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Abstract:

Varagnolo-Vasserot and Rouquier proved that, in a symmetric generalized

Cartan matrix case, the simple modules over the quiver Hecke algebra with a special parameter
correspond to the upper global basis. In this note we show that the simple modules over the
quiver Hecke algebras with a generic parameter also correspond to the upper global basis in a

symmetric generalized Cartan matrix case.

Key words:

1. Introduction. Lascoux-Leclerc-Thibon
([8]) conjectured that the irreducible representations
of Hecke algebras of type A are controlled by the
upper global basis ([4,5]) (or dual canonical basis
([10])) of the basic representation of the affine
quantum group Uq(Ay))‘ Then, S. Ariki ([1]) proved
this conjecture by generalizing it to cyclotomic
Hecke algebras. The crucial ingredient in his proof
was the fact that the cyclotomic Hecke algebras
categorify the irreducible highest weight represen-
tations of U (Aél)). Because of the lack of grading
on the cyclotomic Hecke algebras, these algebras do
not categorify the representation of the quantum
group.

Then Khovanov-Lauda and Rouquier intro-
duced independently a new family of graded algebras,
a generalization of affine Hecke algebras of type A,
in order to categorify arbitrary quantum groups
([6,7,11]). These algebras are called Khovanov-
Lauda-Rouquier algebras or quiver Hecke algebras.

Let U,(g) be the quantum group associated
with a symmetrizable Cartan datum and let
{R(B)}seq+ be the corresponding quiver Hecke
algebras. Then it was shown in [6,7] that there
exists an algebra isomorphism

Ux(8) ~ @D K(R(B)-proj),

BeQ

where Uy (g) is the A-form of the half U, (g) of
the quantum group U,(g) with A = Z[q,¢7'], and
K(R(B)-proj) is the Grothendieck group of the
category R(f)-proj of finitely generated projective
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graded R(()-modules. The positive root lattice is
denoted by Q. By the duality, we have

(1.1) Ux(a)" ~ €P K(R(B)-gmod),

BeQ

where Uy (g)" is the direct sum of the dual of the
weight space U, (g)_z of U, (g), and R(5)-gmod is
the abelian category of graded R(()-modules which
are finite-dimensional over the base field k.

When the generalized Cartan matrix is a sym-
metric matrix, Varagnolo and Vasserot ([13]) and
Rouquier ([12]) proved that the upper global basis
introduced by the author or Lusztig’s dual canoni-
cal basis corresponds to the isomorphism classes of
simple R((3)-modules via the isomorphism (1.1).

However, for a given generalized Cartan matrix,
associated quiver Hecke algebras are not unique and
depend on the parameters c. Varagnolo-Vasserot and
Rouquier have proved the above results for a very
special choice ¢y of parameters (see (2.5)). Let us
denote by R(3), the quiver Hecke algebra with the
choice ¢y, and by R(ﬂ)cgm the quiver Hecke algebra
with a generic choice cgen of parameters. When a
simple R(3), -module is specialized at the special
parameter ¢y, it may be a reducible R(f),,-module.
The purpose of this note is to prove that the
specialization of any simple R((). -module at c
remains a simple 1(3), -module. In other words, the
set of isomorphism classes of simple R(ﬂ)cgﬁn—modules
also corresponds to the upper global basis.

2. Review on global bases and quiver
Hecke algebras.

2.1. Global bases. Let I be a finite index set.
An integral square matrix A = (a;;), ;c; is called
a symmetrizable generalized Cartan matriz if it
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satisfies (i) a;; =2 (i € I), (ii) a;; <0 (i # j), (iii)
a;; =0if aj; =0 (¢,j € I), (iv) there is a diagonal
matrix D = diag(d; € Z~¢ | i € I) such that DA is
symmetric.
A Cartan datum (A, P,T0, P¥ 1Y) consists of
(1) a symmetrizable generalized Cartan matrix A,
(2) a free abelian group P of finite rank, called the
weight lattice,
(3) PY:=Hom(P,Z), called the co-weight lattice,
(4) M={a; |i €I} C P, called the set of simple
roots,
(5) IV ={h; | i e I} C P, called the set of simple
coroots,
satisfying the condition: (h;, oj) = a;jfor all¢,j € I.
Since A is symmetrizable, there is a symmetric
bilinear form ( | ) on P satisfying

(aila)) = diai; and  (ai|A) = di(hi, A)

for all i,j€I, A€ P. The free abelian group
=@ Za; is called the root lattice. Set Q" =

iel
YierZs0a; CQ and Q =3, .;Z< CQ. For
= Zie[ ).

