A note on Julia-Carathéodory Theorem for functions with fixed initial coefficients

By Adam LECKO and Barbara UZAR

Department of Analysis and Differential Equations, University of Warmia and Mazury, ul. Słoneczna 54, 10-710 Olsztyn, Poland

(Communicated by Masaki Kashiwara, M.J.A., Nov. 12, 2013)

Abstract: Sharpened version of the Julia-Carathéodory Theorem for functions with fixed initial coefficients is proved.

Key words: Julia-Carathéodory Theorem; Julia functions; Schwarz functions.

1. Introduction. The famous Julia-Carathéodory Theorem says that every analytic self-mapping of the unit disk $\mathbf{D} := \{z \in \mathbf{C} : |z| < 1\}$ having the angular limit 1 at 1 has the angular derivative at 1 which is either a positive real number or infinity. In this note we generalize the so-called General Boundary Lemma due to Osserman [11, p. 3515] giving sharp lower bound of the angular derivative of self-mappings of \mathbf{D} depending on their initial coefficients. Some examples of self-mappings of \mathbf{D} complete the result.

Let $\overline{\mathbf{C}} := \mathbf{C} \cup \{\infty\}$, $\overline{\mathbf{D}} := \{z \in \mathbf{C} : |z| \leq 1\}$ and $\mathbf{T} := \partial \mathbf{D}$. Let \mathcal{A} denote the class of analytic functions in \mathbf{D} and \mathcal{B} its subclass of all self-mappings of \mathbf{D} .

For $\xi \in \mathbf{D}$ let

$$\varphi_{\xi}(z) := \frac{z - \xi}{1 - \overline{\xi}z}, \quad z \in \mathbf{C} \setminus \{1/\overline{\xi}\}.$$

For $z \in \mathbf{D}$ we have

(1.1)
$$\varphi_{\xi}(z) = -\xi + (1 - |\xi|^2) \sum_{k=1}^{\infty} \overline{\xi}^{k-1} z^k.$$

It is well known that for each $\xi \in \mathbf{D}$, $\varphi_{\xi} \in \mathcal{B}$ is a conformal automorphism of $\overline{\mathbf{D}}$.

The angular limit and the angular derivative at $\zeta \in \mathbf{T}$ of a function $f \in \mathcal{A}$ will be denoted as $f_{\iota}(\zeta)$ (also as $\angle f(\zeta)$) and as $f'_{\iota}(\zeta)$, respectively. Recall (see e.g. [12, p. 79]) that f has the angular derivative at $\zeta \in \mathbf{T}$ if $f_{\iota}(\zeta)$ exists and is finite, and the angular limit

$$f'_{\scriptscriptstyle \perp}(\zeta) := \angle \lim_{z o \zeta} rac{f(z) - f_{\scriptscriptstyle \perp}(\zeta)}{z - \zeta}$$

exists.

The class \mathcal{B}_1 of the so-called *Julia functions* defined below was introduced in [7] (see also [8, p. 21]). Further studies of Julia functions and related idea of the boundary subordination introduced by the first author of this paper were continued in [9].

Definition 1.1. Let

$$\mathcal{B}_1 := \{ \omega \in \mathcal{B} : \omega_{\ell}(1) = 1 \}$$

be the class of Julia functions. For $\lambda \in (0, \infty]$ let

$$\mathcal{B}_1(\lambda) := \Big\{ \omega \in \mathcal{B}_1 : \omega'_{_{\!L}}(1) = \lambda \Big\}.$$

For $\omega \in \mathcal{B}_1$ let

$$\Lambda(\omega) := \sup \biggl\{ \frac{\left|1 - \omega(z)\right|^2}{1 - \left|\omega(z)\right|^2} \cdot \frac{1 - \left|z\right|^2}{\left|1 - z\right|^2} \colon \ z \in \mathbf{D} \biggr\}.$$

Recall now the Julia-Carathéodory-Wolff theorem (see [6], [12, p. 82]), [2, p. 57], [5, p. 44]).

