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Abstract:
initial coefficients is proved.
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1. Introduction. The famous Julia-
Carathéodory Theorem says that every analytic
self-mapping of the unit disk D :={z € C: |z| < 1}
having the angular limit 1 at 1 has the angular
derivative at 1 which is either a positive real
number or infinity. In this note we generalize
the so-called General Boundary Lemma due to
Osserman [11,p. 3515] giving sharp lower bound
of the angular derivative of self-mappings of D
depending on their initial coefficients. Some exam-
ples of self-mappings of D complete the result.

Let C:=CU{oo}, D:={2€C:|z] <1} and
T:=0D. Let A denote the class of analytic
functions in D and B its subclass of all self-
mappings of D.

For £ € D let

zeC\ {1/
For z € D we have

(L1 e = =g+ (1—lgf) g4

=1
It is well known that for each £ €D, ¢ € B is a
conformal automorphism of D.

The angular limit and the angular derivative at
¢ €T of a function f € A will be denoted as f, (¢)
(also as £ f(¢)) and as f'(C), respectively. Recall
(see e.g. [12,p. 79]) that f has the angular deriv-
ative at ¢ € T if f (¢) exists and is finite, and the
angular limit
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PN C R Al
- 2=C z—C(
exists.

The class B; of the so-called Julia functions
defined below was introduced in [7] (see also
[8,p. 21]). Further studies of Julia functions and
related idea of the boundary subordination intro-
duced by the first author of this paper were
continued in [9].

Definition 1.1. Let

B i={weB:w (1) =1}

be the class of Julia functions. For A € (0, 00| let

Bi()) = {w €B o (1) = )\}.

For w € B let

Aw) = sup{ |11__|z§32 . € D}.

Recall now the Julia-Carathéodory-Wolff the-
orem (see [6], [12,p. 82]), [2,p. 57], [5, p. 44]).

Theorem 1.2. If we By, then /(1) ewists
and

%wgnrﬂ = A(w) < o0,

i.e., w€Bi(N), where A=u (1) satisfies (1.2).
Moreover

(12) 0<«/ (1) = lim

r—1-

B = Bi(\).

Ae(0,00]

Define now the following classes of functions.
Definition 1.3. Let


http://dx.doi.org/10.3792/pjaa.89.133

134 A. LECKO and B. UzZAR

By = {w eB: W(O) = 0}
be the class of Schwarz functions. Let
BO,I = ByNB.

For each n € N let B™ be the class of all functions
w € B of the form

(1.3) z) =by + Zbkzk’, z €D,
k=n
with b, # 0, and let
By =B By, B :=B" By,
B! =B nB.
Observe that for w € By,
1—w(0)
Ay = L2208
1 — |w(0)]

Hence and from Theorem 1.2 we have at once the
following assertion.
Corollary 1.4. Ifw € By and by = w(0), then

o (1) |1 - b0|
L 1—[by|*

The assertion of the next theorem can be found
in Remark 3 of [11]. In the form below the theorem
was reproved in [9].

Theorem 1.5.

LetneN. Ifwe B(({Lf, then
W (1) > n.

2. Main result. In this section we improve
Theorem 1.5 and Corollary 1.4 by showing the
sharp lower bound of the angular derivative at 1
of functions in the class B(I") (Theorem 2.5) depend-
ent on their initial coefficients by and b,,.

The version of the Schwarz lemma formulated
below is a simple consequence of Lemma 1 of [4].
The inequality (2.2) can be found in Remark 3
of [11]. Lemma 1 of [4] was reproved and called
Interior Schwarz Lemma in [11].

Lemma 2.1. LetneN. Ifwe B((Jm is of the

form
(2.1) z) = Z bi?¥, z€D,

k=n
then

n |Z‘ + bn|
(22)  |w(z)| <4 zeD.

T+ [bu[]2]

[Vol. 89(A),

Equality in (2.2) for some z # 0 can occur only for

(2.3) w(z) = 2"p_¢(kz), z€D,

where Kk € T and £ € D.
Notation 2.2. Let n€ N. For we B((ﬁ) of
the form (2.1) let

1—|by]

An =n+ .
(W) :=n 15 bl

The assertion of the theorem below can be
found in Remark 3 of [11] (see also [3, p. 3624]). The
case n =1 was proved by Unkelbach [13,p. 741].
For more information on the classical versions of
the Schwarz lemma at the boundary of D including
commentary on the history and the applications see
the survey paper by Boas [1].

