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1. Introduction. Let (, be a primitive nth
root of unity. It is well known that Z[(,] is the ring
of integers of the mth cyclotomic field Q(¢,).
Generally this is proved by reducing the case of
general n to the prime-power case (cf. [5]). On the
other hand, Liineburg [4] directly proved the case of
general n by showing that Z[(,] is a Dedekind
domain.

It is also well known that Z[¢, + ¢, '] is the ring
of integers of the nth real cyclotomic field Q(¢, +
¢, !). This fact easily follows from the corresponding
fact for Q(¢,) (cf. [5]). Another proof by use of the
ramification groups is found in [3]. The purpose of
this note is to give yet another proof of this fact,
applying the method of [4] to Q((, + ¢, ') A key
ingredient in the proof is the computation of the
resultants of modified cyclotomic polynomials by
the second named author in [8]. We also compute
the discriminants of modified cyclotomic polyno-
mials. We remark that analogous results have been
obtained for cyclotomic function fields in [1].

2. Chebyshev polynomials and modified
cyclotomic polynomials. We recall the defini-
tion of Chebyshev polynomials and modified cyclo-
tomic polynomials, and quote some of their proper-
ties.

Definition 2.1. The Chebyshev polyno-
mials T},, U, V,,, and W, of the first, second, third,
and fourth kind, respectively, are characterized by

sin(n +1)0

T, (cos @) = cosnb, :
sin 6

U,(cosf) =

3
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Let ¢, be a primitive nth root of unity. As is well known, Z[¢, + ¢, '] is the ring
). We give an alternative proof of this fact by using the resultants of
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cos(n +1/2)6

Vi(cos ) = cos0/2 )

i 1/2)0

W, (cos @) = 7sm(1?+ /2) )
sin6/2

where n is a nonnegative integer. The normalized
Chebyshev polynomials of the first and second kind

are defined by C,(z) = 2T,(x/2), Sy(x) = U,(z/2).
We adopt Schur’s notation .¥, = 5,_1. For odd
n we define ¥, () =V,_1)0(2/2), #.(x)=

W(n,l)/g(x/Q).

Note that these polynomials all have integral
coefficients.

Lemma 2.2.

(2.1) ( )*nyn( )
(22)  V.(z)= ”W”Q((?H) @) (11 odd) and
23) #l(z) = ”7/”;2:?@ (n: 0dd).

We define the modified cyclotomic polynomials
U,. For n > 3 let ¥,, be the minimal polynomial of
2cos(2m/n) over Q. Then W,(x)€ Z[z] and
deg(¥,) = ¢(n)/2. We do not define ¥y, ¥y them-
selves, but instead we define their squares by

Ui(z)=a—-2, Uy(z) =z+2

Proposition 2.3 ([6, Proposition 2.4]).
(a) Forn >3, we have
I Yu

d|n, %:odd
1T va@)
2<d|2n
(b) For odd n > 3, we have
(2.4) r) = [] Yalo)

1<dln
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(2.5) Wo(x) = H Uy(x).

1<d|n
Lemma 2.4. Letn#2 (mod 4). Let p be a
prime and e,m positive integers such that n =
p‘m, ptm. Then,

U, (z) = U, (2)°7) (mod p).

Note that the right side makes sense even if m =1
since p(p°) is even by our assumption.

Proof. In the case where m > 3, this follows
from [8, (3.4)].

In the case where m = 1, we are reduced to the
case where n=p >3 or n =4, p=2, by [8,(3.4)].
Suppose n=p>3. By (2.5) and [7,Lemma 2.1
(ix)], we have

U(2) = #,() = (- 2)'T = 0,(2)"” (mod p).

For n =4, p= 2, we have
U (z) =2 = Uy (2)?? (mod 2).

Since m # 2, we complete the proof. O
For a positive integer n let L(n) =p if n is a
power of some prime p, and L(n) = 1 otherwise.

Lemma 2.5 ([8, Lemma 3.1]).
(a) \1171,(2) - L(Tl)

1
0) 1021={ |

Let res(f,g) denote the resultant of two poly-
nomials f and g.

Letn > 3.

if n is odd,

if n is even.

Theorem 2.6 ([8, Theorem 3.2]). Let 3<
m < n.
em)
[res(W,, ¥y)| = { Linfm) =" if m|mn,
1 otherwise.

3. The discriminant of ¥, (x). We give an
alternative proof of the following well known result.
Let A(f) denote the discriminant of a polynomial f.

Proposition 3.1 ([2, Theorem 3.8]).
3. Ifn=2° e>1, then

A(T,) =27

Let n >

If n=p° or n=2p°, p is an odd prime, then

ep® —(e+1)ptt -1
2

A<\I’n> =D

Otherwise,
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e(n)

n 2
)

Hp\n pﬁ

Proof. Since all roots of U, are real, A(¥,) is
positive. So we ignore the signs in the computation
of A(¥,) throughout this proof.

Case n: odd If ¥,,(\) =0, by (2.3) and (2.5),
we have

A(\Ijn) =

nYn(\) ,
—— =W (A
=) [ w.
1<d|n, d#n
Then it follows that
(3.1) AW, =]]w.N
X
o(n)
nT L)

e(n)
2

27 (I = 2) AL [ i<apn, azn Ya(N)

where A ranges over the roots of ¥,. By (2.4) and
Theorem 2.6 we have

17 = T res(¥,, ¥a0)
A

1<dln

= res(\I/", \IIQH)

(3.2)

e(n)
= 2 2,

Lemma 2.5 (a) gives

[ =2) = v,(2) = L(n).

