�_ �RÞ and cðBÞ 2
H1ðB; i��Þ, respectively. Here, � is the affine

structure as a Zdim(B)-local system in the tangent

bundle T ðB n�Þ, �_ denotes �’s dual local sys-

tem, ~�_ is the local system of affine functions.
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In particular, we naturally have a morphism of

local systems f : ~�_ ! �_ which induces f�:
H1ðB; i�~�_ �RÞ ! H1ðB; i��_ �RÞ. The ‘‘linear’’

part f�kðBÞ of the metric class naturally recovers

the data v 2 ðe? �R=ReÞ. Namely, we have

f�kð�algð½e; v
ÞÞ ¼ ½v
, under the natural identifica-

tion H1ð�algð½e; v
Þ; i��
_ �RÞ ,! ðe? �R=ReÞ

which comes from the Leray spectral sequence

applied to the elliptic fibration X � �algð½e; v
Þ in

§4.2. Our results in [Od18] and Theorem 3.1 for Ag

can be re-interpretted similarly (but with weight 1).

Remark 4.2. Yuto Yamamoto [Yam] has

some ongoing interesting work which seems to be

related to our works, where he constructs a sphere

with an integral affine structure from the tropical-

ization of an anticanonical hypersurface in a toric

Fano 3-fold, and computes its radiance obstruction.

4.3. Gromov-Hausdorff collapse of K3 sur-

faces. For a point in F 2d we have a corresponding

polarized K3 surface ðX;LÞ, equipped with a

natural Ricci-flat metric. For ½e; v
 2 F 2dðlÞ we

defined in a previous section �algð½e; v
Þ. For a point

in F 2dðpÞ we assign a (one-dimensional) segment,

which we denote by �algðF 2dðpÞÞ. Let us normalize

these metric spaces so that their diameters are one.

We thus obtained a map �alg:F 2d
Sat ! fcompact

metric spaces with diameter oneg. Here, we associ-

ate Gromov-Hausdorff distance to the right-hand

side (target space) and denote it by CMet1.

Conjecture 4.3. The map

�alg:F 2d
Sat ! CMet1

given above is continuous.

We would like to simply set the tropi-

cal geometric compactification of F 2d as

F 2d
T

:¼ F 2d
Sat

. Indeed, if Conjecture 4.3 holds, we

get a continuous map F 2d
Sat ! F 2d

GH
and we also

observe that each F 2dðlÞ encodes affine structure of

the limit tropical K3 surface as well. (This answers

a question of Prof. B. Siebert in 2016 to the first

author, regarding if one can associate tropical affine

structure to limit of any collapsing sequence). So

far, we have partially confirmed the conjecture.

The case of (A1-singular flat) Kummer surfaces,

with 3-dimensional moduli, are easily reduced

to [Od18]. More generally, we have proved the

following. In particular, Conjecture 4.3 holds at

least away from finite points.

Theorem 4.4. The map �alg is continuous

on F 2d
Sat n ð

S
pF 2dðpÞÞ. It is continuous also when

restricted to the boundary @F 2d
Sat ¼ F 2d

Sat n F 2d.

The proof of the former half of the statements

involves some symmetric space theory, hyperKähler

geometry, algebraic geometry of moduli, and a

priori analytic estimates. The estimates heavily

depends on [Tos10], [GW00], [GTZ13], [GTZ16],

[TZ17] and their extensions. One nontrivial part

of the extension is, for instance, to make many of

the C2-estimations in op.cit. following methods of

[Yau78] locally uniform with respect to a family of

elliptic K3 surfaces even along degenerations to

orbifolds.

During our work, we learnt that Kenji

Hashimoto, Yuichi Nohara, Kazushi Ueda also

studied the Gromov-Hausdorff collapses along a

certain 2-dimensional subvariety of F 2d, i.e., the

moduli of ðE	2
8 	 UÞ-polarizable K3 surfaces. More-

over, a result of Hashimoto and Ueda [HU18]

implies that the restriction of �alg to the boundary

is a generically one-to-one map. We appreciate their

gentle discussion with us.

Theorem 4.4 (resp., Conjecture 4.3) combined

with Proposition 2.2 determines the Gromov-

Hausdorff limits of Type III (resp., Type II) one

parameter family of Ricci-flat algebraic K3 surfaces,

which solves a conjecture of Kontsevich-Soibelman

[KS06, Conjecture 1], Todorov, and Gross-Wilson

(cf., e.g., [Gross13, Conjecture 6.2]) in the K3

surfaces case.

