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Infra-solvmanifolds are a special class of as-

pherical manifolds studied by mathematicians for a

long time. By the literal meaning, an infra-solvma-

nifold is a smooth manifold finitely covered by a

solvmanifold (which is the quotient of a connected

solvable Lie group by a closed subgroup). Infra-

solvmanifolds include all flat Riemannian manifolds

and infra-nilmanifolds.

It is known that compact infra-solvmanifolds

are smoothly rigid, i.e. any homotopy equivalence

between two compact infra-solvmanifolds is homo-

topic to a diffeomorphism (see [3] and [8]). Geo-

metrically, a compact infra-solvmanifold M can be

described (see [7, Proposition 3.1]) as a manifold

which admits a sequence of Riemannian metric fgng
with uniformly bounded sectional curvature so that

ðM; gnÞ collapses in the Gromov-Hausdorff sense to

a flat orbifold.

In the history of study on this topic, several

definitions of compact infra-solvmanifolds were

proposed in various math literatures. This is

mainly because people look at these manifolds

from very different angles (topologically, algebrai-

cally or geometrically). The following are five such

definitions.

Definition 1. Let G be a connected, simply

connected solvable Lie group, K be a maximal

compact subgroup of the group AutðGÞ of auto-

morphisms of G, and � be a discrete subgroup of

GoK. If ½� : G \ �� <1 and the action of � on

G is cocompact and free, the orbit space �nG is

called an infra-solvmanifold modeled on G. See

[7, Definition 1.1].

Definition 2. A compact infra-solvmanifold

is a manifold of the form �nG, where G is a

connected, simply connected solvable Lie group,

and � is a torsion-free discrete subgroup of

AffðGÞ ¼ GoAutðGÞ which acts on G cocompactly

and the closure of holð�Þ in AutðGÞ is compact

where hol : AffðGÞ ! AutðGÞ is the holonomy

projection.

Definition 3. A compact infra-solvmanifold

is a double coset space �nG=K where G is a

virtually connected and virtually solvable Lie

group, K is a maximal compact subgroup of G

and � is a torsion-free, cocompact, discrete sub-

group of G. See [2, Definition 2.10].

A virtually connected Lie group is a Lie group

with finitely many connected components.

Definition 4. A compact infra-solvmanifold

M is an orbit space of the form M ¼ �nS where S is

a connected, simply connected solvable Lie group

acted upon cocompactly by a torsion-free closed

subgroup � � AffðSÞ satisfying

. the identity component �0 of � is contained in

the nil-radical of S,

. the closure of holð�Þ in AutðSÞ is compact.

Definition 5. A compact infra-solvmanifold

is a manifold of the form �nG, where G is a

connected, simply connected solvable Lie group,

and � is a torsion-free subgroup of AffðGÞ which

acts cocompactly on G and the closure of holð�Þ in

AutðGÞ is compact.

Note that the subgroup � in Definition 4 and

Definition 5 is not necessarily discrete. The Defi-
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nition 4 is from [3, Definition 1.1] and Definition 5

is from [1, Definition 1.1].

The main purpose of this paper is to explain

why the above five definitions of compact infra-

solvmanifolds are equivalent. The authors are fully

aware that the reason is probably known to many

people. However, we do not find any formal proof of

this equivalence and feel this phenomenon a little

confusing. So we want to write a proof here for the

convenience of future reference. However, we do not

intend to give a completely new treatment of this

subject. Our proof will directly quote some results

on infra-solvmanifolds from [1], [3] and [8] and use

many subtle facts in Lie theory. This paper can be

treated as an elementary exposition of compact

infra-solvmanifolds and some related concepts.

Now let us start to prove the following main

result of the paper.

Proposition 1. The five definitions Defini-

tion 1–Definition 5 of compact infra-solvmanifolds

are all equivalent.

Proof. We divide our proof into several parts.

The framework of the proof is shown below.