Theorem 1.2. If $\omega \in \mathcal{B}_1$, then $\omega'_{\perp}(1)$ exists and

$$(1.2) \qquad 0<\omega_{\scriptscriptstyle L}'(1)=\lim_{r\to 1^-}\frac{1-|\omega(r)|}{1-r}=\Lambda(\omega)\leq \infty,$$

i.e., $\omega \in \mathcal{B}_1(\lambda)$, where $\lambda = \omega'_{\perp}(1)$ satisfies (1.2). Moreover

$$\mathcal{B}_1 = igcup_{\lambda \in (0,\infty]} \mathcal{B}_1(\lambda).$$

Define now the following classes of functions. **Definition 1.3.** Let

²⁰¹⁰ Mathematics Subject Classification. Primary $30{\rm C}45.$

$$\mathcal{B}_0 := \{ \omega \in \mathcal{B} : \omega(0) = 0 \}$$

be the class of Schwarz functions. Let

$$\mathcal{B}_{0,1} := \mathcal{B}_0 \cap \mathcal{B}_1$$
.

For each $n \in \mathbb{N}$ let $\mathcal{B}^{(n)}$ be the class of all functions $\omega \in \mathcal{B}$ of the form

(1.3)
$$\omega(z) = b_0 + \sum_{k=0}^{\infty} b_k z^k, \quad z \in \mathbf{D},$$

with $b_n \neq 0$, and let

$$\mathcal{B}_0^{(n)} := \mathcal{B}^{(n)} \cap \mathcal{B}_0, \ \mathcal{B}_1^{(n)} := \mathcal{B}^{(n)} \cap \mathcal{B}_1, \ \mathcal{B}_{0,1}^{(n)} := \mathcal{B}_0^{(n)} \cap \mathcal{B}_1.$$

Observe that for $\omega \in \mathcal{B}_1$,

$$\Lambda(\omega) \ge \frac{|1 - \omega(0)|^2}{1 - |\omega(0)|^2}.$$

Hence and from Theorem 1.2 we have at once the following assertion.

Corollary 1.4. If $\omega \in \mathcal{B}_1$ and $b_0 = \omega(0)$, then

$$\omega'_{\perp}(1) \ge \frac{|1 - b_0|^2}{1 - |b_0|^2}.$$

The assertion of the next theorem can be found in Remark 3 of [11]. In the form below the theorem was reproved in [9].

Theorem 1.5. Let
$$n \in \mathbb{N}$$
. If $\omega \in \mathcal{B}_{0,1}^{(n)}$, then $\omega'_{j}(1) \geq n$.

2. Main result. In this section we improve Theorem 1.5 and Corollary 1.4 by showing the sharp lower bound of the angular derivative at 1 of functions in the class $\mathcal{B}_1^{(n)}$ (Theorem 2.5) dependent on their initial coefficients b_0 and b_n .

The version of the Schwarz lemma formulated below is a simple consequence of Lemma 1 of [4]. The inequality (2.2) can be found in Remark 3 of [11]. Lemma 1 of [4] was reproved and called Interior Schwarz Lemma in [11].

Lemma 2.1. Let $n \in \mathbb{N}$. If $\omega \in \mathcal{B}_0^{(n)}$ is of the form

(2.1)
$$\omega(z) = \sum_{k=n}^{\infty} b_k z^k, \quad z \in \mathbf{D},$$

then

(2.2)
$$|\omega(z)| \le |z|^n \frac{|z| + |b_n|}{1 + |b_n||z|}, \quad z \in \mathbf{D}.$$

Equality in (2.2) for some $z \neq 0$ can occur only for

(2.3)
$$\omega(z) := z^n \varphi_{-\xi}(\kappa z), \quad z \in \mathbf{D},$$

where $\kappa \in \mathbf{T}$ and $\xi \in \mathbf{D}$.