B =>cmic; € Q, we set ht(3)

Let g be an indeterminate. Set ¢; = ¢% for i € I
and we define [n], = (¢ —¢;")(ai —¢;")”"
[n),! =TT, k], for n € Zx,.

Definition 2.1. The quantum algebra U,(g)
associated with a Cartan datum (A, P,II,11V) is the
algebra over Q(q) generated by e;, f; (i € I) and ¢"
(h € PY) satisfying following relations:

and

(i) ¢ =1, ¢"¢" = thrh/ for h,h' € PY,

(i) ¢"eig" =q" e, " fig " =g "0 fi for
he PV iel,

K — K;!
(ili) e f; — fier = 6;j————, where K; = ¢",
’ qi — q;

1—a;;

(iv) Z (—1)Te§1_ai‘j_r)eje§r) =0 if i#j, where
r=0
e = e /Inl,
1—a;;

V) S (0T =0 i i#j, where
r=0
£ = g/l

Let U, (g) be the Q(g)-subalgebra of U,(g)
generated by the elements f;. We define the endo-
morphisms e} and €] of U, (g) by
le;,a] = Y(Kiela — K
Then €] and the left multiplication of f; satisfy the
g-boson commutation relations

(G—q")

e;a) for a € U, ().
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—Q;
efi—q " fie; = bij.

Set A =1Zg,q '] and let U,(g) be the
A-subalgebra of U, (g) generated by the ele-

ments fl-("). Then U,(g) has a weight de-
composition Ua(8) = Djeq Ua(9)s where
Ux(9);:={a€Uz(g) | ¢"ag™" = ¢"Pa}. Set

Up(9)" = @peq Homa(Uy(g)s,A) and  let e,
f € Enda(U,(g)") be the transposes of fi, el e
Enda (U, (g)), respectively. Note that Uy (g), is a
free A-module with a basis 1, and hence Uy (g), is
a free A-module generated by the dual basis of 1,
which is denoted by ¢.

Proposition 2.2 ([4,5]). There exists a
unique basis {G"(b)},cp of the A-module Uy (g)”,
called the upper global basis, which satisfies the
following conditions:

(i) ¢ €{G™(b)|be B},
(ii) for any b€ B, G(b) belongs to (Ux(g))" for
some 3 € Q~, which is denoted by wt(b),
(iii) Setei(b) = max{n € Zx | efG"(b) # 0}. Then
for any b€ B and i € I, there exists fib eB
such that, when writing

fIG™(b) = F,G™(¥) with Fj, € A,
veB '
we have et)
) 5 bfb =%

(a

(b) ei(fib) = ei(b) +1,

(c) be, =0 szl’) # fib and ;(b') > &;(b) + 1,

(d) Fyy € ag;" " Zlg) for ¥ # Fb.
(iv) for b€ B such that &;(b) >0,

e;b € B such that, when writing

there exists

G (b) = S B, Q) with B, € A,

veB
we have
(a) Ebeb [El(b)]
(b) ei(b) =eib) — 1,
(c) Ejy =0ift #eéband (V') > &i(b) — 1,
(d) any Ej, is im}am’ant under the automor-

phism q — q L
(e) E})b, € qql1 il Z[q] for b # éb.
(v) flelb =bifei(b) >0, and éifl-b =b.
Note that B has the weight decomposition

b= UgEQf Bs  with Bg:= {b e B|wt(b) = 3}.

There exists a unique involution (called the bar
involution) —: Uy (g)" — U, (g)" such that
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(a) (qu)~ =q 'u for any u € Ux(g)",
(2.1) (b) —oe; =¢;0— for any i,

(c) =9
We have

G"™(b) = G™(b) for any b € B.

