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Abstract:

The Laurent-Stieltjes constants +,(x) are, up to a trivial coefficient, the

coefficients of the Laurent expansion of the usual Dirichlet L-series: when y is non-principal,
(—1)"y,(x) is simply the value of the n-th derivative of L(s,x) at s = 1. In this paper, we give an
approximation of the Dirichlet L-functions in the neighborhood of s =1 by a short Taylor
polynomial. We also prove that the Riemann zeta function ((s) has no zeros in the region
|s — 1] <2.2093, with 0 < R(s) < 1. This work is a continuation of [24].
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1. Introduction and main results. Let
Yn(x) denote the n-th Laurent-Stieltjes coeflicients
around s = 1 of the associated Dirichlet L-series for
a given primitive Dirichlet character x modulo q.
These constants are defined by

(1) L@w):8%1+§:bﬁzﬁwhs—nﬂ

n>0

where 6, =1 when x is principal and 6, =0
otherwise. We may regard ((s) as the Dirichlet
L-functions to the principal character x, modulo
1. Then, we call the coefficients ~,(xo) =7, in
this series the Laurent-Stieltjes constants for the
Riemann zeta function. When x is non-principal,
(—1)"yn(x) is simply the value of the n-th deriva-
tive of L(s,x) at s=1. In this case, we call
these derivatives Laurent-Stieltjes constants for
the Dirichlet L-functions.

The interest in Laurent-Stieltjes constants has
a long history, started by Dirichlet in 1837. For a
nice survey on these constants see [25] or [23]. When
x is non-principal, Dirichlet produced a finite
expansion for L(1,x). Berger [3], Lerch [20], Gut
[11] and Deninger [9] gave representations 7 (x) by
elementary functions. In 1989, Kanemitsu [15]
obtained similar results for ~,(x) with n > 2.
Toyoizumi [26] and Ishikawa [12] gave explicit
upper bounds for these constants.

When yx is a principal character modulo 1,
Stieltjes in 1885 was the first to propose the
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following definition of -,

T n n+1
L Z (logm) (logT)

(n+1)

These constants have been studied by many au-
thors, among them, Ramanujan [22], Jensen [14],
Verma [27], Ferguson [10], Briggs and Chowla [6],
Kluyver [16], Zhang and Williams [28], and more
recently, Adell [1], Adell and Lekuona [2], Coffey
[7], [8], Knessl and Coffey [17]. The first explicit
upper bound for |v,| has been given by Briggs [5],
that is later improved by Berndt [4] and Israilov
[13]. In 1985, the theory made a huge progress via
an asymptotic expansion produced by Matsuoka
[21], for these constants. Matsuoka gave the best
upper bound for |v,| for n > 10. He proved that

m=1

h/n‘ S 1074enloglogn.

Thanks to this result, Matsuoka showed that zeta
function ¢(s) has no zeros in the region |s — 1| < v/2,
with 0 < R(s) < 1.

Many authors have tried to improve on the
Matsuoka bound, with few success. Matsuoka’s
work relied on a formula that is essentially a
consequence of Cauchy’s Theorem and the func-
tional equation. More recently, the author, in [24]
and [25], extended this formula to Dirichlet L-func-
tions. We gave the following upper bound for |7, (x)|
with 1 < ¢ < 74702

Theorem 1. Let x be a primitive Dirichlet
character to modulus q. Then, for every 1 <q<

(n+1)/2
T e
5 S and n > 2, we have
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with
C(n,q) =2V2 x

exp{(n + 1)logb(n, q) + 6(n, q) log <2q07(::q)) }

and

n+1
0 _—— -1
(nv Q) log (2(] n+1)> s
Cong)—1 0(n,q) +1
D(n,q) = 27" 17“” =1

In the case when y = xo and ¢ = 1, this leads to
a sizable improvement of the Matsuoka bound and
of previous results. The aim of this paper is to use
this result to give applications of the Laurent-
Stieltjes constants. This work is a continuation
of [24]. We shall show that this result enables us to
approximate L(s, x) in the neighborhood of s = 1 by
a short Taylor polynomial. We have

Application A. Let x be a primitive
Dirichlet character to modulus gq. For N =4loggq
and ¢ > 150, we have

U0

n<N °

where |s — 1| < e™!

