
Simplicity of the lowest eigenvalue of non-commutative

harmonic oscillators and the Riemann scheme

of a certain Heun’s differential equation

By Masato WAKAYAMA

Institute of Mathematics for Industry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

(Communicated by Shigefumi MORI, M.J.A., May 13, 2013)

Abstract: The non-commutative harmonic oscillator (NcHO) is a special type of self-

adjoint ordinary differential operator with non-commutative coefficients. In the present note, we

aim to provide a reasonable criterion that derives the simplicity of the lowest eigenvalue of

NcHO. It actually proves the simplicity of the lowest eigenvalue for a large class of structure

parameters. Moreover, this note describes a certain equivalence between the spectral problem of

the NcHO (for the even parity) and existence of holomorphic solutions of Heun’s ordinary

differential equations in a complex domain. The corresponding Riemann scheme allows us to give

another proof to the criterion.
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1. Introduction. Let Q be a second order

parity-preserving ordinary differential operator de-

fined by

Q ¼ A � 1

2

d2

dx2
þ

1

2
x2

� �
þ B x

d

dx
þ 1

2

� �
;

where A;B 2 Mat2ðRÞ, A is positive definite sym-

metric, and B is skew-symmetric. We further

assume that the Hermitian matrix Aþ iB is posi-

tive definite, that is, detðAÞ > pfðBÞ2. The former

requirement arises from the formal self-adjointness

of the operator Q relative to the natural inner

product on L2ðR;C2Þð¼ C2 � L2ðRÞÞ. The latter

guarantees that the eigenvalues of Q are all positive

and form a discrete set with finite multiplicity. We

call Q the non-commutative harmonic oscillator

(NcHO) [19,20] (see also [17]). It is shown in [20]

that one may always assume that Q has the

following normal form:

Q ¼ Qð�;�Þ

¼
� 0

0 �

� �
�

1

2

d2
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2
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� �

þ
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1 0
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x
d
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� �
:

One immediately observes the required condi-

tions above can be described as �; � > 0 and

�� > 1.

It should be noted that, when � ¼ �, Q is

unitarily equivalent to a couple of quantum har-

monic oscillators, whence the eigenvalues are easily

calculated as f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�2 � 1
p

ðnþ 1
2Þ j n 2 Z�0g having

multiplicity 2 ([20]). Actually, when � ¼ �, behind

Q, there exists a structure corresponding to the

tensor product of the 2-dimensional trivial repre-

sentation and the oscillator representation of the

Lie algebra sl2 ([5]). This unitarily equivalence is

obtained also by a probabilistic construction of

the heat semigroup and kernel associated with Q

([25]). The clarification of the spectrum in the

general � 6¼ � case is, however, considered to be

highly non-trivial. Indeed, while the spectrum is

well described theoretically by using certain con-

tinued fractions (see [19–22]) and also by Fuchsian

ordinary differential equations with four regular

singular points in a complex domain (see [12]), and

in particular there are some results related to

the estimate of upper bound of the lowest

eigenvalue [4,7,11,14–16], almost no information

is available in reality for the low-lying eigenvalues

when � 6¼ �. Therefore, in spite of many studies,

the spectral description of the NcHO is still

incomplete.
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The eigenvalues of NcHO build a continuous

curve with arguments � and � (see [11]). It comes as

an important problem to analyze the behavior of

eigenvalue curves, in particular, the characteriza-

tion of crossing/avoided crossing of eigenvalue

curves for various operators (see e.g. [2,24] and a

numerical investigation [11] for the NcHO). Espe-

cially, it has been an important problem to deter-

mine the structure of the ground state (i.e. the

eigenspace of the lowest eigenvalue) of Q when

� 6¼ �:

i) What is the multiplicity of the lowest

eigenvalue?

ii) Does any odd function contribute to the

ground state?

In recent years, special attention has been paid

to studying the spectrum of self-adjoint operators

with non-commutative coefficients, like the Rabi

model, the Jaynes-Cumming model, etc., not only

in mathematics [2,3] but also in experimental

physics (see e.g. [1]). Our NcHO may provide one

of these Hamiltonians describing such an interac-

tion between a one-mode photon and a two-level

atom. In addition to this direction, in order to get a

better understanding to the spectrum (e.g. Weyl’s

law for the distribution of eigenvalues) and for its

own interest (e.g. certain modular properties of

Apéry-like numbers [27]), the spectral zeta function

for Q has been studied extensively from a number

theoretic point of view (see e.g. [6–10]). One notices

furthermore that the case �� � 1 is to be explored

(see [18] when �� ¼ 1).

In [20–22], we have constructed the eigenfunc-

tions and eigenvalues in terms of continued frac-

tions determined by a certain three terms recur-

rence relation, which can be derived from the

expansion of eigenfunctions relative to a basis

constructed by suitably twisting the classical

Hermite functions. We call the eigenfunction uðxÞ
in L2ðR;C2Þ is of finite type if uðxÞ can be expanded

by a finite number of elements of this Hermite basis.