2.2. Quiver Hecke algebras. In this sub-
section, we recall the construction of the quiver
Hecke algebras associated with a Cartan datum
(A, P, 11, PY,11Y). For 4, j € I such that 7 # j, set

Sij={(p,q) € Z) | dip + djq = —(vi, )}

Let k(A) be the commutative Z-algebra generated
by indeterminates {t;j,,} and the inverse of
where ¢,j€ I such that i#j and
(p,q) € S; ;. They are subject to the defining rela-

bi ji—a; ;0

tions: ti,j;p,q = t]"i;q,p.
Let us define the polynomials (Q,;J)Z-’jd in
k(A)[u, v] by
0 if i =7,
> tigpgul? if i # .
(P.9)€Si;
They satisfy Q;;(u,v) = Q;i(v,u).

We denote by S, = (s1,...,8,-1) the symmet-
ric group on n letters, where s; := (i,i+ 1) is the
transposition of ¢ and ¢ + 1. Then S,, acts on I".

Definition 2.3 ([6,11]). The quiver Hecke
algebra R(n) of degree n associated with a Cartan
datum (A, P, 11, PV, 11) is the Z-graded algebra
over k(A) generated by e(v) (vel),
(1<k<mn),7n(1<l<n-—1)satistying the follow-
ing defining relations:

eW)e(t) = buwe(v), Xoepmelv) =1,

Ty = 11T, TRe(V) = e(V)ay,

inj(ua U) =

ne(v) =e(si(v))m, e =mnm, if k=1 >1,
Tre(V) = Quun, (Th, Tri)e(v),
(Trr — g,y Th)eE(V)
—e(v) 1=k, v, =vp,
=< e(v) ifl=k+1, vy =41,
0 otherwise,
(Tha 1 TE Tkt — ThThr1 k) e(V)
_ {@yk‘m. (Tp, Ths1, Trro)e(v)  if vp = vpio,
0 otherwise.

Here @M(u, v,w) = (Qi;(u,v) — Qs (w,v))(u— w)fl.
The Z-grading on R(n) is given by assigning
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dege(v) =0,
_(O‘w |aVl+1 )
Note that R(n) has an anti-involution v that
fixes the generators xy, 7, and e(v).
For n € Z>o and 8 € Q" such that ht(3) = n,
we set

I’ ={v=(v,..

degzre(v) = (ay,|aw,), degme(v) =

V) €EIM | ay, + -+, = S}
We define

e(B) = Zyelﬂ e(v),
(22)  R(8) = R(n)e(B) = P R(n)e(v).

velb

The algebra R(f5) is called the quiver Hecke
algebra at G.

Similarly, for 3,7 € Q* with m = ht(8) and
n = ht(7y)

e(B,7) =2, e(v) € R(m+n)
where v ranges over the set of v € I"™™ such

m m—+n
that " a,, =B and Y /7" a, = 1.

Then R(m + n)e(B3,7) is a graded (R(B + ), R(8) ®
R(7))-bimodule. For a graded R(8)-module M and
a graded R(y)-module N, we define their convolu-
tion M o N by

MoN=R(B+yelBy) &
R(A)®R()

For (€ Z>j, we define the graded R({a;)-
module L(i*) by

2 pige / d 4
G (bow) [ D R(bai)ay ) |
=1

Here ¢: Mod(R(8)) — Mod(R(B)) is the grade-shift
functor:

(2.3)

(M ® N).

L(i") =

(gM), = My,

and ¢; = ¢®ilo)/2,

For a commutative ring k and a ring homo-
morphism c¢:k(A) — k, we denote by R(f), the
algebra k ®y4) R(3).

Let us denote by X(A) the scheme Spec(k(A)).
For z € X(A), let us denote by k(x) the residue field
of the local ring (€x(4)), and denote by R(3), the
k(x)-algebra k(z) ®x4) R(5).