Notation 2.2. Let $n \in \mathbb{N}$. For $\omega \in \mathcal{B}_{0,1}^{(n)}$ of the form (2.1) let

$$\lambda_n(\omega) := n + \frac{1 - |b_n|}{1 + |b_n|}.$$

The assertion of the theorem below can be found in Remark 3 of [11] (see also [3, p. 3624]). The case n=1 was proved by Unkelbach [13, p. 741]. For more information on the classical versions of the Schwarz lemma at the boundary of \mathbf{D} including commentary on the history and the applications see the survey paper by Boas [1].

Theorem 2.3. Let $n \in \mathbb{N}$. If $\omega \in \mathcal{B}_{0,1}^{(n)}$ is of the form (2.1), then

(2.4)
$$\omega'_{j}(1) \geq \lambda_{n}(\omega),$$

i.e., $\omega \in \mathcal{B}_1(\lambda)$ for some $\lambda \geq \lambda_n(\omega)$. In particular, when n = 1, then

$$\omega'_{\scriptscriptstyle \perp}(1) \geq \lambda_1(\omega) = rac{2}{1+|b_1|}$$
 .

Equality in (2.4) holds for

(2.5)
$$\omega(z) := z^n \varphi_{-\xi}(z), \quad z \in \overline{\mathbf{D}},$$

where $\xi \in (0,1)$.

Notation 2.4. Let $n \in \mathbb{N}$. For $\omega \in \mathcal{B}_1^{(n)}$ of the form (1.3) denote

$$\lambda_{0,n}(\omega) := \frac{|1 - b_0|^2}{1 - |b_0|^2} \left(n + \frac{1 - |b_0|^2 - |b_n|}{1 - |b_0|^2 + |b_n|} \right).$$

Note that when $b_0 \in (-1,1)$, then

$$\lambda_{0,n}(\omega) = \frac{1 - b_0}{1 + b_0} \left(n + \frac{1 - b_0^2 - |b_n|}{1 - b_0^2 + |b_n|} \right).$$

Applying Theorem 2.3 we generalize now the so-called General Boundary Lemma proved by Osserman [11, p. 3515] for the case n = 1.

Theorem 2.5. Let $n \in \mathbb{N}$. If $\omega \in \mathcal{B}_1^{(n)}$ is of the form (1.3), then

$$(2.6) \omega'_{\iota}(1) \ge \lambda_{0,n}(\omega),$$

i.e., $\omega \in \mathcal{B}_1(\lambda)$ for some $\lambda \geq \lambda_{0,n}(\omega)$. In particular, when n = 1, then

$$\omega'_{_{\perp}}(1) \ge \lambda_{0,1}(\omega) = rac{2|1-b_0|^2}{1-|b_0|^2+|b_1|}.$$

Equality in (2.6) holds for

(2.7)
$$\omega(z) := \kappa \varphi_{\xi}(z^n), \quad z \in \overline{\mathbf{D}},$$

where $\xi \in \mathbf{D}$ and $\kappa := (1 - \overline{\xi})/(1 - \xi)$.

Proof. Since $b_0 = \omega(0) \in \mathbf{D}$, we can write

$$e^{\mathrm{i}\theta_0} = \frac{1 - b_0}{1 - \overline{b_0}}$$

for some $\theta_0 \in \mathbf{R}$, and define

(2.8)
$$\psi(z) := e^{-i\theta_0} \varphi_{b_0}(\omega(z)), \quad z \in \mathbf{D}.$$

We see that $\psi(\mathbf{D}) \subset \mathbf{D}$, $\psi(0) = 0$ and $\psi_{\perp}(1) = 1$, so $\psi \in \mathcal{B}_{0,1}$. Since ω is of the form (1.3), one has

$$\varphi_{b_0}(\omega(z)) = \frac{\omega(z) - b_0}{1 - \overline{b_0}\omega(z)}
= \frac{b_n z^n + O(z^{n+1})}{1 - |b_0|^2 + O(z^n)}
= \frac{b_n}{1 - |b_0|^2} z^n + O(z^{n+1}), \quad z \in \mathbf{D}.$$