In the next section, we discuss collapsing of

general Kähler K3 surfaces, which are not necessa-

rily algebraic.

5. Moduli of Kähler K3 surfaces. It is

known (cf., [Tod80], [Looi81], [KT87]) that the

moduli space of all Einstein metrics on a K3 surface

(including orbifold-metrics) has again a structure of

the locally Riemannian symmetric space:

Oð�K3ÞnSO0ð3; 19Þ=ðSOð3Þ � SOð19ÞÞ;

which we denote by MK3. An enriched version en-

coding also complex structures of the K3 surfaces is

R>0 � ðOð�K3ÞnSO0ð3; 19Þ=ðSOð2Þ � SOð19ÞÞÞ:

Roughly speaking, this is a union of Kähler cones of

ADE K3 surfaces with marking of the minimal

resolutions.

Thus we can again compare a Satake compac-

tification of MK3 with the Gromov-Hausdorff

compactification. Inside the Satake compactifica-

tion for the adjoint representation, we consider an
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open locus (a partial compactification of MK3)

MK3 tMK3ðaÞ, where MK3ðaÞ denotes the 36-

dimensional boundary stratum corresponding to

an isotropic rational line l ¼ Qe in �K3 �Q, with

primitive integral generator e, which are unique up

to Oð�K3Þ. Then for each point p ¼ he; v1; v2i in the

stratum MK3ðaÞ, we take an appropriate marked

(possibly ADE) elliptic K3 surface Xp with period

hv1; v2i and the fiber class e as in §4.2. Then we

define �ðpÞ as its base biholomorphic to P1 with the

McLean metric, which only depends on hv1; v2i.
Similarly to the projective case Theorem 4.4, [OO]

proves that for non-algebraic situation:

Theorem 5.1. The map

�:MK3 tMK3ðaÞ ! CMet1

given above is continuous. Here, we put the Gromov-

Hausdorff topology for the right hand side.

In [OO], we further explicitly define an exten-

sion to the whole Satake compactification �:
MK3

Sat ! CMet1, and conjecture that this is still

continuous with respect to the Gromov-Hausdorff

topology. For the boundary strata other than

MK3ðaÞ, we assign flat tori Ri=Zi ði ¼ 1; 2; 3Þ mod-

ulo ð�1Þ-multiplication, which appear as limits of

unresolved Kummer surfaces for instance. Indeed,

we show that � restricted to the closure of such

locus which parametrizes R4=Z4 modulo 
1, that

includes those boundary strata, is continuous.

Furthermore, we also prove the restriction of �

to the closure of MK3ðaÞ is continuous by using

Weierstrass models.

6. Higher dimensional case. We expect

that our results for K3 surfaces naturally extend to

higher dimensional compact hyperKähler mani-

folds. Let us focus on algebraic case in this notes.

We set up as follows: Fix any connected moduli

M of polarized 2n-dimensional irreducible holo-

morphic symplectic manifolds ðX;LÞ. By

[Ver13,Mark11] ([GHS13, Theorem 3.7]), it is a

Zariski open subset of a Hermitian locally symmet-

ric space of orthogonal type �nDM .

Then, a weaker version of our conjecture for

algebraic case (in [OO]) is as follows:

Conjecture 6.1. There is a continuous map

	 (which we call the ‘‘geometric realization map’’)

from the Satake compactification �nDM
Sat;�ad

with

respect to the adjoint representation to the Gromov-

Hausdorff compactification of M, extending the

identity map on M. The ðb2ðXÞ � 4Þ-dimensional

boundary strata of �nDM
Sat;�ad

parametrize via 	

the projective space Pn with special Kähler metrics

in the sense of [Freed99] and the metric space

parametrized by 0-dimensional cusps are all homeo-

morphic to the closed ball of dimension n.

At the moment of writing this notes, the

authors have only succeeded in proving that

�nDM is the moduli of polarized symplectic vari-

eties with continuous (non-collapsing) weak Ricci-

flat Kähler metrics, and making some progress on

the necessary algebro-geometric preparations in

particular for the case of K3½n
-type.

Remark 6.2 (General K-trivial case). In

[OO], we also discuss a possible extension of

Conjecture 4.3 for general K-trivial varieties under

some technical conditions, although there is much

less evidence for that generality.
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