Let us take a commutative field k and a
homomorphism k(z) — k. For 8 € QT, let us denote
by R(f),-gmod the abelian category of graded
R(f),-modules finite-dimensional over k. Then the
set of isomorphism classes of simple objects in
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R(B),-gmod is isomorphic to the one for R(f),-
gmod by S+ k @,y S (see [6, Corollary 3.19]).
For ¢ € I and z € X(A) we have functors

F,
R(ﬁ)w—gmong(ﬂ + o;),-gmod.

Here these functors are defined by
FEM = Mo L(i),
EiN = e(B,0i)N
for M e R(8),-gmod and N € R(S+ «;),-gmod.
Then we have
0—id — EF, — ¢ FE — 0,
EiFy~ ¢ 9 FE;  fori# j,
which immediately follows from [3, Theorem 3.6].
Let K(R(8),-gmod) denote the Grothendieck
group of the abelian category R(f),-gmod. Then,
it has a structure of a Z[g, ¢ ']-module induced by
the grade-shift functor on R(5),-gmod.

Then the following theorem holds.
Theorem 2.4 ([6]). There exists a unique

Z[q,q !]-linear isomorphism

(24) P K®RE),-gmod) = Uy (o)
peQt

such that

(i) the induced actions [E;] and [F}] by E; and F;
correspond to e; and f},
(i) ¢ € Ux(g)" corresponds to the regular repre-

sentation of R(0),.

Let D: R(f),-gmod — (R(f),-gmod)’™ be the
duality functor M — M* induced by the antiauto-
morphism ¢ of R(3),. We can easily see by the char-
acterization (2.1) of the bar involution that the in-
duced endomorphism [D] of B ;.q+ K(R(B),-gmod)
corresponds to the bar involution — of Uy (g)".

The Grothendieck group K(R(8),-gmod) is a
free Z-module with the basis consisting of [S] where
S ranges over the set of isomorphism classes of
simple graded R(3),-modules. Khovanov-Lauda
([6]) proved that for any simple graded R(5),-
module S, there exists r € Z such that D(¢"S) ~
q"S. Let Irr(R(f),) be the set of isomorphism classes
of simple graded R(8),-modules S such that
D(S) ~ S. Then K(R(8),-gmod) is a free Z[g, ¢ ']-
module with {[S] | S € Irr(R(B),)} as a basis.

For a simple graded module S, let us denote by
£:(9) the largest integer k such that EFS # 0. Recall
that ¢ denotes the shift-functor and ¢; = ¢(@il®)/2,
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Proposition 2.5 ([6,9]). Let x € X(A), S €

Q" and S a simple graded R(3),-module.

(i) The cosocle of FS is a simple module. Its

image under q is denoted by ES.

(ii) Ifei(S)>0 then the socle of E;S is simple. Its
image under qZ ~=) is denoted by E S.
FE;S~ S ife,(S) >0, and E;F,S ~ S.

If S 1s invariant by the duality D, then so are

FS and E S.

(v) The set leeQ* Irr(R(5),) is isomorphic to B,
and Ef and ﬁ, correspond to €; and ﬁ by this
isomorphism.

Hence, the cosocle of F;S is isomorphic to
ﬁS the socle of E;S is isomorphic to

E S and the cosocle of E;S is isomorphic to

( HES
For b € B_g, let us denote by L,(b) the corre-

sponding simple graded R(3),-module in Irr(R(3),).

Now assume that A is symmetric and consider

a k-valued point ¢y of X(A) given by
Qi j(u,v) = b j(u—v)~" for i # j where
k is a field of characteristic 0 and b; ; € k™.

(2.5)

Then the following theorem is proved by Varagnolo-
Vasserot ([13]) and Rouquier ([12]).
Theorem 2.6. Assume that the generalized

Cartan matriv A is symmetric. Then the
basis  {[Lc,(b)]},cp corresponds to the wupper
global basis {G"™(b)},cp by the isomorphism

Dpeqr K(R(B),,-gmod) — Ux(g)".
For M € R(B),-gmod, let us define its charac-

ter ch(M) by
> dim(e(v)M)
velP, keZ

que(V)

as an element of €@ Z[q,q ']e(v). Then we have
8

vel
(26)  ch(Le, (b)) = D (ew, €, G (D))e(v)
vels
for b € B_g.