Thus by (2.8).

$$\psi(z) = \sum_{k=n}^{\infty} c_k z^k, \quad z \in \mathbf{D},$$

with

$$c_n = \frac{\mathrm{e}^{-\mathrm{i}\theta_0} b_n}{1 - |b_0|^2}.$$

So $\psi \in \mathcal{B}_{0,1}^{(n)}$, and applying now Theorem 2.3 for ψ we obtain

(2.9)
$$\psi'_{\perp}(1) \ge n + \frac{1 - |c_n|}{1 + |c_n|} = n + \frac{1 - \frac{|b_n|}{1 - |b_0|^2}}{1 + \frac{|b_n|}{1 - |b_0|^2}}$$

$$= n + \frac{1 - |b_0|^2 - |b_n|}{1 - |b_0|^2 + |b_n|}.$$

Since in view of (2.8),

$$\omega(z) = \varphi_{-b_0}(e^{i\theta_0}\psi(z)), \quad z \in \mathbf{D},$$

so

$$\omega'(z) = e^{\mathrm{i}\theta_0} \frac{1 - |b_0|^2}{\left(1 + \overline{b_0} e^{\mathrm{i}\theta_0} \psi(z)\right)^2} \psi'(z), \quad z \in \mathbf{D}.$$

Thus

$$\begin{split} \omega_{\perp}'(1) &= \frac{1 - b_0}{1 - \overline{b_0}} \frac{1 - |b_0|^2}{\left(1 + \overline{b_0} \frac{1 - b_0}{1 - \overline{b_0}}\right)^2} \psi_{\perp}'(1) \\ &= \frac{1 - b_0}{1 - \overline{b_0}} \frac{(1 - |b_0|^2)(1 - \overline{b_0})^2}{(1 - |b_0|^2)^2} \psi_{\perp}'(1) \\ &= \frac{|1 - b_0|^2}{1 - |b_0|^2} \psi_{\perp}'(1). \end{split}$$

This and (2.9) give (2.6).

Consider now the function (2.7). In view of (1.1) and by the fact that $\omega(1) = 1$, we see that $\omega \in \mathcal{B}_1^{(n)}$ with $b_0 = -\kappa \xi$ and $b_n = \kappa (1 - |\xi|^2)$. Observe that

$$|b_n| = 1 - |b_0|^2$$

and

(2.11)
$$\frac{|1 - b_0|^2}{1 - |b_0|^2} = \frac{|1 + \kappa \xi|^2}{1 - |\xi|^2}$$
$$= \frac{\left|1 + \frac{\xi - |\xi|^2}{1 - \xi}\right|^2}{1 - |\xi|^2} = \frac{1 - |\xi|^2}{|1 - \xi|^2}.$$

On the other hand we have

$$\omega'(1) = n\kappa\varphi'_{\xi}(1) = n\frac{1-\overline{\xi}}{1-\xi}\frac{1-|\xi|^2}{(1-\overline{\xi})^2} = n\frac{1-|\xi|^2}{|1-\xi|^2}.$$

This with (2.10) and (2.11) yields the equality in (2.6).

Note that the following result as a consequence of the Schwarz-Pick lemma (see e.g. [5, Lemma 1.2]) holds.

Lemma 2.6. Let $n \in \mathbb{N}$. If $\omega \in \mathcal{B}^{(n)}$ is of the form (1.3), then

$$(2.12) |b_n| \le 1 - |b_0|^2.$$

Equality in (2.12) can occur only for

$$\omega(z) := \kappa \varphi_{\xi}(z^n), \quad z \in \mathbf{D},$$

where $\xi \in \mathbf{D}$ and $\kappa \in \mathbf{T}$.