The eigenvalue corresponding to the finite-type

eigenfunction is said to be of finite type. Otherwise,

we call the eigenvalues/eigenfunction of infinite

type. We denote �0 (reps. �1) the set of eigenval-

ues corresponding to eigenfunctions of finite (resp.

infinite) type. Since the operator Q preserves the

parity we define �� to be the set of eigenvalues

whose eigenfunctions are even/odd, that is those

satisfying uð�xÞ ¼ �uðxÞ. Then there is a classifi-

cation of eigenvalues: ��0 ¼ �0 \ �� corresponding

to even/odd eigenfunctions of finite type and ��1 ¼
�1 \ ��.

To state our first result we recall ([21]) that

��0 � ��1 and �þ0 \ ��0 ¼ ;:ð1Þ

The former implies that ��1 ¼ ��. Moreover, since

the dimension of the eigenspace of ��1 is at most 2

([21]), one notices in particular that the multiplicity

of each eigenvalue is at most 3.

We show the following criterion of simplicity of

the lowest eigenvalue of NcHO.

Theorem 1.1. Suppose that the ground

state, i.e. the eigenspace of the lowest eigenvalue E

of Q, consists of even-functions. Then E is simple.

The proof of this theorem is rather simple while

it uses many basic results obtained so far.

The second concern of this note is to announce

a part of the results in [26] giving a complex

analytic description of the even eigenspaces of Q as

well as the odd case studied in [12]. In harmonic

analysis on the real line, in general even/odd

eigenspaces have completely analogues structures.

Moreover, we could not see any difference between

the even/odd eigenspaces in the study [19–22].

However, in the complex domain picture drawn

in [12] the odd part �� corresponds to the second

order equation given by Heun’s ordinary differential

equation [23] while the even part �þ corresponds to

the third-order equation (constructed by Heun’s

operator). Therefore resolution of this asymmetry is

desirable. In this note we provide the completely

parallel structure of even part with that of the odd

part. The details of the proof and related subjects

are given in [26] and to be published elsewhere.

Also, using the picture given by the complex

domain description, we will give a second proof of

Theorem 1.1.

2. Simplicity of the lowest eigenvalue.

We first give a proof of Theorem 1.1. By as-

sumption, it follows from (1) that the multiplicity

of E is at most 2. Suppose the multiplicity of E

is 2. Then, by the assumption, one observes E 2
�þ0 . Hence, by Theorem 1.1 in [20], there exists a

nonnegative integer n such that E can be expressed

as

E ¼ 2

ffiffiffiffiffiffi
��
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�� � 1
p

�þ �
nþ 1

2

� �
:

It follows that E �
ffiffiffiffiffi
��
p ffiffiffiffiffiffiffiffiffi

���1
p
�þ� .
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On the other hand, the following important

upper bound estimate of E is known (Theorem 8.2.1

in [17]):

E �
ffiffiffiffiffiffi
��
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�� � 1
p

�þ � þ j�� �j ð���1Þ1=4ffiffiffiffiffi
��
p Re!

;ð2Þ

where ! 2 C is the solution of !2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�� � 1
p

� i
with Re! > 0. Thus, in particular, since � 6¼ � we

have

E <

ffiffiffiffiffiffi
��
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�� � 1
p

�þ � :

This contradicts the previous estimate. Hence the

theorem follows.

In [4], in the proof of the main result (Theorem

1.1), it is shown that

Lemma 2.1. Let � > � >
ffiffiffi
2
p

. Then there

is no odd eigenfunction corresponding the lowest

eigenvalue E.

By this lemma the following result is immedi-

ate.

Corollary 2.2. Suppose �; � >
ffiffiffi
2
p
ð� 6¼ �Þ.

Then the lowest eigenvalue E is simple and

E 2 �þ1n�þ0 .

3. Even spectrum of the NcHO and

Heun’s ODE. In studying the ground state of

NcHO, the description of the even eigenfunctions is

important. This section describes the results in [26]

without proof.

Let H, E and F be an sl2-triple:

½H; E� ¼ 2E; ½H; F � ¼ �2F; ½E; F � ¼ H:

Let � denote a (oscillator) representation of sl2 on

C½y� given by

�ðHÞ ¼ y@y þ 1=2; �ðEÞ ¼ y2=2; �ðF Þ ¼ �@2
y=2;

where @y ¼ d=dy. We also introduce another real-

ization of the sl2-triple as

$ðHÞ ¼ z@z þ 1=2;

$ðEÞ ¼ z2ðz@z þ 1Þ=2; $ðF Þ ¼ �ð2zÞ�1@z:

Similarly to the discussion in [12] we observe the

following correspondence between two representa-

tions of sl2 above (see [26]).

