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Abstract: Let E and E0 be elliptic curves over an algebraic number field. We show that

systems of ‘-adic representations associated with E and E0 are cohomologically coprime, in the

sense that the Galois cohomology groups corresponding to respective fields of division points are

all trivial. This provides a generalization of some known results about the vanishing of the

cohomology groups associated with the ‘-adic Tate module of an elliptic curve.
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1. Introduction. Let G be a topological

group. Given two continuous representations V

and V 0 of G, we are interested in determining up to

what extent they are ‘‘independent’’. There can be

several notions of ‘‘independence’’, the simplest

being non-isomorphism. Another notion is the

‘‘independence’’ among representations in a given

system of representations of a profinite group (see

§2) which was studied in [12]. Motivated by results

of [1] and [2], we introduce in this note another

notion of ‘‘independence’’ between representations

of a topological group and prove that under some

suitable conditions, representations of the absolute

Galois group of a number field associated with two

elliptic curves are ‘‘independent’’ in this sense.

Let F be an algebraic number field and we fix a

separable closure F of F . For a subextension L of F ,

we put GL ¼ GalðF=LÞ. Let ‘ be a prime number.

Denote by F ð�‘1Þ the field extension obtained by

adjoining to F all the roots of unity of ‘-power

order. Let E be an elliptic curve over F . The action

of GF on the division points of E with order a power

of ‘ defines a continuous homomorphism

�‘;E : GF ! GLðT‘ðEÞÞ ’ GL2ðZ‘Þ;

where T‘ðEÞ denotes the ‘-adic Tate module of E.

We write V‘ðEÞ ¼ T‘ðEÞ �Z‘
Q‘. We denote by

F ðE‘1Þ the field extension obtained by adjoining

to F the coordinates of all ‘-power division points of

E. Note that F ðE‘1Þ is the fixed subfield of F by the

kernel of �‘;E. Moreover, the Weil pairing shows

that F ðE‘1Þ contains F ð�‘1Þ. Put G‘;E ¼ �‘;EðGF Þ
and H‘;E ¼ �‘;EðGF ð�‘1 ÞÞ. We may identify G‘;E with

the Galois group GalðF ðE‘1Þ=F Þ and H‘ with

GalðF ðE‘1Þ=F ð�‘1ÞÞ. We have the following variant

of results of Serre [10] and Coates-Sujatha [1].

Theorem 1.1. Let ‘ be a prime number. Let

U be an open normal subgroup of G‘;E or of H‘;E.

Then V‘ðEÞ has vanishing U-cohomology.

Here, a topological module V over a topological

ring R is said to have vanishing U-cohomology,

where U is a topological group which acts contin-

uously and faithfully on V , if the cohomology

groups HnðU; V Þ defined by continuous cochains

are trivial for all n ¼ 0; 1; . . . .

Proof. If U is an open normal subgroup of G‘;E

then we have an equality LieðUÞ ¼ LieðG‘;EÞ of Lie

algebras. By a theorem of Lazard ([7], Chap. V,

Théorème 2.4.10), we may identify HnðU; V‘ðEÞÞ
with a Q‘-vector subspace of HnðLieðG‘;EÞ; V‘ðEÞÞ.
The statement follows directly from Théorème 2

of [10]. We assume henceforth that U is an open

normal subgroup of H‘;E. Lemma 4 of [1] shows the

existence of a closed normal subgroup J of G‘;E such

that H‘;E is an open subgroup of J and having the

following property: If J is the Lie algebra of J, then

HnðJ; V‘ðEÞÞ ¼ 0 for all n � 0. Note that the Lie

algebras LieðUÞ and J coincide by the hypothesis.

Arguing in a similar manner as above, we obtain our

desired result. �

It is interesting to identify the field extensions

of F with respect to which the corresponding

cohomology groups vanish as in Theorem 1.1. In

doi: 10.3792/pjaa.91.141
#2015 The Japan Academy

2000 Mathematics Subject Classification. Primary 11F80,
11G05.

No. 10] Proc. Japan Acad., 91, Ser. A (2015) 141

http://dx.doi.org/10.3792/pjaa.91.141


particular, we are interested in the case where

the field extension corresponds to the kernel of

another representation of GF . This motivates the

following

Definition 1.2. Let G be a topological

group and R and R0 be topological rings. Let

� : G! GLRðV Þ and �0 : G! GLR0 ðV 0Þ be two

continuous linear representations of G on a topo-

logical R-module V and a topological R0-module V 0,
respectively. Put G ¼ �ðKer �0Þ and G0 ¼ �0ðKer �Þ.
We say that V and V 0 are cohomologically coprime

if V has vanishing G-cohomology and V 0 has

vanishing G0-cohomology.