The last lemma yields

Corollary 2.7. Let $n \in \mathbb{N}$. If $\omega \in \mathcal{B}_1^{(n)}$ is of the form (1.3), then

(2.13)
$$\lambda_{0,n}(\omega) \ge n \frac{|1 - b_0|^2}{1 - |b_0|^2}.$$

Equality in (2.13) can occur only for functions of the form (2.7).

Example 2.8. 1. Fix $n \in \mathbb{N}$. For each $a \in (0,1]$ let

$$\omega(z) := 1 - a + az^n, \quad z \in \overline{\mathbf{D}}.$$

Clearly, $\omega \in \mathcal{B}_1^{(n)}$ with $b_0 = 1 - a$ and $b_n = a$. We have $\omega'(1) = na$ and $\omega \in \mathcal{B}_1(na)$. On the other hand we have

$$\lambda_{0,n}(\omega) = \frac{|1 - (1 - a)|^2}{1 - (1 - a)^2} \left(n + \frac{1 - (1 - a)^2 - a}{1 - (1 - a)^2 + a} \right)$$
$$= \frac{a}{2 - a} \left(n + \frac{1 - a}{3 - a} \right).$$

In particular, when n = 1 we have

$$\lambda_{0,1}(\omega) = \frac{2a}{3-a}.$$

An easy calculation shows that $\omega'(1) \geq \lambda_{0,n}(\omega)$ with equality only for a = 1.

2. For each p > 0 let

$$\omega_p(z) := \frac{1+z}{2} + \frac{(1-z)^p}{2^{p+1}}, \quad z \in \overline{\mathbf{D}}.$$

As proved in [10, Proposition 3.1(ii)], the function ω_p is a self-map of $\overline{\mathbf{D}}$ for every $1 \leq p \leq 3$. Let $p \in [1,3]$. Since $\omega_p(1) = 1$, so $\omega_p \in \mathcal{B}_1$. We have

$$\omega'_p(z) = \frac{1}{2} - \frac{p}{2^{p+1}} (1-z)^{p-1}, \quad z \in \overline{\mathbf{D}}.$$

By the fact that

$$b_0 = \omega_p(0) = \frac{1}{2} + \frac{1}{2^{p+1}}, \quad b_1 = \omega_p'(0) = \frac{1}{2} - \frac{p}{2^{p+1}},$$

we see that $\omega_p \in \mathcal{B}_1^{(1)}$. Moreover

$$\omega'_1(1) = \frac{1}{4}, \quad \omega'_p(1) = \frac{1}{2}, \quad p \in (1,3].$$

Thus $\omega_1 \in \mathcal{B}_1(1/4)$ and $\omega_p \in \mathcal{B}_1(1/2)$ for $p \in (1,3]$. On the other hand, since $b_1 > 0$ for $p \in [1,3]$, we get

$$\lambda_{0,1}(\omega_p) = \frac{2|1 - b_0|^2}{1 - |b_0|^2 + |b_1|}$$

$$= \frac{2\left(\frac{1}{2} - \frac{1}{2^{p+1}}\right)^2}{1 - \left(\frac{1}{2} + \frac{1}{2^{p+1}}\right)^2 + \left(\frac{1}{2} - \frac{p}{2^{p+1}}\right)}$$

$$= \frac{2(2^p - 1)^2}{5 \cdot 4^p - 2(1 + p)2^p - 1}.$$

Note that

$$\omega_1'(1) = \frac{1}{4} > \lambda_{0,1}(\omega_1) = \frac{2}{11}$$

and for every $p \in (1,3]$,

$$\omega_p'(1) = \frac{1}{2} > \lambda_{0,1}(\omega_p).$$

Observe that ω_1 coincides with the function ω considered in the previous example for n=1 and a=1/4.