Theorem 2.3. Let n€ N. If we Bgnl) is of
the form (2.1), then
(2.4) W (1) > A(w),
i.e., w € Bi(A) for some A > Ay (w).
In particular, when n =1, then
(1) > N (w) = 2
T
Equality in (2.4) holds for
(2.5) w(2) == 2"p_¢(2), z€D,

where & € (0,1).
Notation 2.4. Let n€ N. For we Bg") of

the form (1.3) denote
1= bl 1 — |bo[* — |ba]
|t 2 :
1 — b 1—1bol” + |l
Note that when by € (—1,1), then
1-b 1—b2—|b
0 n+ g | n| '
1+ 1 — b5+ |by]
Applying Theorem 2.3 we generalize now the

so-called General Boundary Lemma proved by
Osserman [11, p. 3515] for the case n = 1.

Ao (w) =

/\0777/ ((.L)) =

Theorem 2.5. Let n€ N. If we B" is of
the form (1.3), then
(26) WZ(l) > /\O,n(w)a

i.e., w € Bi(A) for some A > Agn(w).
In particular, when n =1, then
2|1 — by|?

W (1) 2 doa(w) = 1— [bo)> + |b1|
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Equality in (2.6) holds for B 0 by 1= o2 oo
(2.7) w(z) = H@E(Zn)v ze D, “ S 1- b <1 +b_1 - b0>2 L
where £ €D and k := (1 —&)/(1 = §). Olfbo

Proof. Since by = w(0) € D, we can write 1 by (1— o)1 —B0)?

0 1-— b() = 7 2\2 ’l/J‘/ (1)
elfo — . 1—bo (1_|b0| )
1—15p 5
_ |1 B b0| (1

for some 6y € R, and define T 1 |b0|2 v, ( )-

(2.8) P(z) == e %y (w(2), z€D.

We see that ¢(D) C D, ¥(0) =0 and ¢, (1) =1, so
1 € Byy. Since w is of the form (1.3), one has
_ w(z) —bo
11— bow(z)
B bnzn + O(Zn+1)
1— |bo|* + O(2")
. b”
1ol

Puy (w(2))

2+ 02", zeD.

Thus by (2.8),

P(z) = chzk, ze D,
k=n

with
B e*iegbn
1— |bof*

Soy € B((;,Ll)v and applying now Theorem 2.3 for ¢ we
obtain

Cn

bl
(29) W) >0 ol Lol
. : B 1+ fen| |0,
1+ 5
L — [bol
I e
1 — |bo|® + |bn]
Since in view of (2.8),
w(z) = @4, (€79(2)), z€D,
SO
: 1 — |bo)?
WJ(2) = e ———————/(2), z€D.
(1 + e (2))°
Thus

This and (2.9) give (2.6).

Consider now the function (2.7). In view of
(1.1) and by the fact that w(l) =1, we see that
we B" with by = —k¢ and b, = r(1 — [¢]*). Ob-
serve that

(2.10) |b,| = 1 — |bo|?
and
11—bo* |1+ €
(2.11) = >
L — [bo] 1—[¢]
¢ - 1¢°)
1+ )
1-&1 _1-[¢
1-|¢? 11— ¢

On the other hand we have
1-g1-J¢g  1-J¢f

(1) = nkp(1) =n > =n :
Soi-ea-gt n-gf
This with (2.10) and (2.11) yields the equality in
(2.6). O

Note that the following result as a consequence
of the Schwarz-Pick lemma (see e.g. [5, Lemma 1.2])
holds.

Lemma 2.6. Letne N. Ifwe B™ is of the
form (1.3), then

(2.12) b| <1 — |bo|*.

Equality in (2.12) can occur only for

w(z) == Kkpe(2"), z€D,

where £ € D and k € T.
The last lemma yields
Corollary 2.7. LetneN. If we BYI) is of
the form (1.3), then
N 1= byl
1 — [bol?
Equality in (2.13) can occur only for functions of the
form (2.7).

(2.13) Ao (w) >
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Example 2.8. 1. Fix n€ N. For each a €

(0,1] let
w(z):=1—a+az", z€D.