Let � be the set of all primes and S be a subset

of �. For an elliptic curve E over F , the system of

representations ð�‘;EÞ‘2S of GF associated with E

defines a continuous representation

�S;E ¼
Y
‘2S

�‘;E

 !
: GF !

Y
‘2S

GLðT‘ðEÞÞ

’
Y
‘2S

GL2ðZ‘Þ;

where the products in the right-hand side are

endowed with the product topology. Put VSðEÞ ¼L
‘2S V‘ðEÞ. We prove the following

Theorem 1.3. Let S and S0 be sets of primes.

Let E and E0 be elliptic curves over F .

(i) Assume that E and E0 are not isogenous over F .

Then VSðEÞ and VS0 ðE0Þ are cohomologically co-

prime.

(ii) If S \ S0 ¼ ;, then VSðEÞ and VS0 ðE0Þ are

cohomologically coprime.

In fact, statement (ii) of Theorem 1.3 holds for

general abelian varieties. On the other hand, an

analogue of statement (i) does not hold for general

abelian varieties. If A is an abelian variety over F

which is a product of non-trivial abelian varieties

A1 and A2 over F , then it can be verified that the

p-adic representations VpðAÞ and VpðA1Þ are not

cohomologically coprime. We may then ask whether

the statement (i) of Theorem 1.3 holds in the case of

simple abelian varieties and not just elliptic curves.

The crucial ingredient in the proof of Theorem 1.3

is the finiteness of the degree of F ðE�1Þ \ F ðE0�1Þ
over F cyc; and an extension of this finiteness result

for the case of simple abelian varieties will give the

desired analogue of our main theorem. Here,

F ðE�1Þ denotes the fixed subfield of F by the

kernel of ��;E and F cyc is the field extension

obtained by adjoining to F all roots of unity.

The Isogeny Theorem due to Faltings ([4], §5

Korollar 2) implies that

E and E0 are isogenous over F

, V‘ðEÞ ’ V‘ðE0Þ as GF -modules for some prime ‘

, V‘ðEÞ ’ V‘ðE0Þ as GF -modules for all primes ‘:

Hence we have the following

Corollary 1.4. Let E and E0 be elliptic

curves over F . The following statements are equiv-

alent:

(i) E and E0 are not isogenous over F ;

(ii) VSðEÞjGF 0
and VS0 ðE0ÞjGF 0

are cohomologically

coprime for any S and S0 and for every finite

extension F 0 of F ;

(iii) V‘ðEÞjGF 0
(¼ Vf‘gðEÞjGF 0

) and V‘ðE0ÞjGF 0

(¼ Vf‘gðE0ÞjGF 0
) are cohomologically coprime for

some prime number ‘ and for every finite extension

F 0 of F .

Proof. The implication (i) ) (ii) is given by

Theorem 1.3-(i) and clearly (ii) ) (iii). We show

(iii) ) (i). If E and E0 are isogenous over F , then

they are isogenous over some finite extension F 0 of

F . Then the Isogeny Theorem implies that V‘ðEÞ
and V‘ðE0Þ are isomorphic as GF 0 -modules for any

prime ‘. Since kernels of isomorphic representations

coincide, V‘ðEÞ and V‘ðE0Þ are not cohomologically

coprime over F 0. �

We refer the reader to §6 of [3] for some partial

results in a similar but more general setting.

Details of this paper were presented in the

Algebraic Number Theory and Related Topics

Workshop at RIMS, Kyoto University in December

2014 and a report will appear in its proceedings.