3. For $b \in (-1, 1)$ and $a \in [-1, b)$ let

$$\omega(z):=\frac{(ab+b-2a)z-ab+b}{(2b-a-1)z-a+1},\quad z\in\overline{\mathbf{D}}.$$

We see that $\omega(0) = b_0 = b$, $\omega(1) = 1$ and $\omega(-1) = a$, so $\omega(\mathbf{D}) \subset \mathbf{D}$ and $\omega \in \mathcal{B}_1$. Moreover

$$\omega'(z) = \frac{2(b-a)(1-a)(1-b)}{((2b-a-1)z-a+1)^2}, \quad z \in \overline{\mathbf{D}}.$$

Hence

$$b_1 = \omega'(0) = \frac{2(b-a)(1-b)}{1-a}$$

and $b_1 > 0$. Moreover

$$\omega'(1) = \frac{(1-a)(1-b)}{2(b-a)} = \frac{(1-b)^2}{\omega'(0)} = \frac{(1-b_0)^2}{b_1}.$$

But

$$\lambda_{0,1}(\omega) = \frac{2(1-b_0)^2}{1-b_0^2+b_1}.$$

We see that

$$\omega'(1) = \frac{(1 - b_0)^2}{b_1}$$

$$\geq \frac{2(1 - b_0)^2}{1 - b_0^2 + b_1} = \lambda_{0,1}(\omega).$$

Observe that when $b_0 = b \to -1^+$, then $a \to -1^+$ and, consequently, $\omega'(1) \to \infty$.

Theorem 2.5 can be slightly generalized.

Corollary 2.9. Let $n \in \mathbb{N}$. Assume that $\omega \in \mathcal{B}^{(n)}$ is of the form (1.3) and at $z_0 \in \mathbb{T}$ a limit $\omega_{\perp}(z_0)$ exists with

$$|\omega_{\varepsilon}(z_0)| = \sup\{|\omega(z)| : z \in \mathbf{D}\}.$$

Then $\omega'(z_0)$ exists and

$$\frac{z_0 \omega_{_{\! L}}'(z_0)}{\omega_{_{\! L}}(z_0)} \geq \frac{\left|\omega_{_{\! L}}(z_0) - b_0\right|^2}{\left|\omega_{_{\! L}}(z_0)\right|^2 - \left|b_0\right|^2}$$

$$\times \left(n + \frac{\left|\omega_{\scriptscriptstyle L}(z_0)\right|^2 - \left|b_0\right|^2 - \left|\omega_{\scriptscriptstyle L}(z_0)b_n\right|}{\left|\omega_{\scriptscriptstyle L}(z_0)\right|^2 - \left|b_0\right|^2 + \left|\omega_{\scriptscriptstyle L}(z_0)b_n\right|}\right).$$

Proof. Since $\omega \not\equiv 0$, so $\omega_{\scriptscriptstyle \perp}(z_0) \not\equiv 0$. Thus the function

$$\mathbf{D}\ni z\mapsto \psi(z):=\frac{\omega(z_0z)}{\omega_{_{\ell}}(z_0)}$$

is well defined and analytic in **D**. Obviously, $\psi \in \mathcal{B}_1^{(n)}$. Moreover from (1.3) it follows that

$$\psi(z) = c_0 + \sum_{k=n}^{\infty} c_k z^k, \quad z \in \mathbf{D},$$

where

$$c_0 = rac{b_0}{\omega_{\scriptscriptstyle L}(z_0)}\,, \quad c_n = rac{z_0^n b_n}{\omega_{\scriptscriptstyle L}(z_0)}\,.$$

Since, by Theorem 1.2, $\psi'_{\scriptscriptstyle L}(1)$ exists, so $\omega'_{\scriptscriptstyle L}(z_0)$ exists and

$$\psi_{_{\perp}}^{\prime}(1)=rac{z_{0}\omega_{_{\perp}}^{\prime}(z_{0})}{\omega_{_{\ell}}(z_{0})}$$
 .