Clearly, w € Bgn) with by =1—a and b, = a. We
have «/(1) = na and w € By(na). On the other hand
we have

-1 -a)f 1-(1—a)’—a
Aoal) = 1—(1—a)’ <n+1— 1—a)2—|—a>

a n 1—-a
= n .
2—a 3—a
In particular, when n =1 we have
2a
A = .
01(w) 3—a

An easy calculation shows that w'(1) > A, (w) with
equality only for a = 1.
2. For each p > 0 let

71+z

1—2)P _
N
2 2p+1

wy(2) z€D.

As proved in [10, Proposition 3.1(ii)], the function
wpy is a self-map of D for every 1<p<3. Let
p € [1,3]. Since wy(1) =1, so w, € By. We have

— 2", zeD.

By the fact that

1 1 / 1 p
bO:wP(O):iJf—%v blzwp(o):§_2p+la
we see that w, € Bgl). Moreover
1 , 1
wl(l):Za wp<1>:§7 pe (173]

Thus w; € Bi(1/4) and w, € B1(1/2) for p € (1,3].
On the other hand, since b; > 0 for p € [1, 3], we get

2 -0l
1 — [bo|* + |1

111211)
“2Twn) TlaTon

B 2(20 —1)°
54 —2(14p)2p -1

Ao1(wp)

Note that

[Vol. 89(A),

1 2
w’l(l) = Z > )\()11((.{11) = ﬁ

and for every p € (1, 3],

1
w;(l) = 5 > )\gﬂl(wp).

Observe that w; coincides with the function w
considered in the previous example for n =1 and

a=1/4.
3. Forbe (—1,1) and a € [-1,b) let
b+b—2a)z—ab+b —
w(z) == (ab+ a)z—ab+ , z€D.

(2b—a—1)z—a+1

We see that w(0) = by = b, w(1l) =1 and w(-1) = q,
so w(D) C D and w € B;. Moreover

-0 -a)i-b) o

WJ(2) = ,
(=) (2b—a—1)z—a+1)*
Hence
2b—a)(1 -0
b — o) 20D =D)
1—a
and b; > 0. Moreover
sy =00 =h) 0 1)’
2(b—a) «/'(0) by
But
2(1 — by)?
)\ —
01(w) =37 B+ by
We see that
(1 —by)?
(1) =
(1) =
2(1 — by)
= M1 (w
> Ty = )

Observe that when by =b — —1F, then a — —1"
and, consequently, o/'(1) — oo.
Theorem 2.5 can be slightly generalized.
Corollary 2.9. Letn € N. Assume that w €
B™ is of the form (1.3) and at zy € T a limit w, (z))
exists with

lw, (20)] = sup{|w(2)| : z € D}.

Then W' () exists and
2
20w (20) |, (20) = bol

w, (Zo) " w, (zn)}2 — |bo|?
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jw, (20)]" = bl = |w, (0)bs
X | n—+ 3 3 .
|w, (20)]” = [bol* + |w, (20)bn
Proof. Since w# 0, so w,(z) # 0. Thus the
function
w(zpz)
w, (20)

is well defined and analytic in D. Obviously,
P E Bgn). Moreover from (1.3) it follows that

D>z (z) =

o0
b(z2) =co+ Y e, z€D,
k=n
where
b() 28bn

W, (ZO) ’

Cy —

Since, by Theorem 1.2, ¢/ (1) exists, so / (20) exists
and
2w (20)
(1) =——-
w, (ZU)
Applying now Theorem 2.5 we have finally
2

e
zow’ (20) w, (20)
w,(20) — bo |?
- ‘% (20)
1_‘ b || Zba
- w, (20) i w, (20)
1_‘ bo 2 by,
w, (20) w, (20)
~ |w (=) *bo|2

o, (o) =1 ?
y ( w, (20)|* = [bof* — o, (zO>bn|>
lw, (20)]” = b0l + |, (20)bn]

(]
When w, (%) € T, we have the following
corollary.
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Corollary 2.10. Let n € N. Assume that
we B™ is of the form (1.3) and at z € T a limit
w, (20) exists and w, (20) € T. Then W (2) exists and

2 2
Zow, (20 w, (20) — b 1—1|bo|” — |bn
( )2};(0) ()’ " |0|2 10| .
17|b0| +|bn|

/
T 2
w, (20) 1 — |bo]
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