Proposition 3.1. Let a � 1. Define a modi-

fied Laplace transform La by

ðLauÞðzÞ ¼
Z 1

0

uðyzÞe�
y2

2 ya�1dy:

Then L1 possesses the following quasi-intertwining

property:

L1�ðHÞ ¼ $ðHÞL1; L1�ðEÞ ¼ $ðEÞL1;

ðL1�ðF ÞuÞðzÞ ¼ $ðF ÞðL1uÞðzÞ þ u0ð0Þ=ð2zÞ:

Let C½z; z�1� be the set of all Laurent poly-

nomials in z. Since u0ð0Þ ¼ 0 for an even polynomial

uðyÞ, the equivalence ð�;C½y2�Þ ¼	 ð$;C½z2�Þ as rep-

resentations of sl2 is obvious. Moreover, by the

quasi-intertwiner L1, we obtain the following equiv-

alence between the odd part of the (oscillator)

representation ð�; yC½y2�Þ and the Langlands quo-

tient of the representation ð$; zC½z2; z�2�Þ of sl2.

Corollary 3.2. As representations of sl2, L1

gives the equivalence

ð�; yC½y2�Þ ¼	 ð$; zC½z2; z�2�=z�1C½z�2�Þ:

Using Proposition 3.1, we have the following

corrspondence between the eigenvalue problem

and existence problem of holomorphic solutions

of Heun’s ordinary differential equation (see e.g.

[23,24]) in some complex domains.

Theorem 3.3. There exists a linear bijection

fu 2 L2ðR;C2Þ j Qu ¼ �u; uð�xÞ ¼ uðxÞg
�!	 ff 2 Oð�Þ j Hþ� f ¼ 0g;

where � is a simply-connected domain in C

such that 0; 1 2 � while �� =2 �, Oð�Þ denotes the

set of holomorphic functions on �, and Hþ� ¼
Hþ� ðw; @wÞ is the Heun ordinary differential operator

given by

Hþ� ðw; @wÞ

:¼
d2

dw2
þ

1
2 � n
w
þ
� 1

2 � n
w� 1

þ
nþ 1

w� ��

 !
d

dw

þ
� 1

2
ðnþ 1

2
Þw� q

wðw� 1Þðw� ��Þ
:

Here the numbers n and � are defined through the

following relation:

n ¼
2� � 3

4
; � ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð�� � 1Þ

p
�þ � :ð3Þ

The accessory parameter q can be expressed explic-

itly by the parameters �; � and the eigenvalue �.

We note that the Heun operator Hþ� ðw; @wÞ has

four regular singular points, w ¼ 0; 1; �� and 1.

The Riemann scheme of the operator Hþ� ðw; @wÞ is

given by
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0 1 �� 1 ; w

0 0 0 1
2

nþ 1
2

nþ 3
2
�n �ðnþ 1

2
Þ

0
B@

1
CA:

Here each element of the first row indicates a

regular singular point of Hþ� and those in the second

and third rows are expressing the corresponding

exponents. Since it is irrelevant to the present

discussion, we omit the accessory parameter q in the

picture.

Let us now give another proof of Theorem 1.1.

We first note that, by the linear bijection in

Theorem 3.3, there is a one-to-one correspondence

between the finite-type even eigenfunction of Q and

a polynomial solution of the Heun differential

equation Hþ� f ¼ 0 (see [26]; the proof is done by

a similar way to [12]). Let us assume that the

multiplicity of the lowest eigenvalue E is equal to

2. This implies that there is a polynomial solution

of the Heun differential equation HþEf ¼ 0. Then, by

the Riemann scheme above one concludes that nþ
1
2 ¼ 2��1

4 is a nonnegative integer (see [23]). This

implies � 2 2Z�0 þ 1
2. It follows from the relation (3)

that E ¼ 2�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð���1Þ
p

�þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��ð���1Þ
p

�þ� . Hence, by the

same reasoning based on the upper bound (2), the

contradiction appears. This proves again Theorem

1.1.

Remark 3.4. The odd parity counterpart to

the linear bijection in Theorem 3.3 is obtained by

the Laplace transform La with a ¼ 2 [12]. The

Riemann scheme of the corresponding Heun’s

operator for the odd case is described in [13] as

0 1 �� 1 ; w

0 0 0 3
2

n nþ 1 �n� 1
2 �n

0
B@

1
CA:
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Note added in proof. In a recent preprint

entitled ‘‘Spectral analysis of non-commutative

harmonic oscillators: The lowest eigenvalue and

no crossing (2013)’’ (arXiv:1304.5578v1), F.

Hiroshima and I. Sasaki have shown that the

assumption in Theorem 1.1 actually holds, whence

the simplicity of the lowest eigenvalue follows

whenever � 6¼ �.
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