3. Main results. Let cg, be the generic
point of X(A). For € Q" and b€ B_g, let us
consider the simple graded R(f),,  -module L, ().

Proposition 3.1. The set

Uy := {x € X(A) | ch(Ly(b)) = ch(L,, (b))}

is a Zariski open subset of X(A) and there exists a
graded Oy, @iy R(B)-module L(b) defined on Uy,
such that it is locally free as an Oy,-module and the
stalk of L(b) at any x € Uy is isomorphic to Ly(b).
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Proof. We shall prove it by induction on ht(f).
We may assume (3# 0. Take an ¢ € I such that
0:=¢;(b) #0. Set 3/ = B — Lo and b = &tb. For any
xz € X(A), the graded R(f),-module L,(b) is a
simple cosocle of L, (b') o L(i*). Moreover the kernel
of L,(b')oL(i") - L,(b) is {s€ L,(V)oL(i") |
e(d,la;)R(B)s = 0}.

By the induction hypothesis, there exists an
Ovy, x4y R(B')-module L(V') as above. Set R =
Ou, @A )R(ﬂ) and we shall denote by M the R-
module £(V') o L(i"). Let f be the composition

M — Home, . (R,M)
— Homg, |, (R, M/(1 = e(B, leq)) M).
Then the kernel of f coincides with the sheaf
{ue Me(f, la;)Ru = 0}.
The homomorphism f factors through

M L Hom,, (R R, M/ (1= e(d, L)) M)
— Home,, (R, M/(1 — e(B,la;)) M)
for a sufficient large integer m. Here R>,, = @ Ry.
k>m

Therefore f is a morphism of vector bundles on Uy.
On the othei hand, U, is the set of x € Uy such that
the rank of f at x is equal to its rank at the generic
point. Hence Uy is an open subset of X(A) and the
image of f|y;, satisfies the condition for £(b). O

For z € X(A) and b € B, let us consider the
condition

L, (b) corresponds to the upper global

3.1
3.1 basis G"(b) by the isomorphism (2.4).

We shall prove the following theorem.

Theorem 3.2. Let ¢y be a point of X(A)
satisfying (3.1) for any b€ B. Then ¢y belongs
to Uy for any b € B. Hence (3.1) holds also for any
z € U,.

Proof. It is enough to show that cge, satisfies
(3.1). W shall take a triple (K,&,k) such that
K =k(cgen), O is a discrete valuation ring, K
coincides with the fraction field of O, k is the
residue field of O, (Ox(4)),, C O and (Ox(4)),, C
O — k factors through k(zp). Such a triple exists
(see [2,(7.1.7)]).

We have the reduction map

Redg i K(R(8) ) — K(R(B)y)

by assigning [K ®¢ L] € K(R(f)g) to k®e L] €
K(R(pB),) for a graded R(8),-module L that is
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finitely generated and torsion-free as an O-module.
The homomorphism Redgyx commutes with the
duality D. Also it is compatible with the corre-
spondence (2.4), namely we have a commutative
diagram:

Red g

6(93 K(R(ﬁ)K—gmod) s G% K(R(ﬁ)k—gmod)
peEQT £BeQt
T
Uy ()"
For be B, set L(b)y:= L, (b) and L(b), :=

k ®x(¢,) Le,(b). Take b€ B_s, and let L(b), be an
R(B)p-lattice of L(b)g, i.e., a finitely generated
graded R(f)y,-submodule L(8), of L(b), such that
K ®o L(b)y = L(b) ;. In order to see the theorem,
it is enough to show that k ®o L(b), ~ L(b),.