2. Almost independence of systems of

representations. Let G be a profinite group

and ð%i : G! GiÞi2I be a system of continuous

homomorphisms of G into a locally compact group

Gi. This system defines a continuous homomor-

phism % ¼ ð%iÞi2I : G!
Q

i2I Gi where the product

is endowed with the product topology. Follow-

ing [12], we make the following

Definition 2.1. The system ð%iÞi2I is said to

be independent if %ðGÞ ¼
Q

i2I %iðGÞ. We say that it

is almost independent if there exists an open

subgroup � in G such that %ð�Þ ¼
Q

i2I %ið�Þ.
Remark 2.2. (1) Let ’1 and ’2 be continu-

ous representations of a profinite group G. Consider

the continuous homomorphism ’ ¼ ð’1; ’2Þ : G!
’1ðGÞ � ’2ðGÞ. We have projections �1 : ’ðGÞ�
’1ðGÞ and �2 : ’ðGÞ� ’2ðGÞ. Let N1 ¼ Ker�2 and
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N2 ¼ Ker�1. Then N1 ¼ ’ðGÞ \ ð’1ðGÞ � f1gÞ and

N2 ¼ ’ðGÞ \ ðf1g � ’2ðGÞÞ. Thus we may identify

Ni with a normal subgroup of ’iðGÞ for i ¼ 1; 2.

Goursat’s lemma (cf. e.g. [9], Lemma 5.2.1) implies

that

’ðGÞ ¼ ’1ðGÞ �C ’2ðGÞ;

where C in the fiber product is ’ðGÞ=ðN1N2Þ ’
’1ðGÞ=N1 ’ ’2ðGÞ=N2. Then the following state-

ments are equivalent:

(i) ð’1; ’2Þ is almost independent;

(ii) ’ðGÞ is an open subgroup of ’1ðGÞ � ’2ðGÞ;
(iii) C is finite.

We clearly have (ii) , (iii) as the cardinality of C

equals the index of ’ðGÞ in ’1ðGÞ � ’2ðGÞ. The

implication (ii) ) (i) is a special case of the

implication (RO) ) (PR) in [12], §1. We verify

(i) ) (ii). Assume (i). Let � be an open subgroup of

G such that ð’1j�; ’2j�Þ is independent. Since ’1ð�Þ
(resp. ’2ð�Þ) is an open subgroup of ’1ðGÞ (resp.

’2ðGÞ), it follows that ’ð�Þ is an open subgroup of

’1ðGÞ � ’2ðGÞ. We obtain (ii) from the inclusion:

’ð�Þ � ’ðGÞ � ’1ðGÞ � ’2ðGÞ:

(2) Let ð%iÞi2I be a system of continuous homo-

morphisms of a profinite group G into a locally

compact group Gi and % be the continuous homo-

morphism defined by their product as in the

definition above. Let S be a subset of I and put

S0 ¼ I r S. We consider the subsystem ð%iÞi2� and

the homomorphism %� given by the product, where

� ¼ S; S0. If ð%iÞi2I is independent, then ð%S; %S0 Þ is

independent. Indeed, since subsystems of an in-

dependent system are independent (cf. [12], §1),

the systems ð%iÞi2� are independent (where � ¼
S; S0). Then the equalities %ðGÞ ¼

Q
i2S %iðGÞ �Q

i2S0 %iðGÞ ¼ %SðGÞ � %S0 ðGÞ imply the surjectivity

of ’ ¼ %S � %S0 : G! %SðGÞ � %S0 ðGÞ.
(3) Applying (1) to the situation of (2), we see that

if ð%iÞi2I is almost independent, then the group C in

the fiber product %SðGÞ �C %S0 ðGÞ is finite.

We aim to show that the independence of a

system is inherited by the system of representations

obtained by restriction to a normal subgroup (resp.

by passing to a quotient) of G. Consider a system

ð%iÞi2I as above. Let H be a closed normal subgroup

of G. For each i 2 I, we define the continuous

homomorphism �i : %iðGÞ ! �Gi :¼ %iðGÞ=%iðHÞ of

compact groups. Then we obtain new systems of

representations:

ð%ijH : H ! GiÞi2I
obtained by restriction of the %i’s (i 2 I) to H and

ð�%i : G ��!%i %iðGÞ ��!
�i �GiÞi2I :

Write �% ¼
Q

i2I �%i.

Lemma 2.3. Let ð%iÞi2I be a system of rep-

resentations of a profinite group G. Let H be a

closed normal subgroup of G. Then ð%iÞi2I is in-

dependent if and only if the systems ð%ijHÞi2I and

ð�%iÞi2I are independent.