Definition 1

Definition 4

Definition 2

Definition 3

Definition 5

Definition 1 () Definition 2. Let M be a

compact infra-solvmanifold in the sense of Defini-

tion 1. First of all, any g 2 � can be decomposed as

g ¼ kgug where kg 2 K � AutðGÞ and ug 2 G. The

holonomy projection hol : Go AutðGÞ ! AutðGÞ
sends g to kg. Since hol is a group homomorphism,

its image holð�Þ is a subgroup of K. By assumption,

jholð�Þj ¼ ½� : G \ �� is finite, so holð�Þ is compact.

In addition, since G is a connected simply-connect-

ed solvable Lie group, G is diffeomorphic to an

Euclidean space. Then by Smith fixed point theo-

rem ([6, Theorem I]), � acting on G freely implies

that � is torsion-free. So M satisfies Definition 2.

Conversely, if M is a compact infra-solvmani-

fold in Definition 2, then [8, Theorem 3 (a) ) (f)]

tells us that there exists a connected, simply-

connected solvable Lie group G0 so that the �

(which defines M) can be thought of as discrete

subgroup of G0 o F where F is a finite subgroup of

AutðG0Þ. Moreover, there exists an equivariant

diffeomorphism from G to G0 with respect to

the action of � (by [8, Theorem 1 and Theorem 2]).

Hence

M ¼ �nG¼�
diff.

�nG0:

Then ½� : � \G0� ¼ jholG0 ð�Þj � jF j is finite.

It remains to show that the action of � on G0 is

free. Since F is finite, we can choose an F -invariant

Riemannian metric on G0 (in fact we only need F to

be compact). If the action of an element g 2 � on

G0 has a fixed point, say h0. Let Lh0
be the left

translation of G0 by h0. Then L�1
h0
gLh0

fixes the

identity element, which implies L�1
h0
gLh0

2 F . So

there exists a compact neighborhood U of h0 so that

g � U ¼ U and g acts isometrically on U with respect

to the Riemannian metric just as the element

L�1
h0
gLh0

2 F acts around e. So

A ¼ Dg : Th0
U ! Th0

U

is an orthogonal transformation. Then A is con-

jugate in OðnÞ to the block diagonal matrix of the

form

Bð�1Þ 0

. .
.

0 Bð�mÞ

0
BB@

1
CCA;

where Bð0Þ ¼ 1, Bð�Þ ¼ �1, and

Bð�jÞ ¼
cos �j � sin �j

sin �j cos �j

� �
; 1 � j � m:

Since � is torsion-free, g is an infinite order

element. This implies that at least one �j is irra-

tional. Then for any v 6¼ 0 2 Th0
G0, jfAnvgn2Zj ¼ 1.

So there exists h 2 U so that jfgn � hgn2Zj ¼ 1.

Then the set fgn � hgn2Z � U has at least one

accumulation point. This contradicts the fact that

the orbit space �nG0 is Hausdorff (since �nG0 ¼M
is a manifold).

Combing the above arguments, M is an

infra-solvmanifold modeled on G0 in the sense of

Definition 1.

Definition 1 ¼) Definition 3. Let M be an

infra-solvmanifold in the sense of Definition 1. Let

holð�Þ be the image of the the holonomy projection

hol : �! AutðGÞ. Then holð�Þ is a finite subgroup

of AutðGÞ.
Define eGG ¼ Go holð�Þ which is virtually solv-

able. It is easy to see that holð�Þ is a maximal
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compact subgroup of eGG and, � is a cocompact,

discrete subgroup of eGG. Then M ¼� �n eGG=holð�Þ. So

M satisfies Definition 3.

Definition 3 ¼) Definition 2. Let M ¼
�nG=K be a compact infra-solvmanifold in the

sense of Definition 3. Since K is a maximal compact

subgroup of G, G=K is contractible. Note that K is

not necessarily a normal subgroup of G. Hence G=K

may not directly inherit a group structure from G.

Let G0 be the connected component of G

containing the identity element. Then by [4, Theo-

rem 14.1.3 (ii)], K0 ¼ K \G0 is connected and K0 is

a maximal compact subgroup of G0. Moreover, K

intersects each connected component of G and

K=K0 ¼� G=G0:

By the classical Lie theory, the Lie algebra of a

compact Lie group is a direct product of an abelian

Lie algebra and some simple Lie algebras. Then

since the Lie algebra LieðGÞ of G is solvable and K

is compact, the Lie algebra LieðKÞ � LieðGÞ must

be abelian. This implies that K0 is a torus and hence

a maximal torus in G0.