A

(3.3)

Finally we compute

H H Uy(A) =

A 1<dln, d#n

(3.4) I res(w., )

1<d|n, d#n
as follows: If n = p°, then, by Theorem 2.6 we have

o) Pt

e—1
res(¥,, 0y) = [[p2 =p >
i=1

(3.5)

1<d|n, d#n
Ifn= H;:l pi’, t > 2, ¢; > 1, then, by Theorem 2.6,
we have

¢(n/p))

H res(U,, ¥,) = sz: 2
1<d|n, d#n i=1 j=1

(3.6)
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since
e; i ei—1 )
> wn/p)) = e(n/pi) Y e])
=1 =0
= p(n/p; )"
_ »(n)
pi—1

Substituting (3.2)—(3.6) into (3.1),
identity follows.

The argument is similar in the remaining cases,

so we just provide some key identities:
Case n =2 (mod 4)

(n/2)7/n/2(>‘) )
YT V2 (A)
= (\) H Waa(N).
1<d|g, d#5
¢ln/2)
agw) = (4)
I1, W%(A)

L+ 2D iz, 4 T2aV)
= H res(U,, ¥y)

A l<d|y

= res(¥,, \I!%)

[[r+2) =

)
If n = 2p°, then

P
H H \112[1()\):]) 2

X 1<dd, d#d
Ifn72]_[2 (P, t>2,e;>1, then

II T vty =

1<d\” d;é;‘

::N

Casen =0 (mod 4)

H Waq(A

n

n
Zﬁﬁnm( ) =Cy (M)

the product being taken over all d such that d | %,

d# %, 15 1s odd,
@
n
AW, = (-
@)= (5)

I 750\
[L L Yaa(N)

the desired
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If n = 2°, then
[T wutn =
A d
1170 = ] res(®,, wa)
A

2<dl

H res(U,, Uyy) =1
d

e—1

= I_Ires(\lln7 Uy))

j=2
_ 22*‘*2—1

Itn =TT, p t >2, ¢ > 1, then
) = HreS(‘I’n, Uyg) =

HH\I’éLd()‘

A d d i=1
[T = ] res(¥., wa)
A

2<d|g

= Hres(\I/n, \I/%)

ey 0

4. The ring of integers of Q(¢,+
¢;'). We need the following lemma to prove
Theorem 4.2. Let F, = Z/pZ.

Lemma 4.1 ([4, Hilfssatz 4]). Let 6 be an
algebraic integer, and f(x) the minimal polynomial
of 0 over Q. Let P be a mazimal ideal of Z[0] and p
the prime such that pZ = PN Z. Let u(x) be a monic
polynomial over Z of least degree such that u(6) € P.
Then, there exist polynomials g(x), h(x) € Z[z] such
that f = ph + pg. Suppose ged(u, g, h) =1 over F,,.
Then, the localization of Z[0] at P is a discrete
valuation ring.

The main result of this note is the following

Theorem 4.2. Let n>3. Then Z[(, + ¢,
is a Dedekind domain. Therefore Z[(, + C,'] is the
ring of algebraic integers in the field Q(¢, + ¢ b).

Proof. We may assume n # 2 (mod 4) since
G = —Cny2 if n =2 (mod 4). Put 0 = ¢, + ¢, L R=
Z[0]. We shall prove that R is a Dedekind domain
by showing that the localization Rp is a discrete
valuation ring for each maximal ideal P C R. Let p
be the prime such that pZ = PN Z.

First we consider the case where pt{n. By
Proposition 3.1 we have pt A(¥,,), so that ¥, (z) is
separable over F,. If we apply Lemma 4.1 to
f=19,, then u(z) and h(z) have no common roots
over the algebraic closure F_p, so Rp is a discrete
valuation ring.

Suppose p | n and write n =p°m, e > 1, ptm.
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By Lemma 2.4, there exists g(z) € Z[z]| such that
(4.1) U, (z) = \I/m(x)go(pe) + pg(z).

Note that o(p®) is even by our assumption n #
2 (mod 4).
Lemma 4.3. g¢(f) is a unit in R.
Proof. Suppose m > 3. By Theorem 2.6 we
have
pcp<n> _ pw(m)w(p“‘)

= res(,, \117,,,)299(7]6)
= TTwa (V)2
A

the product being taken over the roots A of W,.
Since W,,(\)?") = —pg(A) by (4.1), we have

2
e(n)
P = (p 2 Hg(/\)> :
A

Hence [], g(A) = £1, from which we conclude that
g(0) is a unit in R.
Suppose m = 1. By Lemma 2.5 we have

res(W,, UF) = res(Vye, x — 2) = £, (2) = £p,

so that

) 2
4 Hg(l’)> :
A

Hence the claim follows similarly. O

We return to the proof of Theorem 4.2. One
could proceed as in [4], but here we give a shorter
proof which was suggested to us by the referee. In
the notation of Lemma 4.1, we take f, u, g such that

p?) = res(q,pe’\p%)w(p‘) — (p

[Vol. 92(A),

flx) =¥, (x) and g(x) is defined by (4.1). Since
every root of u(x) mod P coincides with § mod P
for some choice of primitive nth root of unity (,,
we see, by Lemma 4.3, that p(z) and g(x) have no

common roots over F,. Hence Rp is a discrete
valuation ring by Lemma 4.1. This completes the
proof. O
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