Proof. By definition of �%, we have the following

commutative diagram of (compact) topological

groups with exact rows

1 (H) (G) (̄G) 1

1
i I

i(H)
i I

i(G)
i I

ī(G) 1
i I

πi

α β γð1Þ

where the maps �, � and � are injective by

definition. The five lemmas show that the inde-

pendence of the systems ð%ijHÞi2I and ð�%iÞi2I implies

the independence of ð%iÞi2I . Conversely if ð%iÞi2I is

independent; that is, � is an isomorphism, then the

five lemmas applied to the commutative diagram

obtained by taking the first four terms of diagram

(1) and adding trivial groups on the left end implies

that the system ð%ijHÞi2I is independent. Applying

the same argument to the commutative diagram

obtained by taking the last four terms of diagram

(1) and adding trivial groups on the right end

implies that the system ð�%iÞi2I is independent. �

Now let us consider the case where the profinite

group G in the definition above is the absolute

Galois group GF of a number field F and the index

set I is the set � of all primes. Consider a system

of continuous representations ð%‘Þ‘2� ¼ ð%‘ : GF !
G‘Þ‘2� of GF into a locally compact ‘-adic Lie group

G‘ (e.g., G‘ ¼ GLnðQ‘Þ). For each ‘ 2 �, let F‘ be

the fixed subfield of F by the kernel of %‘. We write

%� ¼
Q

‘2� %‘ and F� for the compositum of all F‘ as

‘ runs over the elements of �. The field F� is the

fixed subfield of F by the kernel of %�. We let F cyc

be the field extension obtained by adjoining to F all

roots of unity.

Lemma 2.4. Let ð%‘Þ‘2� be a system as

above. Assume the following condition:

F‘ � F ð�‘1Þ for each ‘ 2 �:ð2Þ
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For ‘ 2 �, let N‘ ¼ F‘ \ F cyc. Then

(i) if the system ð%‘Þ‘2� is independent then N‘ ¼
F ð�‘1Þ for each ‘ 2 �;

(ii) if the system ð%‘Þ‘2� is almost independent then

N‘=F ð�‘1Þ is a finite extension for each ‘ 2 �.

Note that the condition (2) implies that F�

contains the field F cyc.

Proof. Statement (ii) follows from (i) after

replacing F by a suitable finite extension. For the

proof of (i), we apply Lemma 2.3 to the system

ð�‘Þ‘2� with H ¼ GF cyc . Then we may identify

diagram (1) with the following commutative dia-

gram:

1 A B C 1

1
∈Λ

A
∈Λ

B
∈Λ

C 1

ð3Þ

where A ¼ GalðF�=F
cycÞ, B ¼ GalðF�=F Þ, C ¼

GalðF cyc=F Þ, A‘ ¼ GalðF‘=N‘Þ, B‘ ¼ GalðF‘=F Þ,
and C‘ ¼ GalðN‘=F Þ. By the hypothesis and

Lemma 2.3, diagram (3) gives an isomorphism

GalðF cyc=F Þ ’
Q

‘2� GalðN‘=F Þ. From this we get

an isomorphism
Q

‘2� GalðF ð�‘1Þ=F Þ ’Q
‘2� GalðN‘=F Þ. Taking the projection to the ‘th

component, we obtain an isomorphism

GalðF ð�‘1Þ=F Þ ’ GalðN‘=F Þ for each ‘ 2 �. This

completes the proof of Lemma 2.4. �

3. The elliptic curve setting. Let S be a

set of primes. Given an elliptic curve E over F , we

consider the system ð�‘;EÞ‘2S of GF associated with

E and the continuous representation �S;E as defined

in §1. The Weil pairing shows that F ð�‘1Þ is

contained in F ðE‘1Þ for each prime ‘. The following

lemma is a special case of Theorem 1 of [12].

Lemma 3.1. Let S be a set of primes. Then

the system ð�‘;EÞ‘2S is almost independent.

Remark 3.2. In general, we need a finite

extension F 0 of F so that the system ð�‘;EjGF 0
Þ is

independent. This is observed in the case where

S ¼ � and E has complex multiplication over F

with CM field Qð
ffiffiffi
d
p
Þ such that

ffiffiffi
d
p

=2 F . Also note

that there are examples of elliptic curves without

complex multiplication such that �‘;E is surjective

for all prime ‘ but ��;E is not (so the system ð�‘;EÞ‘2�

is not independent). This is illustrated by the

following example.