Applying now Theorem 2.5 we have finally

$$\begin{split} \frac{z_{0}\omega_{L}'(z_{0})}{\omega_{L}(z_{0})} &\geq \frac{\left|1 - \frac{b_{0}}{\omega_{L}(z_{0})}\right|^{2}}{1 - \left|\frac{b_{0}}{\omega_{L}(z_{0})}\right|^{2}} \\ &\times \left(n + \frac{1 - \left|\frac{b_{0}}{\omega_{L}(z_{0})}\right|^{2} - \left|\frac{z_{0}^{n}b_{n}}{\omega_{L}(z_{0})}\right|}{1 - \left|\frac{b_{0}}{\omega_{L}(z_{0})}\right|^{2} + \left|\frac{z_{0}^{n}b_{n}}{\omega_{L}(z_{0})}\right|}\right) \\ &= \frac{\left|\omega_{L}(z_{0}) - b_{0}\right|^{2}}{\left|\omega_{L}(z_{0})\right|^{2} - \left|b_{0}\right|^{2}} \\ &\times \left(n + \frac{\left|\omega_{L}(z_{0})\right|^{2} - \left|b_{0}\right|^{2} - \left|\omega_{L}(z_{0})b_{n}\right|}{\left|\omega_{L}(z_{0})b_{n}\right|}\right). \end{split}$$

When $\omega_{_{\! \perp}}(z_0) \in {f T},$ we have the following corollary.

Corollary 2.10. Let $n \in \mathbb{N}$. Assume that $\omega \in \mathcal{B}^{(n)}$ is of the form (1.3) and at $z_0 \in \mathbb{T}$ a limit $\omega_{\perp}(z_0)$ exists and $\omega_{\perp}(z_0) \in \mathbb{T}$. Then $\omega'_{\perp}(z_0)$ exists and

$$\frac{z_0\omega_{_{\! \perp}}'(z_0)}{\omega_{_{\! \perp}}(z_0)} \geq \frac{\left|\omega_{_{\! \perp}}(z_0) - b_0\right|^2}{1 - \left|b_0\right|^2} \left(n + \frac{1 - |b_0|^2 - |b_n|}{1 - |b_0|^2 + |b_n|}\right).$$

References

- [1] H. P. Boas, Julius and Julia: mastering the art of the Schwarz lemma, Amer. Math. Monthly **117** (2010), no. 9, 770–785.
- [2] C. Carathéodory, Conformal representation, Cambridge Tracts in Mathematics and Mathematical Physics, no. 28, Cambridge University Press, Cambridge, 1952.
- V. N. Dubinin, Zap. Nauchn. Sem. S.-Peterburg.
 Otdel. Mat. Inst. Steklov. (POMI) 286 (2002),
 Anal. Teor. Chisel i Teor. Funkts. 18, 74–84,
 228–229; translation in J. Math. Sci. (N.Y.) 122 (2004), no. 6, 3623–3629.
- [4] M. Finkelstein, Growth estimates of convex functions, Proc. Amer. Math. Soc. 18 (1967), 412– 418.
- [5] J. B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, 96, Academic Press, New York, 1981.
- [6] G. Julia, Extension nouvelle d'un lemme de Schwarz, Acta Math. 42 (1920), no. 1, 349–355.
- [7] A. Lecko, On the class of functions starlike with respect to a boundary point, J. Math. Anal. Appl. **261** (2001), no. 2, 649–664.
- [8] A. Lecko, Some methods in the theory of univalent functions, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2005.
- [9] A. Lecko, Boundary subordination, Ann. Polon. Math. 104 (2012), no. 2, 189–201.
- [10] R. Mortini and R. Rupp, Sums of holomorphic selfmaps of the unit disk, Ann. Univ. Mariae Curie-Skł odowska Sect. A **61** (2007), 107–115.
- [11] R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. **128** (2000), no. 12, 3513–3517.
- [12] Ch. Pommerenke, Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften, 299, Springer, Berlin, 1992.
- [13] H. Unkelbach, Über die Randverzerrung bei konformer Abbildung, Math. Z. **43** (1938), no. 1, 739–742.