We also prove that

Application B. ((s) has no zeros in the
region |s — 1| < 2.2093 with 0 < R(s) <1

This result is an improvement on the Matsuoka
result. To do that we apply the same technique used
in [19] and [21] by giving the best possible choice of
the radius of |s — 1| in which {(s) has no zeros.

2. Proofs.

2.1. Proofof Application A. From Theorem
1, for n+1>4logq, we note that the function
f(n,q) is non-decreasing function of n, it follows
that the function D(n, ) is decreasing function of 6.
For n+4+1 > 4logq and g > 150 we find that

41og 150

o7

4logq
log(Sqlogq) -
that is 0(n, ¢) > 1.65. From the above, we note that

M<065
O(n,q) —1—

0(n,q) >

() Dlng) =2"0!

Applications of the Laurent-Stieltjes constants for Dirichlet L-series 121

On the other hand, we have

9 2q(n+1)
log0(n, q) + log—q <log| —X——
’ me lo g<2q(n+1))

Putting H = 2¢(n + 1)/, we obtain that

o(n, )(1oge(n 9) +log<2q>> < ;;;[1 g(li/;)

For H > e/, we infer that

o)ttt +1o(2) ) 1.

Hence
C(n,q) < 2V2exp{—(n+1)logf(n,q) +
That is

(n+ 1)},

o <2855 5)
For n+1> N, we have 6(n,q) > (N, q) and then
(0| _ 22 "
W< DG Do)

Now, we recall that

L(S, X) _ Z (_1)n'!7ln(X) (S _ 1)71_
Put .
L(37X) _ Z (_1)n77L(X) (S _ 1)n+1 — Il,
n<N—-2 :

and let € > 0 such that |s — 1| <e. Then, for n+
1> N =4logq, we get

Ya(X) ,
ne Y by

n>N-—1

2\/5 - ee n+1
<= (14 Do) EZJH (9(N, q))

2v2 ! e V(!

1

Taking e = e~

2\/56
Vi

, we get

L <

(1+ D(n, q>>(

( 1 >
X 1 .
1 =168

1
4 1o,
q410g (W’l)
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Using Eq. (2), for ¢ > 150, we conclude that

32.3
@2

L <

This completes the proof. Il

2.2. Proof of Application B. For x is a

principal Dirichlet character modulo 1, Eq. (1) is
rewritten as

n

@ =

n>0

’Y’nr(s - 1)7?

Multiplying both sides of this equation by s — 1, we
get

() (= €6 2 11+ 30(s = D] = 30 2 s -yt

n>1

Put

Ly -1 = > |Z—’,‘| ls — 1" = L.
1<n<11 :

Here, the above summation is taken over 1 <
n < 11, that the bound in Theorem 1 is numerically
better than Matsuoka’s bound as soon as n > 11.

Now, let |s — 1| < Tp, where Ty is a positive
real number to be chosen later such that |(s—
1)¢(s)| > 0. Using the fact that 0 < R(s) <1, then
I, is estimated by

Tn n
(5) L>1—v%— Y |—"T0+1.
1<n<11

Since the function 6(n,1) in Theorem 1 is non-
decreasing function of n >4, it follows that the
function D(n, 1) is decreasing function of 6. For n >
12 we find that

6(n,1) > 0(12,1),
and
D(n,1) < D(12,1).

Thus, we have

9 2(n+1)
logf(n,1) +log— < log| —2——
e 10g(2(n+1))

Putting M = 2(n + 1) /7, we obtain that

0(n. 1) 1o 20(n, 1) <n+1lo M/e
’ & e ~ log M & logM )

For M > 2(12+ 1)/m, we infer that
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Hence, we get

) <0.1728(n + 1).

n+1
60'1728 >
)

and then

n+1
60'1728 )

vl 2v2(1 + D(12,1)) (0(12 1)

n!

It follows that

|’7TL| n+1
(6) ZF‘S_” i

n>12

/3 Z Toeo.ms n+l
<2v2(1+ D(12,1)) <7> .
n>12 0(12’ 1)

From Egs. (5) and (6), we write

(=1 21-n0— Y Dlgp

|
1<ne1

\/_ Z Ty 01728 n+1
—2v2(1+ D(12,1)) (4> .
n>12 9(12’ 1)

Using numerical values of v, for 1 <n < 11 of [18],
we find that the best possible choice of Tj is 2.2093
in which

(s — 1)¢(s)| > 0.000941198 — 0.000924993 > 0.

This completes the proof. ([
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