Example 3.3. Consider the system ð�‘;E :
GQ ! GL2ðZ‘ÞÞ‘2� associated with the elliptic

curve E over Q of conductor 1728 with minimal

Weierstrass model y2 ¼ x3 þ 6x� 2. It has no com-

plex multiplication and its discriminant is � ¼
�2635. This curve was considered in §5.9.2 of [11],

where it was verified that the mod ‘ representation

�‘;E associated with E is surjective for all ‘. A

group-theoretic result (cf. e.g. [5], Corollary 2.13-

(iii)) implies that �‘;E is surjective for all ‘ � 5. The

proof for the surjectivity of �‘;E for ‘ ¼ 2; 3 was

carried out in §I-7 of [6]. Hence �‘;E is surjective for

all ‘. But
ffiffiffiffi
�
p
2 Qab ¼ Qcyc, where Qab is the

maximal abelian extension of Q. Therefore, ��;E is

not surjective by Theorem 1.2 of [5]. This shows

that the system ð�‘;EÞ‘2� is not independent.

Lemma 3.4. Let V be a finitely generated

topological module over a topological ring R. Let G

be a profinite group which acts continuously and

faithfully on V and let N be a closed normal

subgroup of G. If V has vanishing N-cohomology,

then V has vanishing G-cohomology.

Proof. Under the given assumption we have

the Hochschild-Serre spectral sequence (cf. [8],

Chap. II, §4, Theorem 2.4.1):

Ers
2 ¼ HrðG=N;HsðN; V ÞÞ ) HrþsðG; V Þ:

From this we immediately see that V has vanishing

G-cohomology if V has vanishing N-cohomology.

�

Lemma 3.5. Let S be a set of primes and L

be a Galois extension of F . Assume that F ðE‘1Þ \ L
is a finite extension of F or of F ð�‘1Þ for each ‘ 2 S.

Put JS;E ¼ �S;EðGLÞ. Then VSðEÞ has vanishing

JS;E-cohomology.

Proof. By Lemma 3.1, there exists a finite

extension F 0=F such that ð�‘;EjGF 0
Þ‘2S is an in-

dependent system. Let L0 be the compositum of L

and F 0. It is a Galois extension of F 0. Thus,

Lemma 2.3 implies that ð�‘;EjGL0
Þ‘2S is an independ-

ent system. Let L00 be the Galois closure of L0=L.

This is of finite degree over L. Put J 0S;E ¼ �S;EðGL00 Þ.
Then J 0S;E is an open normal subgroup of JS;E and

applying Lemma 2.3 to the system ð%‘;EjGF 0
Þ with

H ¼ GL00 , we have J 0S;E ¼
Q

‘2S �‘;EðGL00 Þ. It suffices

to show that VSðEÞ has vanishing J 0S;E-cohomology

by Lemma 3.4. As cohomology commutes with

direct sums, we have

HrðJ 0S;E; VSðEÞÞ ¼
M
‘2S

HrðJ 0S;E; V‘ðEÞÞ

for r � 0. Thus, it is enough to show that the

cohomology groups HrðJ 0S;E; V‘ðEÞÞ vanish for each
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‘ 2 S. For ‘ 2 S, let us write J 0‘;E ¼ �‘;EðGL00 Þ. We

identify G‘;E ¼ �‘;EðGF Þ (resp. H‘;E ¼ �‘;EðGF ð�‘1 ÞÞ)
with the Galois group GalðF ðE‘1Þ=F Þ (resp.

GalðF ðE‘1Þ=F ð�‘1ÞÞ). Then we may identify J 0‘;E
with GalðF ðE‘1Þ=F ðE‘1Þ \ L00Þ. As ½F ðE‘1Þ \ L00 :
F ðE‘1Þ \ L	 
 ½L00 : L	 <1, our hypothesis implies

that J 0‘;E is an open subgroup of G‘;E or of H‘;E.

Thus V‘ðEÞ has vanishing J 0‘;E-cohomology by

Theorem 1.1. Applying Lemma 3.4 with G ¼ J 0S;E
and N ¼ J 0‘;E, it follows that V‘ðEÞ has vanishing

J 0S;E-cohomology. �

The above lemmas allow us to obtain the

S-adic version of Theorem 1.1:

Theorem 3.6. Let S be a set of primes.

Write GS;E ¼ �S;EðGF Þ and HS;E ¼ �S;EðGF cycÞ. Let

U be an open normal subgroup of GS;E or of HS;E.