In addition, since G is virtually solvable, G0 is

actually solvable. This is because the radical R of G

is a normal subgroup of G0 and dimðRÞ ¼ dimðG0Þ
(since G is virtually solvable). So G0=R is discrete.

Then since G0 is connected, G0 must be equal to R.

Let ZðGÞ be the center of G and define

C ¼ ZðGÞ \K:

Then C is clearly a normal subgroup of G. Let

G0 ¼ G=C; K0 ¼ K=C:

Let � : G! G0 be the quotient map. Since

� \K ¼ f1g, � ¼� �ð�Þ � G0, we can think of � as

a subgroup of G0. So we have

M ¼ �nG=K ¼� �nG0=K 0:ð1Þ

Let G00 ¼ �ðG0Þ be the identity component of G0.
Then G00 is a finite index solvable normal subgroup

of G0.

LieðG00Þ ¼ LieðG0Þ ¼ LieðGÞ=LieðCÞð2Þ
¼ LieðG0Þ=LieðCÞ:

Besides, let K00 ¼ K0 \G00 which is a maximal torus

of G00. We have

LieðK00Þ ¼ LieðK0Þ ¼ LieðKÞ=LieðCÞð3Þ
¼ LieðK0Þ=LieðCÞ:

Claim-1. G00 is linear and so G0 is linear.

A group is called linear if it admits a faithful

finite-dimensional representation. By [4, Theorem

16.2.9 (b)], a connected solvable Lie group S is

linear if and only if t \ ½s; s� ¼ f0g where s and t are

Lie algebras of S and its maximal torus TS,

respectively. And for a general connected solvable

group S, the Lie subalgebra t \ ½s; s� is always

central in s. So for our G0 and its maximal torus

K0, the Lie subalgebra LieðK0Þ \ ½LieðG0Þ;LieðG0Þ�
is central in LieðG0Þ ¼ LieðGÞ. So LieðK0Þ \
½LieðG0Þ;LieðG0Þ� � LieðZðGÞÞ and then

LieðK0Þ \ ½LieðG0Þ;LieðG0Þ�ð4Þ
� LieðKÞ \ LieðZðGÞÞ ¼ LieðCÞ:

Then for the Lie group G00 and its maximal torus

K00, we have

LieðK00Þ \ ½LieðG00Þ;LieðG00Þ�ð5Þ

¼
LieðK0Þ
LieðCÞ \

LieðG0Þ
LieðCÞ ;

LieðG0Þ
LieðCÞ

� �
¼ 0:

So by [4, Theorem 16.2.9 (b)], G00 is linear. More-

over, suppose V is a faithful finite-dimensional

representation of G00. Then R½G0� 	R½G0
0
� V is a

faithful finite-dimensional representation of G0

where R½G0� and R½G00� are the group rings of G0

and G00 over R, respectively. So the Claim-1 is

proved.

From the Claim-1 and (1), we can just assume

that our group G is linear at the beginning. Under

this assumption, G0 is a connected linear solvable

group. So there exists a simply connected solvable

normal Lie subgroup S of G0 so that G0 ¼ S oK0

and ½G0; G0� � S (see [4, Lemma 16.2.3]). So

LieðG0Þ ¼ LieðK0Þ 
 LieðSÞ:

More specifically, we can take S ¼ p�1ðV Þ where p :
G0 ! G0=½G0; G0� is the quotient map and V is a

vector subgroup of the abelian group G0=½G0; G0� so
that G0=½G0; G0� ¼� pðK0Þ � V (see the proof of

[4, Theorem 16.2.3]). Note that the vector subgroup

V is not unique, nor is S.

Claim-2. We can choose S to be normal in G

and so G ¼� S oK.