We shall prove it by induction on ht(8). Take
an ¢ € I such that ¢;(b) > 0 and set ¥’ = é;b. Then
[L(b') k] corresponds to G" (V') by the induction
hypothesis. We take an R((')p-lattice L(b'), of

L(b') . Then by the induction hypothe51s we have
L(b), ~k®o L(b)(9 The image of q7 E-L(b’)o
by ¢ ( F,L(b') — L(b)x is an R(f)y-lattice of

L(b) , and we can take it as L(b),. Since

5"(”)}(F L) ~ ¢k @0 FIL() o — k @0 L(b)y,
the simples in a Jordan Holder series of k ®o L(b)
appears in the one of qL FL(b’)

Now assume that ¢"L(bi), appears in
RedgkL(b); = k®o L(b)p] for re€Z and b €
B_g. Then ¢"G"P(by) appears in ¢;' it f’G”p(b’) by
the assumption that ¢ satisfies (3.1). In particular,
L(b), appears in [k ®o L(b),] exactly once by (iiia)
in Proposition 2.2. Now assume that (r,b;) # (0, ).
Then (iiia) and (iiid) in Proposition 2.2 imply
that = > 0. Since L(b) is stable by the duality
functor D, ¢""L(b1), ~ D(¢"L(b1),.) also appears in
Redg kL(b) . Hence —r > 0. It is a contradiction.
This shows the desired result: k ®o L(b), = L(b),.
This completes the proof of Theorem 3.2. (]

Example 3.3. Let us give an example of a
simple R(8)-module which does not correspond to
any element in the upper global basis. Let g = Agl)
with T =1{0,1}, (a|aw) = (a1]|ar) = —(ao|ay) = 2,
and Qo1 (u,v) = u* + auv + v*. Here k is an arbitrary
field and ack. Set 6§ =ag+ a1, V' = fifop and
N =L(). Then N =kv with zjv=2v=710v=0
and v=-¢e(0l)v. Set M=NoN, and u=0v®
v e M. Then ch(M) = 2¢(0101) + [2]?¢(0011). Here
e(0101)M = ku @ kw with w := rm3mmu. By the
weight consideration, 7,e(0101)M =0 for k=1,3
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and xe(0101)M =0 for 1 <k <4. Easy calcula-
tions show that mw = —amu. Hence y := w + au is
annihilated by all z;’s and 7;’s and ky is an R(26)-
submodule of M. Set My= M/ky. Then [My]
corresponds to G'(b) with b := fffgqb It is easy to
see that M is a simple R(26)-module if a # 0. When
a =0, e(0011)M, is a simple R(26)-submodule of
My and L(b) = e(0011) M,. Note that the case (2.5)
is when a = £2.

Example 3.4. Let us give another example of
a simple R(()-module which does not correspond to
any element in the upper global basis. Let g = AS)
with I =7Z/3Z={0,1,2} with (a4|la;) =2 and
(ailaj) = =1 for i#j and Qjir1(u,v)=au+
bir1v (¢ € I) with a;,b; € k™, where k is an arbitrary
field. Set 6 =ag+a; +a9, b = f2f1f0¢ and N =
L(V). Then N =kv with zpo=7v=0 and v =
e(012)v. Set M=NoN and u =v®v € M. Then
ch(M) = 2¢(012012) + [2]e(001122) + [2]*e(001212) +
2]%¢(010122) + [2]€(010212). Here e(012012)M =
ku @ kw with w:=mnymnmmnnmu. By the
weight consideration 7;e(012012)M =0 for k# 3
and 2,e(012012)M =0 for 1 <k <6. By calcu-
lations, we have mw = —ym3u where v = apajas —
bob1bs. Hence y := w + ~yu is annihilated by all x;’s
and 7’s and ky is an R(26)-submodule of M. Set
My = M /ky. Then [M)] corresponds to G'?(b) with
b:= f2fifip. Tt is easy to see that M is a simple
R(26)-module if 4 #0. When =0, S:=(1—-
e(012012)) My = R(26)73u is a simple R(26)-module
and L(b) = S and ch(M,/S) = €(012012). Note that
the case (2.5) corresponds to agajas + bob1by = 0.

Remark 3.5. If we assume

the simple modules of R(3),
to the upper global basis,

(32) correspond

then G™(b) € 3 seirir(),) Z20lg, ¢ ][9] for any z €

£

X(A) and be B. We can ask if this positivity
assertion still holds without the assumption (3.2).
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