Then VSðEÞ has vanishing U-cohomology.

Proof. Let F 0 be a finite extension of F such

that U ¼ �S;EðGF 0 Þ or U ¼ �S;EðGF 0cycÞ. The state-

ment of the theorem follows from Lemma 3.5

applied to L ¼ F 0 and L ¼ F 0cyc. The hypothesis of

the said lemma clearly holds if L ¼ F 0. If L ¼ F 0cyc,

the required hypothesis is true because of Lem-

mas 3.1 and 2.4. �

4. Proof of Theorem 1.3. For sets S and S0

of primes, we write F ðES1Þ (resp. F ðE0S01Þ) for the

compositum of all the F ðE‘1Þ (resp. F ðE0‘1Þ) as ‘

runs over the elements of S (resp. S0). We put

JS;E :¼ �S;EðGF ðE0
S01 ÞÞ and JS0;E0 :¼ �S0;E0 ðGF ðES1 ÞÞ.

Proof of (i). To prove this, we must show that

VSðEÞ has vanishing JS;E-cohomology and VS0 ðE0Þ
has vanishing JS0;E0-cohomology. We prove the

former. First, we observe that if S00 is a subset of

S0 then JS;E is a closed normal subgroup of J S;E ¼
�S;EðGF ðE0

S001 ÞÞ. We see that the vanishing of JS;E-co-

homology implies the vanishing of J S;E-cohomology

by applying Lemma 3.4. Thus, we may assume that

S0 ¼ �. We verify the hypothesis of Lemma 3.5 with

L ¼ F ðE0�1Þ; that is, we show that M‘ :¼ F ðE‘1Þ \
L is a finite extension of F ð�‘1Þ for each ‘ 2 S. We

let M ¼ F ðE�1Þ \ L. It is known that M is a finite

extension of F cyc (cf. [11], Théorèmes 600 and 7). We

also let

MS ¼ F ðES1Þ \ L ¼ F ðES1Þ \M;

NS ¼ F ðES1Þ \ F cyc; and

N‘ ¼ F ðE‘1Þ \ F cyc ¼ F ðE‘1Þ \NS:

Note further that M‘ ¼ F ðE‘1Þ \M ¼ F ðE‘1Þ \MS

for each ‘ 2 S. We have the following diagram of

fields.

The extension M‘=N‘ is of finite degree since

GalðM‘=N‘Þ is isomorphic to a quotient of the finite

group GalðM=F cycÞ. Moreover N‘ is a finite exten-

sion of F ð�‘1Þ by Lemma 2.4. Thus the hypothesis

of Lemma 3.5 holds. Therefore VSðEÞ has vanishing

JS;E-cohomology. Similarly, VS0 ðE0Þ has vanishing

JS0;E0-cohomology. This completes the proof of (i).

�

Proof of (ii). This is a special case of (i) if E

and E0 are not isogenous over F . Suppose that E

and E0 are isogenous over F . Then they are

isogenous over some finite extension of F . Let F 0

be the Galois closure of this finite extension.

Then the Isogeny Theorem (see §1) implies that

V‘ðEÞ ’ V‘ðE0Þ as GF 0-modules for each ‘ 2 S0. We

identify �S;EðGF 0 Þ (resp. �S0;EðGF 0 Þ) with the Galois

group GalðF 0ðES1Þ=F 0Þ (resp. GalðF 0ðES01Þ=F 0Þ).
As S and S0 are disjoint, applying Remark

2.2-(3) to the system ð�‘;EjGF 0
; �‘0;E0 jGF 0

Þ‘2S;‘02S0 ¼
ð�‘;EjGF 0

Þ‘2S[S0 shows that ½F 0ðE‘1Þ \ F 0ðES01Þ :

F 0	 
 ½F 0ðES1Þ \ F 0ðES01Þ : F 0	 <1 for each ‘ 2 S.

Therefore VSðEÞ has vanishing J S;E-cohomology

by Lemma 3.5, where J S;E ¼ �S;EðGF 0ðES01 ÞÞ. Then

VSðEÞ has vanishing JS;E-cohomology by Lem-

ma 3.4 with G ¼ JS;E and N ¼ J S;E. In the same

manner, we see that VS0 ðE0Þ has vanishing JS0;E0-co-

homology. This ends the proof of Theorem 1.3. �
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