Indeed since K is compact, we can choose a

metric on LieðG0Þ which is invariant under the

adjoint action of K. Then we can choose V so that

LieðSÞ is orthogonal to LieðK0Þ in LieðG0Þ. Then

because K0 is normal in K, the adjoint action of K

on LieðG0Þ preserves LieðK0Þ, so it also preserves
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the orthogonal complement LieðSÞ of LieðK0Þ. This

implies that S is preserved under the adjoint action

of K.

Let G0, h1G0; � � � ; hmG0 be all the connected

components of G. Since K intersects each connected

component of G, we can assume that hi 2 K for all

1 � i � m. Then any element g 2 G can be written

as g ¼ g0hi for some g0 2 G0 and hi 2 K. So

gSg�1 ¼ g0hiSh
�1
i g�1

0 � g0Sg
�1
0 � S. The Claim-2 is

proved.

From the semidirect product G ¼ S oK, we

can define an injective group homomorphism � :

G! AffðSÞ ¼ S oAutðSÞ as follows. For any g 2
G, we can write g ¼ sgkg for a unique sg 2 S and

kg 2 K since S \K ¼ S \K0 ¼ f1g. Then �ðgÞ :

S ! S is the composition of the adjoint action of

kg on S and the left translation on S by sg, i.e.

�ðgÞ ¼ Lsg � Adkg :

Claim-3. �ð�ÞnS is diffeomorphic to the

double coset space �nG=K.

Notice that each left coset in G=K contains a

unique element of S, so we have

G=K ¼ fsK ; s 2 Sg:

For any � 2 �, let � ¼ s�k� where s� 2 S and

k� 2 K. Then we have

�sK ¼ s�k�sK ¼ s�k�sk�1
� K

¼ �ð�ÞðsÞK; 8 s 2 S:
So the natural action of � on the left coset

space G=K can be identified with the action of

�ð�Þ � AffðSÞ on S. The Claim-3 is proved.

Let Ad : K ! AutðSÞ denote the adjoint action

of K on S. Since K is compact and Ad is continuous,

AdðKÞ � AutðSÞ is also compact. Notice that �ð�Þ
is a subgroup of S o AdðKÞ � S oAutðSÞ. So the

closure holð�ð�ÞÞ of the holonomy group holð�ð�ÞÞ
in AutðSÞ is contained in AdðKÞ. So holð�ð�ÞÞ is

compact. This implies that �nG=K ¼� �ð�ÞnS is an

infra-solvmanifold in the sense of Definition 2.

Remark 1. A simply-connected solvable Lie

group is always linear, but for non-simply-connect-

ed solvable Lie groups, this is not always so. A

counterexample is the quotient group of the

Heisenberg group by an infinite cyclic group (see

[5, p. 169 Example 5.67]).

It is obviously true that Definition 2 ¼)
Definition 4 ¼) Definition 5. So it remains to show

Definition 5 ¼) Definition 2.

Definition 5 ¼) Definition 2. This follows

from a nontrivial result in [1]. Indeed, the funda-

mental group of the manifold �nG in Definition 5 is

� ¼ �=�0, which is a torision-free virtually poly-

cyclic group (see [2]). It is shown in [1] that such a

group � determines a virtually solvable real linear

algebraic group H� which contains � as a discrete

and Zariski-dense subgroup. H� is called the real

algebraic hull of � in [1]. In addition, we have H� ¼
U o T where T is a maximal reductive subgroup

of H� and U is the unipotent radical of H�. The

splitting of H� gives an injective group homomor-

phism � : H� ! AffðUÞ and a corresponding affine

action of � < H� on U . It is shown in [1] that

M� ¼ �ð�ÞnU is a compact infra-solvmanifold

whose fundamental group is �. The M� is called

the standard �-manifold. Now since �ð�Þ is a

discrete subgroup of AffðUÞ, M� is a compact

infra-solvmanifold in the sense of Definition 2.

Moreover �nG is diffeomorphic to M� by

[1, Theorem 1.4].

So we finish the proof of Proposition 1. �

Remark 2. If we remove the ‘‘cocompact’’

condition in Definition 1–Definition 5, we may get

noncompact infra-solvmanifolds, which are vector

bundles over some compact infra-solvmanifolds (see

[8, Theorem 6]).
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